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INTRODUCTION
CHAPTER 2.0 
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 Important class of systems because many real 
physical processes have these properties

LTI systems have properties that have been studied 
extensively leading to powerful and effective theory 
for analyzing their behavior

LTI SYSTEMS
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DISCRETE-TIME LTI SYSTEMS: THE 
CONVOLUTION SUM
CHAPTER 2.1
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 A signal can be composed of 
scaled and shifted impulses

 Remember sifting and 
representation properties

REMINDER: REPRESENTATION

𝑥 𝑛 =
𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

Scale factor Shifted impulse
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Response of LTI system to delta input

 ℎ[𝑛] – (unit) impulse response

Time invariance of S
 If 𝛿 𝑛 → ℎ[𝑛], then 𝛿 𝑛 − 𝑘 → ℎ[𝑛 − 𝑘] ∀𝑘 ∈ ℤ

Linearity of S
 If 𝛿 𝑛 → ℎ[𝑛], then σ𝑘 𝑎𝑘𝛿 𝑛 − 𝑘 → σ𝑘 𝑎𝑘ℎ[𝑛 − 𝑘]
 𝑎𝑘 ∈ ℂ, ∀𝑘 ∈ 𝐾 ⊆ ℤ

IMPULSE RESPONSE ℎ[𝑛]

S𝑥 𝑛 = 𝛿[𝑛] 𝑦 𝑛 = ℎ[𝑛]
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𝑥 𝑛 ⟶ 𝑦 𝑛
𝛿[𝑛] ⟶ ℎ[𝑛]



 Using representation property

 𝑥 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 𝛿[𝑛 − 𝑘]

 𝑥 𝑛 = σ𝑘=−∞
∞ 𝑎𝑘𝛿[𝑛 − 𝑘]

 𝑎𝑘 = 𝑥[𝑘]

 By LTI properties 

 Convolution operation 
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CONVOLUTION



Convolution formula allows the computation of 
system output for any input 

 If the impulse response ℎ[𝑛] is known, the LTI 
system is completely specified  know everything 
about the system

8

LTI SYSTEM REPRESENTATION

ℎ[𝑛]𝑥 𝑛 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]



Commutative property

 𝑥 𝑛 ∗ ℎ 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛

Distributive property

 𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 + (𝑥 𝑛 ∗ ℎ2 𝑛 )

Associative property

 𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛
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SOME QUICK PROPERTIES



 Order of convolution does not 
matter

 Diagram simplification
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CONSEQUENCES 

𝑣[𝑛]

Differing intermediate signals



𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 =σ𝑘=−∞

∞ ℎ 𝑘 𝑥 𝑛 − 𝑘

 Fix the value of 𝑘

Define 𝑤𝑘 𝑛 = 𝑥 𝑘 ℎ[𝑛 − 𝑘]

 Function of time variable 𝑛

 Scaled and shifted impulse response

Output signal 𝑦 𝑛 = σ𝑘𝑤𝑘[𝑛]

 Sum over all signals 𝑤𝑘[𝑛]
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INTERPRETATIONS OF CONVOLUTION I



𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 =σ𝑘=−∞

∞ ℎ 𝑘 𝑥 𝑛 − 𝑘

 Fix a value of 𝑛

Define 𝑣𝑛 𝑘 = 𝑥 𝑘 ℎ 𝑛 − 𝑘

 Function (signal) of time variable 𝑘

Output signal 𝑦 𝑛 = σ𝑘 𝑣𝑛[𝑘]

 Sum over single signal 𝑣𝑛 𝑘

 Output is built from a single value at a time
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INTERPRETATIONS OF CONVOLUTION II
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 CONVOLUTION – SCALED/SHIFTED ℎ[𝑛]



 ℎ 𝑛 = −𝛿 𝑛 + 1 + 𝛿 𝑛 + 2𝛿 𝑛 − 1

 𝑥 𝑛 = 𝛿 𝑛 + 1 + 2𝛿 𝑛 + 𝛿[𝑛 − 1]

 Find output 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]
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EXAMPLE:  CONVOLUTION 



 Flip and shift ℎ  ℎ[𝑛 − 𝑘]

 Only consider overlap

 𝑦 𝑛 = 0 𝑛 < 0

 𝑦 0 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 0 − 𝑘 = 0.5

 𝑦 1 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 1 − 𝑘 = 0.5 + 2.0 = 2.5

 𝑦 2 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 2 − 𝑘 = 0.5 + 2.0 = 2.5

 𝑦 3 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 3 − 𝑘 = 2.0 = 2.0
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 CONVOLUTION – FLIP AND DRAG



 ℎ 𝑛 = −𝛿 𝑛 + 1 + 𝛿 𝑛 + 2𝛿 𝑛 − 1

 𝑥 𝑛 = 𝛿 𝑛 + 1 + 2𝛿 𝑛 + 𝛿[𝑛 − 1]

 Find output 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]
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EXAMPLE:  CONVOLUTION 

 To completely define the signal 
𝑦[𝑛] signal, must give value 
𝑦[𝑛0] for all times 𝑛0

 Steps:

1. Choose 𝑛 value

2. Compute 𝑣𝑛 𝑘 = 𝑥 𝑘 ℎ 𝑛 − 𝑘

3. Sum over 𝑘 over 𝑥 𝑘 ℎ 𝑛 − 𝑘
signal

4. Slide to new time 𝑛 and repeat 
2-3 until all 𝑛 visited



 𝑠 𝑛 = σ𝑘=−∞
∞ 𝑢 𝑘 ℎ[𝑛 − 𝑘]

 𝑠 𝑛 = σ𝑘=−∞
∞ ℎ 𝑘 𝑢[𝑛 − 𝑘]

 = σ𝑘=−∞
𝑛 ℎ[𝑘]

 Since 

 𝛿 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 1

 ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1

 The step response (in addition to impulse response) completely 
determines an LTI system
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STEP RESPONSE 𝑠[𝑛]

ℎ[𝑛]𝑥 𝑛 = 𝑢[𝑛] 𝑠 𝑛 = 𝑢 𝑛 ∗ ℎ[𝑛]
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USEFUL SUMMATION FORMULAS



 𝑥 𝑛 = 𝛼𝑛𝑢 𝑛

 Find 𝑦 𝑛 = 𝑥 𝑛 ∗ 𝑦[𝑛]

 ℎ 𝑛 = 𝑢 𝑛 − 𝑢[𝑛 − 6]
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EXAMPLE: DT CONVOLUTION



CONTINUOUS-TIME LTI SYSTEMS: THE 
CONVOLUTION INTEGRAL
CHAPTER 2.2
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 𝑥(𝑡) ⟶ 𝑦(𝑡)

 𝛿(𝑡) ⟶ ℎ(𝑡)
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CONTINUOUS TIME LTI SYSTEM

ℎ(𝑡)𝑥(𝑡) 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡)

See Riemann sum approximation for derivation in book



PROPERTIES OF LTI SYSTEMS
CHAPTER 2.3

22



 Commutative property

 𝑥 𝑡 ∗ ℎ 𝑡 = ℎ 𝑡 ∗ 𝑥(𝑡)

 Flip signal that is most convenient 

 Distributive property

 𝑥(𝑡) ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + (𝑥(𝑡) ∗ ℎ2(𝑡))

 Associative property

 𝑥(𝑡) ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2(𝑡)
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QUICK PROPERTIES



 A system is memoryless if the output at any time 
depends only on input at the same time

 An LTI system is memoryless iff
 ℎ 𝑡 = 𝑎𝛿(𝑡) ℎ 𝑛 = 𝑎𝛿[𝑛]

 Half proof:

 If ℎ 𝑡 = 𝑎𝛿 𝑡
 Then 

 𝑦 𝑡 = ∞−
∞
𝑥 𝜏 𝑎𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑎 ∞−

∞
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑎𝑥(𝑡)
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MEMORYLESS



The inverse of an LTI system must also be LTI

An LTI system is invertible iff

 There exists 𝑔 𝑡 such that ℎ 𝑡 ∗ 𝑔 𝑡 = 𝛿(𝑡)
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INVERTIBILITY

ℎ(𝑡)𝑥(𝑡) 𝑤(𝑡) = 𝑥(𝑡)𝑔(𝑡)
𝑦(𝑡)

𝛿(𝑡)𝑥(𝑡) 𝑥(𝑡)



A LTI system is causal iff

 ℎ 𝑡 = 0 𝑡 < 0 ℎ 𝑛 = 0 𝑛 < 0

Half proof:

Assume ℎ 𝑘 = 0 for 𝑘 < 0

 𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ[𝑛 − 𝑘]

Then

 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥 𝑘 ℎ[𝑛 − 𝑘]
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CAUSALITY 



 An LTI system is stable iff

 σ𝑘=−∞
∞ ℎ 𝑘 < ∞

 Absolutely summable

 Half proof: 

 Given 𝑥 𝑡 < 𝐵 ∀𝑡
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STABILITY



 Discrete Time 

 𝑠 𝑛 = σ𝑘=−∞
𝑛 ℎ[𝑘]

 𝛿 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 1

 ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1

 First difference 

 Continuous Time

 𝑠 𝑡 = ∞−
𝑡
ℎ 𝜏 𝑑𝜏

 ℎ 𝑡 =
𝑑𝑠 𝑡

𝑑𝑡

 Derivative 

 CT derivative property

 Given 𝑥 𝑡 → 𝑦 𝑡


𝑑𝑥 𝑡

𝑑𝑡
→

𝑑𝑦 𝑡

𝑑𝑡
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STEP RESPONSE 𝑠(𝑡)



 LTI system output 

 𝑦 𝑡 = sin(𝜔0𝑡)

 Input 

 𝑥 𝑡 = 𝑒−5𝑡𝑢(𝑡)

 Find impulse response

 Note


𝑑𝑥 𝑡

𝑑𝑡
=

𝑑

𝑑𝑡
𝑒−5𝑡𝑢(𝑡) product rule


𝑑𝑥 𝑡

𝑑𝑡
= 𝑒−5𝑡𝛿 𝑡 + −5 𝑒−5𝑡𝑢 𝑡


𝑑𝑥 𝑡

𝑑𝑡
= 𝛿 𝑡 − 5𝑥(𝑡)

 ⇒ 𝛿 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥(𝑡)

 Back to LTI system

 𝛿 𝑡 → ℎ 𝑡


𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥 𝑡 → ℎ 𝑡


𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥 𝑡 →

𝑑𝑦 𝑡

𝑑𝑡
+ 5𝑦(𝑡)

 ℎ 𝑡 =
𝑑𝑦 𝑡

𝑑𝑡
+ 5𝑦 𝑡

 ℎ 𝑡 = 𝜔0 cos 𝜔0𝑡 + 5 sin(𝜔0𝑡)
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EXAMPLE: CT DERIVATIVE PROPERTY



 𝑥 𝑡 = ℎ 𝑡 = ቊ
1 −2 ≤ 𝑡 ≤ 2
0 𝑒𝑙𝑠𝑒

 Find output 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ(𝑡)

30

EXAMPLE: CT CONVOLUTION



CAUSAL LTI SYSTEMS DESCRIBED BY 
DIFFERENTIAL AND DIFFERENCE EQUATIONS
CHAPTER 2.4
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Eigenfunction – a signal for which the LTI output is 
a constant times the input

 𝜆 is the eigenvalue (complex scalar)

Turns out: (more in Chapter 3)

 CT: 𝑒𝑠𝑡 ⟶𝐻 𝑠 𝑒𝑠𝑡

 DT: 𝑧𝑛 ⟶𝐻 𝑧 𝑧𝑛
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EIGENFUNCTIONS OF LTI SYSTEMS

ℎ(𝑡)𝑥𝜆(𝑡) 𝑦(𝑡) = 𝜆𝑥𝜆(𝑡)



 It turns out that differential/difference equation 
relationships often occur in natural systems

Need mathematical tools to study these systems 
effectively

 This section will cover the typical approach from your 
previous math courses

 Homogeneous + particular solutions

 We will learn more effective Signals and Systems 
approach in the coming chapters
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CAUSAL LTI DIFF EQ SYSTEMS



 σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= σ𝑘=0

𝑀 𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘

 𝑁 – highest derivative of 𝑦(𝑡)

 𝑀 – highest derivative of 𝑥(𝑡)

 𝑎𝑘 , 𝑏𝑘 - constant coefficients

 Solution of the form:

 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ(𝑡)

 Particular solution 𝑦𝑝 𝑡
satisfies diff equation above

 Homogeneous solution 𝑦ℎ(𝑡)
satisfies 

 σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= 0

 Unique solution only when 
finding both 𝑦𝑝(𝑡) and 𝑦ℎ(𝑡)
when using a set of auxiliary 
conditions (initial conditions)


𝑑𝑘𝑦(𝑡0)

𝑑𝑡𝑘
values for 𝑘 = 0,… ,𝑁 − 1

 Use exponentials to solve

 𝑥 𝑡 = 𝑒𝑠𝑡 → 𝑦 𝑡 = 𝐻 𝑠 𝑒𝑠𝑡 = 𝜆𝑥 𝑡


𝑑

𝑑𝑡
𝑒𝑠𝑡 = 𝑠𝑒𝑠𝑡 = 𝜆𝑒𝑠𝑡 = 𝜆𝑥(𝑡)

34

DIFFERENTIAL EQUATION LTI SYSTEMS



 Find solution to differential 
equation


𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥(𝑡)

 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡)

 Particular solution

 Forced response – output is of the 
same form as input

 𝑦𝑝 𝑡 = 𝐴𝑥(𝑡)

 Homogeneous solution

 Solution of the form 
𝑦ℎ 𝑡 = 𝐵𝑒𝑠𝑡𝑢(𝑡)

 𝑠 is an arbitrary unknown value 
that must be found
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EXAMPLE: LTI DIFFERENTIAL SYSTEM



 For 𝑁 = 0

 𝑎0𝑦 𝑡 = σ𝑘=0
𝑀 𝑏𝑘

𝑑𝑘𝑥 𝑡

𝑑𝑡
⇒ 𝑦 𝑡 =

1

𝑎0
σ𝑘=0
𝑀 𝑏𝑘

𝑑𝑘𝑥 𝑡

𝑑𝑡

 𝑦 𝑡 is an explicit function of input 𝑥(𝑡)
 Given 𝑥 𝑡 , can immediately get 𝑦(𝑡) by differentiation of 𝑥(𝑡)

 Reminder for 𝑁 > 0
 Solve for 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ(𝑡)

 Given initial (rest) conditions: 𝑦 𝑡0 =
𝑑𝑦 𝑡0

𝑑𝑡
= ⋯ =

𝑑𝑁−1𝑦 𝑡

𝑑𝑡𝑁−1
= 0
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DEGENERATE DIFFERENTIAL EQ CASE



 σ𝑘=0
𝑁 𝑎𝑘𝑦 𝑛 − 𝑘 = σ𝑘=0

𝑀 𝑏𝑘𝑥[𝑛 − 𝑘]
 Same idea as CT case:

 Find 𝑦 𝑛 = 𝑦𝑝 𝑛 + 𝑦ℎ[𝑛]
 Choose form 𝑦ℎ 𝑛 = 𝑧𝑛

 Eigensignal for DT system

 Recursive difference eq form 

 𝑦 𝑛 =
1

𝑎0
σ𝑘=0
𝑀 𝑏𝑘𝑥 𝑛 − 𝑘 − σ𝑘=1

𝑁 𝑎𝑘𝑦 𝑛 − 𝑘

 Output at a time 𝑛 can be computed 
from the current+past inputs and past 
output values 

 Need auxiliary eqs. To give past output 
initial conditions
 E.g. values of 𝑦 −1 , 𝑦 −2 ,… , 𝑦[−𝑁]

 Degenerate 𝑁 = 0 case:

 𝑦 𝑛 = σ𝑘=0
𝑀 𝑏𝑘

𝑎0
𝑥[𝑛 − 𝑘]

 Non-recursive equation (no past 
output)

 Only requires input signal

 This form matches convolutional 
form 

 𝑦 𝑛 = σ𝑘=−∞
∞ ℎ 𝑘 𝑥[𝑛 − 𝑘]

 ℎ 𝑛 = ቊ
𝑏𝑛/𝑎0 0 ≤ 𝑛 ≤ 𝑀
0 𝑒𝑙𝑠𝑒

 Known as a finite impulse 
response (FIR) system
 Non-zero over a finite time interval
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DIFFERENCE EQUATION LTI SYSTEM



 Find output

 𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥[𝑛]

 Input impulse 𝑥 𝑛 = 𝑘𝛿[𝑛]

 Condition of initial rest

 Output does not change value 
until input changes

 𝑦 𝑛 = 0 for 𝑛 < 0

 Use recursive difference 
equation form to solve

 𝑦 𝑛 =
1

2
𝑦 𝑛 − 1 + 𝑥[𝑛]

 Requires 𝑦[𝑛 − 1] to compute 
recursively
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EXAMPLE: DT DIFF EQ SYSTEM



 Addition

 Scaling

 Delay

 Differentiator

 Integrator
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BLOCK DIAGRAMS FOR SYSTEMS



 𝑦 𝑛 = −𝑎𝑦 𝑛 − 1 + 𝑏𝑥[𝑛]

𝑑𝑦 𝑡

𝑑𝑡
+ 𝑎𝑦 𝑡 = 𝑏𝑥 𝑡

 𝑦 𝑡 = −
1

𝑎

𝑑𝑦 𝑡

𝑑𝑡
+

𝑏

𝑎
𝑥(𝑡)

 Preferred with integral


𝑑𝑦 𝑡

𝑑𝑡
= −𝑎𝑦 𝑡 + 𝑏𝑥 𝑡

 𝑦 𝑡 = ∞−
𝑡 𝑑𝑦 𝑡

𝑑𝑡
𝑑𝑡

 = ∞−
𝑡

𝑏𝑥 𝑡 − 𝑎𝑦 𝑡 𝑑𝑡
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EXAMPLES: SIMPLE BLOCK DIAGRAMS



 𝑦 𝑛 − 𝑎1𝑦 𝑛 − 1 − 𝑎2𝑦 𝑛 − 2 = 𝑏0𝑥 𝑛

 Rearrange 

 𝑦 𝑛 = 𝑎1𝑦 𝑛 − 1 + 𝑎2𝑦 𝑛 − 2 + 𝑏0𝑥 𝑛

 Requires:

 3 multiplications

 2 additions

 2 delays (memory storage)
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EXAMPLE: ANOTHER DT DIAGRAM



 For simplicity, assume normalized coefficients 𝑎0 = −1
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GENERAL DIFFERENCE EQUATION

Recursive diff eq.

General diff eq.

Note: 𝑎𝑘 coefficients have opposite sign between recursive and general diff forms
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DIRECT FORM I (DFI)

Stack of M delays on input Stack of N delays on output 



Notice DFI has two subsystems

Therefore 

Due to LTI system properties, can switch 
subsystems
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DF SUBSYSTEM CASCADE

ℎ1[𝑛]𝑥 𝑛 𝑣 𝑛 ℎ2[𝑛]𝑣 𝑛 𝑦 𝑛

ℎ1[𝑛]𝑥 𝑛
𝑣 𝑛

ℎ2[𝑛] 𝑦 𝑛

ℎ2[𝑛]𝑥 𝑛
𝑤 𝑛

ℎ1[𝑛] 𝑦 𝑛
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DIRECT FORM – SWAP STACKS

Stack of N delays on input Stack of M delays on output 



 Notice: the delayed signal 𝑤 𝑛
is stored twice 

 The diagram can be simplified

 Assume 𝑁 > 𝑀

 Canonical form

 Minimize number of delays to 
max(N,M)

 Min # multi – M+N+1

 Min # adds (2 input) – M+ N
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DIRECT FORM II (DFII) – DELAY SQUEEZE



 Find DFI/DFII of following

 𝑦 𝑛 − 1.5𝑦 𝑛 − 1 + 0.9𝑦 𝑛 − 2 = 𝑥 𝑛 + 2𝑥 𝑛 − 1
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EXAMPLE: DFI, DFII

DFI DFII

Notice the feedback branches have opposite sign than in the general diff eq


