EE360: SIGNALS AND SYSTEMS I CH1: SIGNALS AND SYSTEMS

CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS

CHAPTER 1.0-1.1

INTRODUCTION

Signals are quantitative descriptions of physical phenomena

Represent a pattern of variation

EXAMPLE SIGNALS I

Circuit

- \blacksquare
 v_s voltage signal
- v_c voltage signal
- i current signal

These are continuous-time signals

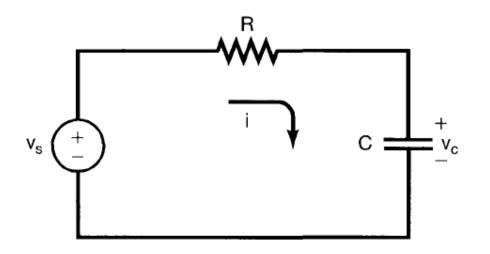


Figure 1.1 A simple *RC* circuit with source voltage v_s and capacitor voltage v_c .

EXAMPLE SIGNALS II

Stock market price

• p – closing price signal

Discrete time signal

EXAMPLE SIGNALS II

Stock market price

• p – closing price signal

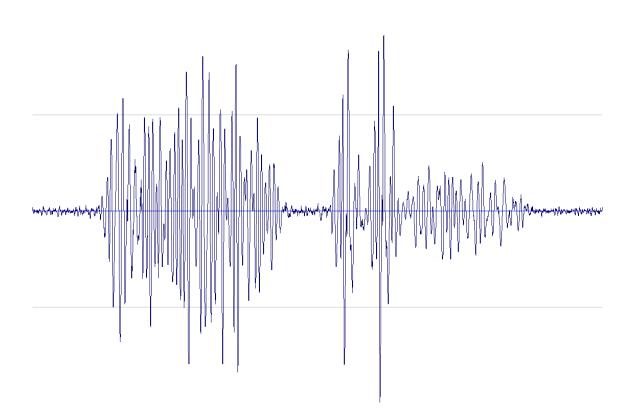
Discrete time signal

- Tesla stock for fun
 - Last 3 months
 - Last 5 years

EXAMPLE SIGNALS III

Audio signal

- Continuous signal in "raw" form
- Discrete signal when store on a CD/computer



MATHEMATICAL FORMULATION

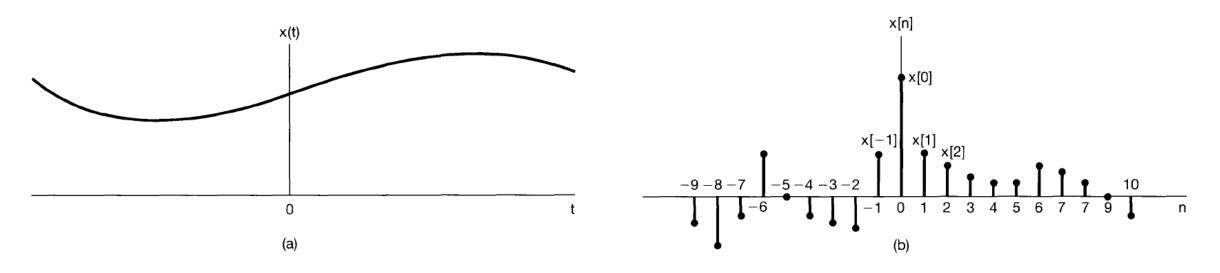
- In these examples, the signal is a function of one variable, time
 - $f(t) \leftarrow$ focus of the book

- More generally, a signal can be a function of multiple variables and not just time
 - E.g. an image I(x, y)

SIGNAL TYPES

- This course deals with two types of signals
- Continuous-time (CT) signals
 - $\blacksquare x(t)$ with $t \in \mathbb{R}$ a real-values variable, denoting continuous time
 - Notice the parenthesis is used to denote a CT signal
- Discrete-time (DT) signals
 - $\blacksquare x[n]$ with $n \in \mathbb{Z}$ an integer-valued variable, denoting discrete time
 - Notice the square brackets to denote a DT signal
 - x[1] is defined but x[1.5] is not defined

GRAPHICALLY



10

- Note: x(t) could signify the full signal or a value of the signal at a specific time t
 - May see $x(t_0)$ for a specific value of signal x(t) when $t=t_0$ for clarity

COMPLEX NUMBER REVIEW

- This course will often work with complex signals as they are mathematically convenient
 - $x(t) \in \mathbb{C}, \quad x[n] \in \mathbb{C}$

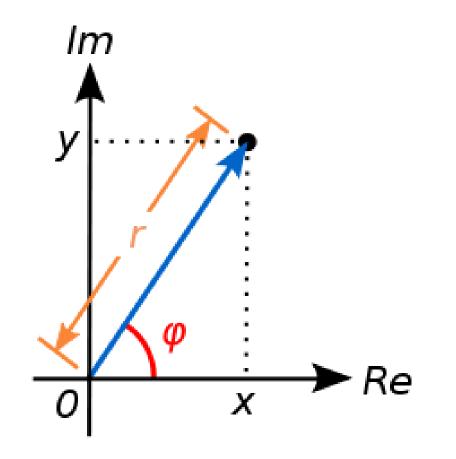
$$\blacksquare \mathbb{C} = \left\{ z \middle| z = x + jy, \ x, y \in \mathbb{R}, j = \sqrt{-1} \right\}$$

• Note the use of j for the imaginary number in electrical engineering rather than i

COMPLEX NUMBER REPRESENTATION

- Rectangular/Cartesian form
 - z = x + jy
 - $Re\{z\} = x$ real-part
 - $Im\{z\} = y$ imaginary-part
- Polar form
 - $z = re^{j\theta}$
 - $r^2 = x^2 + y^2$
 - $\theta = \arctan\left(\frac{y}{x}\right)$
 - $x = r \cos \theta$

• $y = r \sin \theta$

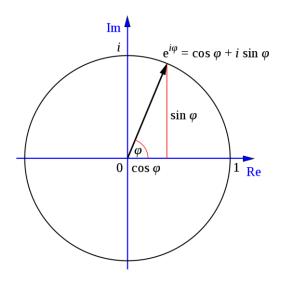


EULER'S FORMULA

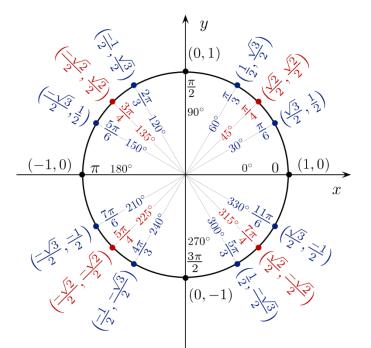
• $e^{j\theta} = \cos\theta + j\sin\theta$

■ Note:

• $j = e^{j\pi/2}$ $-1 = e^{j\pi}$ • $-j = e^{j3\pi/2}$ $1 = e^{j2\pi k}$



- Know trig functions for common angles
 - For inverse trig function you must account for the quadrant



EXAMPLES: COMPLEX NUMBERS

- Express in polar form
 - 1 − *j*

Express in polar form

$$(1-j)^2$$

TRANSFORMATIONS OF THE INDEPENDENT VARIABLE

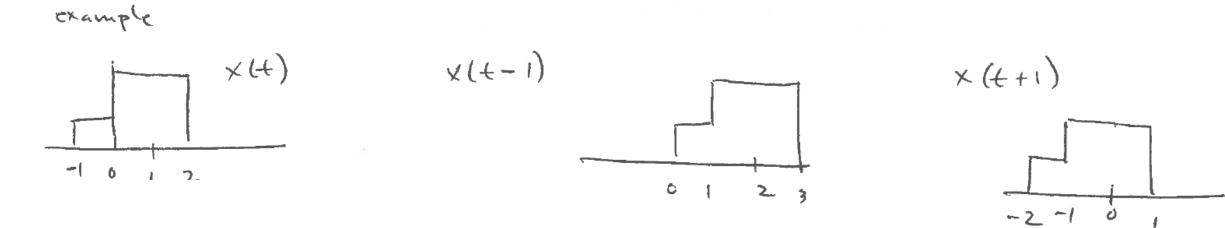
15

CHAPTER 1.2

TIME SHIFT

$$x(t) \to x(t - t_0) \qquad x[n] \to x[n - n_0]$$

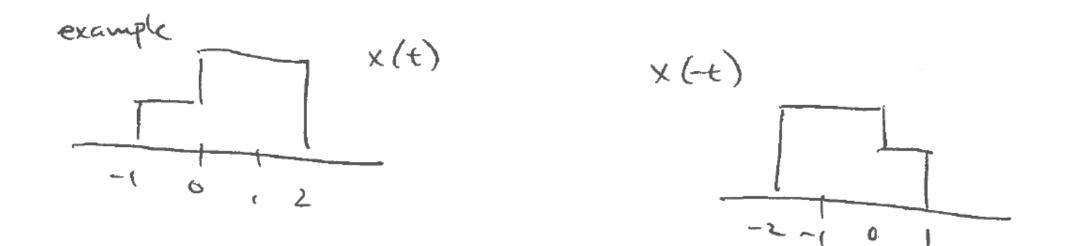
• $t_0 > 0 \Rightarrow \text{delay}$ $t_0 < 0 \Rightarrow \text{advance}$



TIME REVERSAL

•
$$x(t) \to x(-t)$$
 $x[n] \to x[-n]$

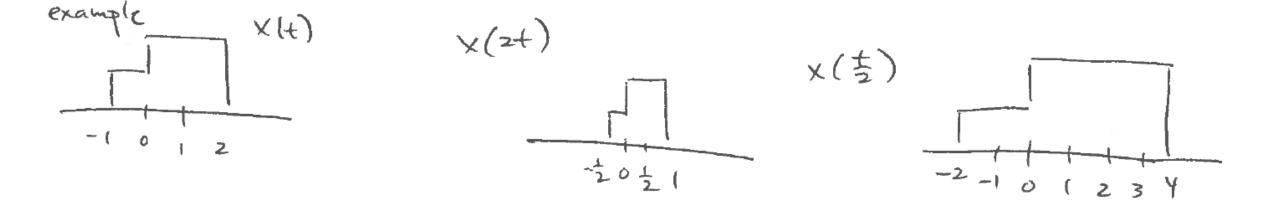
Flip signal across y-axis (t = 0 axis)



TIME SCALING

 $\bullet x(t) \to x(at) \quad a > 0$

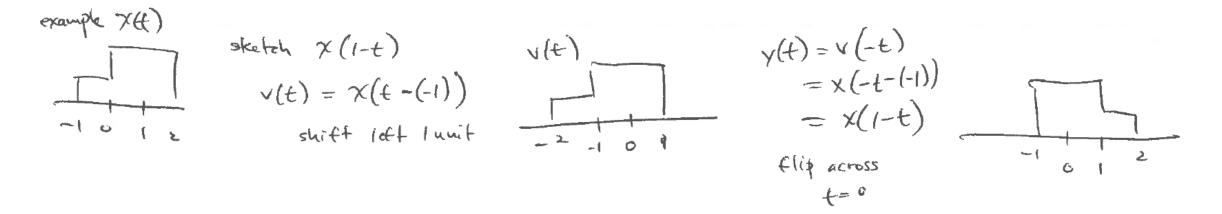
a > 1 ⇒ shrink time scale ("speed-up" or compress)
0 < a < 1 ⇒ expand time scale ("slow-down" or stretch)
x[n] → x[an] a ∈ Z⁺



GENERAL TRANSFORMATION

•
$$x(t) \rightarrow x(\alpha t - \beta)$$
 $\alpha < 0$ for time reversal

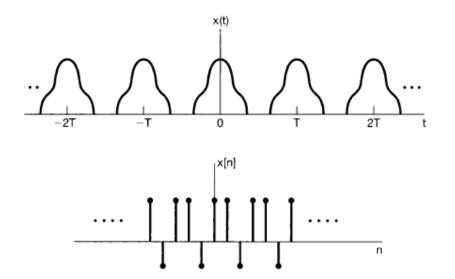
- General methodology shift, then scale
 - 1. Shift: define $v(t) = x(t \beta)$
 - 2. Scale: define $y(t) = v(\alpha t) = x(\alpha t \beta)$
- Notice: scaling is only applied to time variable t



PERIODIC SIGNALS

A signal is periodic if a shift of the signals leaves it unchanged

- Periodicity constraint
 - CT: there exists a T > 0 s.t.
 - $x(t) = x(t+T) \quad \forall t \in \mathbb{R}$
 - DT: there exists a N > 0 s.t.
 - $x[n] = x[n+N] \quad \forall N \in \mathbb{Z}$



FUNDAMENTAL PERIOD/FREQUENCY

• Note:
$$x(t) = x(t+T) = x(t+2T) = x(t+3T) = \cdots$$

- \blacksquare Periodic with period T or kT
- Fundamental period
 - T_0 is the fundamental period of x(t) if it is the smallest value of T > 0 to satisfy the periodicity constraint (N_0 for DT)
- Fundamental frequency inverse relationship to time

•
$$\omega_0 = \frac{2\pi}{T_0}$$
 occasionally, $\Omega_0 = \frac{2\pi}{N_0}$

Aperiodic signal – signal with no T,N satisfying periodicity constraint

EXAMPLES: FIND PERIOD

•
$$x(t) = e^{j\pi t/5}$$

•
$$x[n] = e^{j\pi n/5}$$

EVEN/ODD SIGNALS

- Even signal same flipped across yaxis
 - x[-n] = x[n]
- Odd signal upside-down when flipped
 - x[-n] = -x[n]

examples

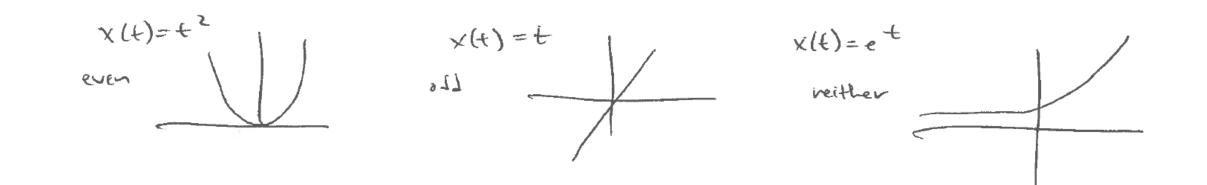
• Note: must have x[n] = 0 at n = 0

 Decomposition theorem – any signal can be broken into sum of even and odd signals

• x(t) = y(t) + z(t), y(t) even, z(t) odd

•
$$y(t) = Ev\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

•
$$z(t) = Odd\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$



EXPONENTIAL AND SINUSOIDAL SIGNALS

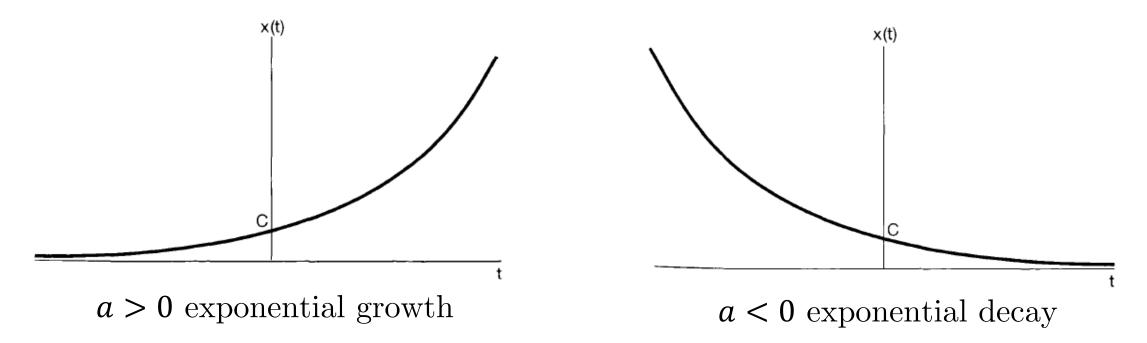
CHAPTER 1.3

IMPORTANT CLASSES OF SIGNALS

- 1. Complex exponential Ce^{at} , Ce^{an} , $C, a \in \mathbb{C}$
- 2. Impulse function $\delta(t), \delta[n]$
- Will want to represent general signals as linear combination of these special signals
 - The essence of linear system analysis
- Typically,
 - Impulse functions \rightarrow time-domain analysis
 - \blacksquare Complex exponentials \longrightarrow frequency/transform domain analysis

REAL EXPONENTIAL SIGNALS

• $x(t) = Ce^{at}$ $C, a \in \mathbb{R}$



26

a = 0, x(t) = C: constant function

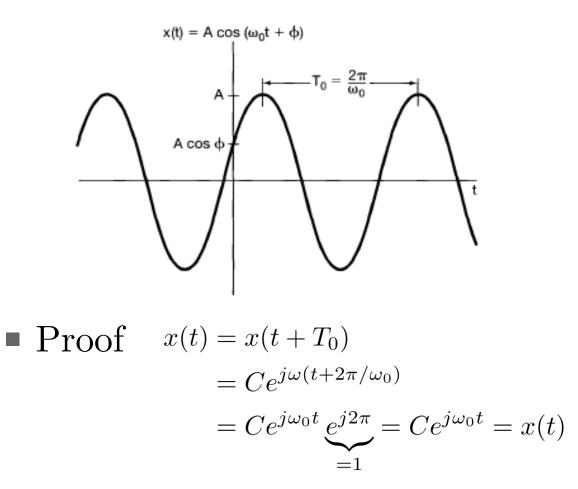
PERIODIC COMPLEX EXPONENTIAL

- $x(t) = Ce^{at}$
 - $a = j\omega_0, C = Ae^{j\theta}$
 - *a* is purely complex

$$x(t) = Ae^{j\theta}e^{j\omega_0 t} = Ae^{j(\omega_0 t+\theta)}$$
$$= \underbrace{A\cos(\omega_0 t+\theta)}_{\text{real}} + j\underbrace{A\sin(\omega_0 t+\theta)}_{\text{imaginary}}$$

x(t) is a pair of sinusoidal signals with the same amplitude A, frequency ω₀, and phase shift θ

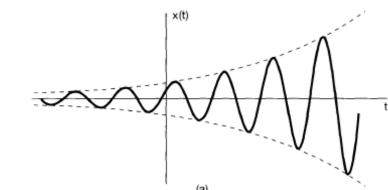
•
$$Re{x(t)} = A\cos(\omega_0 t + \theta)$$



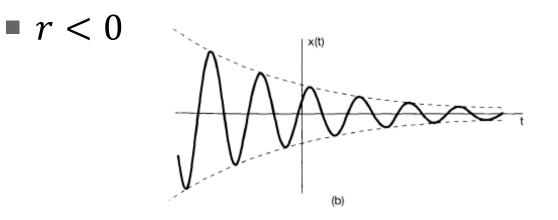
GENERAL COMPLEX EXPONENTIAL

r > 0

• $x(t) = Ce^{at}$ • $a = r + j\omega, C = Ae^{j\theta}$ $x(t) = Ce^{at} = Ae^{j\theta}e^{(r+j\omega_0)t} = Ae^{rt}e^{j(\omega_0t+\theta)}$ $= \underbrace{Ae^{rt}\cos(\omega_0t+\theta)}_{\text{real}} + j\underbrace{Ae^{rt}\sin(\omega_0t+\theta)}_{\text{imaginary}}$



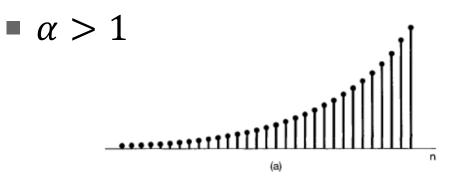
- Amplitude controlled sinusoid
 - Ae^{rt} defines envelope



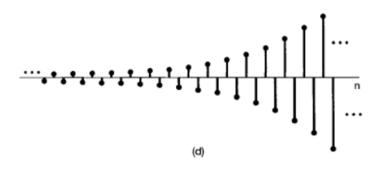
DT COMPLEX EXPONENTIAL - REAL

•
$$x[n] = Ce^{\beta n}$$
 or $x[n] = C\alpha^n$

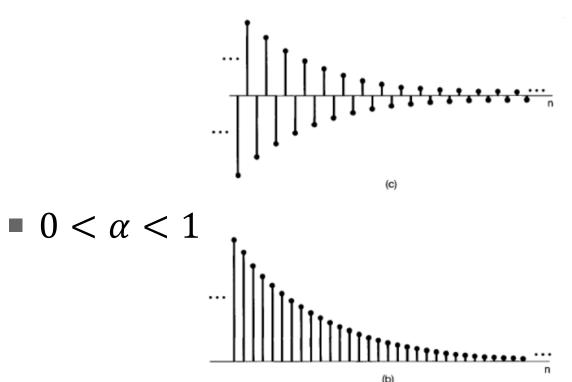
• $\alpha = e^{\beta}, C, \beta \in \mathbb{C}$







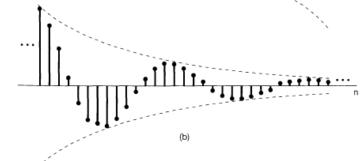
- Real exponential
 - $C, \alpha \in \mathbb{R}$
- -1 < α < 0



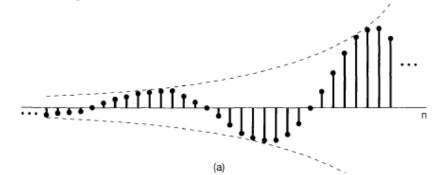
GENERAL DT COMPLEX EXPONENTIAL

- $x[n] = C\alpha^n, C, \alpha \in \mathbb{C}$
 - $C = |C|e^{j\theta}, \, \alpha = |\alpha|e^{j\omega_0}$
- $x[n] = |C|e^{j\theta} (|\alpha|e^{j\omega_0})^n$ = $|C||\alpha|^n e^{j(\omega_0 n + \theta)}$ = $|C||\alpha|^n \cos (\omega_0 n + \theta) + j|C||\alpha|^n \sin (\omega_0 n + \theta)$
- Three cases for $|\alpha|$
- |*a*| = 1
- $x[n] = |C| \cos (\omega_0 n + \theta) + j|C| \sin (\omega_0 n + \theta)$
 - Not necessarily periodic

 $\label{eq:alpha} \left| \alpha \right| < 1 \ \text{-} \ \text{decaying exponential} \\ \text{envelope} \end{array}$



• $|\alpha| > 1$ - Growing exponential envelope



PERIODICITY OF DT COMPLEX EXPONENTIALS

- Unlike CT, there are conditions for periodicity
- Consider frequency $\omega_0 + 2\pi$

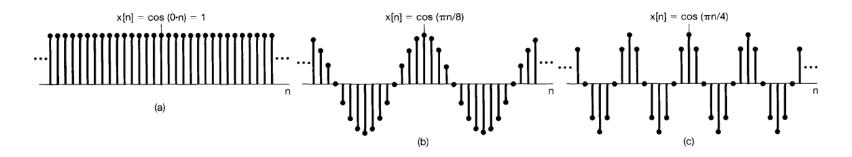
$$\bullet e^{j(\omega_0 + 2\pi)n} = e^{j\omega_0 n} e^{j2\pi n} = e^{j\omega_0 n}$$

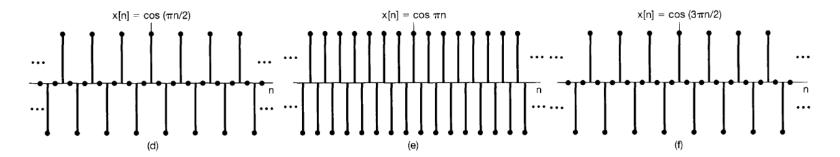
- \blacksquare Exponential with freq $\omega_0+2\pi$ is the same as exp. with freq ω_0
- $\blacksquare \rightarrow$ Only need to consider a 2π interval for ω_0

$$\blacksquare 0 \leq \omega_0 \leq 2\pi \text{ or } -\pi \leq \omega_0 \leq \pi$$

See Fig. 1.27 of book

DT FREQUENCY RANGE





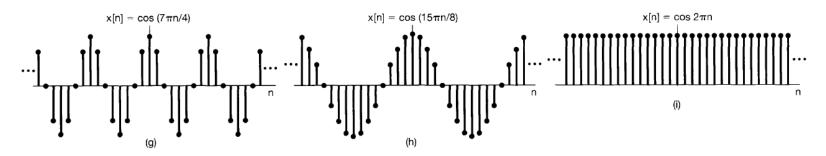


Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

DT PERIODICITY CONSTRAINT

$$x[n] = x[n+N] \quad \forall n \in \mathbb{Z}$$
$$e^{j\Omega_0 n} = e^{j\Omega(n+N)} = e^{j\Omega_0 n} e^{j\Omega_0 N}$$
$$\Rightarrow e^{j\Omega_0 N} = 1 = e^{j2\pi m} \quad m \in \mathbb{Z}$$
$$\Rightarrow \Omega_0 N = 2\pi m$$
$$\Rightarrow \Omega_0 = \frac{2\pi m}{N}$$

- $e^{j\Omega_0 n}$ is periodic iff Ω_0 is a rational multiple of 2π
 - Fundamental period: $N = \frac{2\pi m}{\Omega_0}$
 - $\frac{m}{N}$ is in reduced form
 - $gcd(m, N) = 1 \leftarrow greatest common denominator$

 Table 1.1 is good for highlighting the differences between DT and CT

TABLE 1.1 Comparison of the signals $e^{j\omega_0 t}$ and $e^{j\omega_0 n}$.

$e^{j\omega_{0}t}$	$e^{j\omega_0 n}$
Distinct signals for distinct values of ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any choice of ω_0	Periodic only if $\omega_0 = 2\pi m/N$ for some integers $N > 0$ and m .
Fundamental frequency ω_0	Fundamental frequency* ω_0/m
Fundamental period $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $\frac{2\pi}{\omega_0}$	Fundamental period [*] $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $m\left(\frac{2\pi}{\omega_0}\right)$

*Assumes that m and N do not have any factors in common.

THE UNIT IMPULSE AND UNIT STEP FUNCTIONS

CHAPTER 1.4

DT IMPULSE AND UNIT STEP FUNCTIONS

Unit impulse (Kronecker delta)
 Unit step

•
$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

$$\delta[n]$$
•
$$\delta[n] = u[n] - u[n - 1]$$
•
$$\int [n] = u[n] - u[n - 1]$$

•
$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

•
$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

Running (cumulative) sum

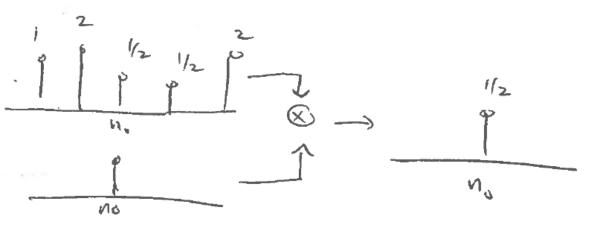
•
$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

$$= \sum_{k=-\infty}^{\infty} u[k] \delta[n-k]$$

Sum of delayed impulses

SAMPLING/SIFTING PROPERTIES

- Sampling Property
 - $x[n]\delta[n] = x[0]\delta[n]$
 - $x[n]\delta[n n_0] = x[n_0]\delta[n n_0]$



- Product of signals is a signal
 - Multiply values at corresponding time

- Sifting Property
 - $\sum_{m=-\infty}^{\infty} x[m]\delta[m] = x[0]$
 - $\sum_{m=-\infty}^{\infty} x[m]\delta[m-n_0] = x[n_0]$
- Notice above is summation of values in the sampled signal

 More generally, this summation holds for any limits that contain the impulse

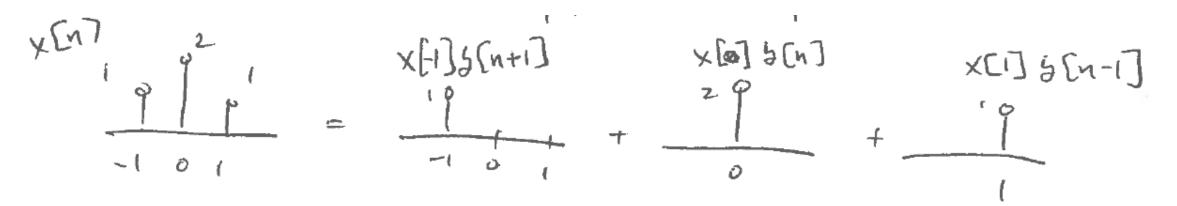
REPRESENTATION PROPERTY

 Every DT signal can be represented as a linear combination of shifted impulses

•
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

• x[k] – value of signal at time k

• A bit complicated but useful for study of LTI systems (Ch2)

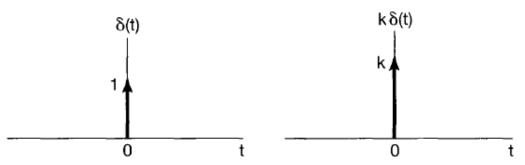


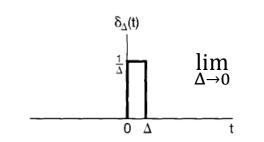
CT IMPULSE AND UNIT STEP FUNCTIONS

Unit impulse (dirac delta)

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

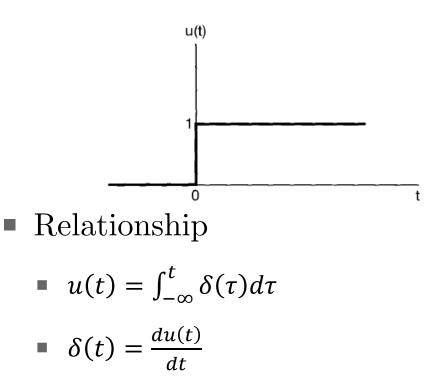
• With
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$





Unit step

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$



PROPERTIES

- Sampling
 - $x(t)\delta(t) = x(0)\delta(t)$

•
$$x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$$

- Product of two signals is a signal
- Representation property
 - $x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$
- Example

•
$$u(t) = \int_{-\infty}^{\infty} u(\tau) \delta(t-\tau) d\tau$$

Sifting

$$\sum_{\infty}^{\infty} x(t)\delta(t)dt = \int_{-\infty}^{\infty} x(0)\delta(t)dt$$
$$= x(0)\underbrace{\int_{-\infty}^{\infty} \delta(t)dt}_{=1}$$
$$= x(0)$$

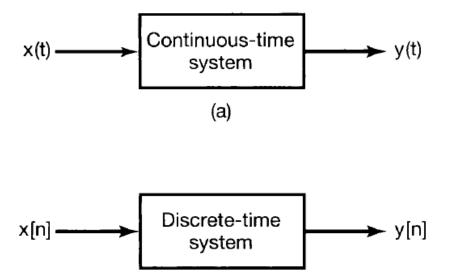
$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

CHAPTER 1.5

SYSTEMS

- A system is a quantitative description of a physical process to transform an input signal into an output signal
 - Systems are a black box a mathematical abstraction

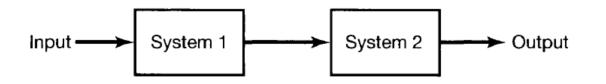


- Shorthand notation
 - $x(t) \rightarrow y(t)$
- More complex systems
 - Sampling

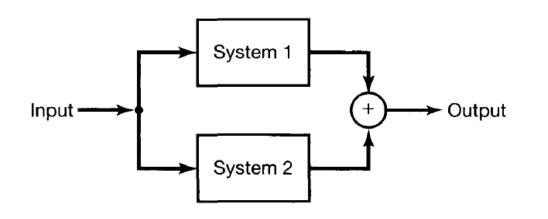
MIMO (multi input/multi output
 x(+)

SYSTEM INTERCONNECTIONS

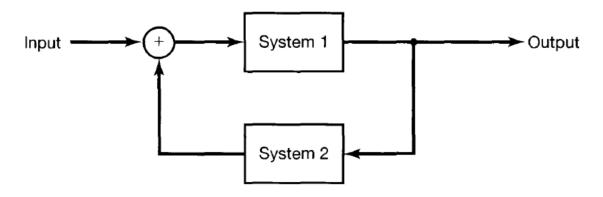
Series/cascade connection



Parallel interconnection



- Feedback connection
 - Very important in controls



 More complex systems can be composed by various series/parallel interconnections

BASIC SYSTEM PROPERTIES

CHAPTER 1.6

BASIC SYSTEM PROPERTIES

- Memoryless
- Invertibility
- Causality
- Stability
- Linearity
- Time-invariance

Define an important class of systems called LTI

MEMORYLESS SYSTEMS

A system is memoryless if the output at a time t depends only on input at the same time t

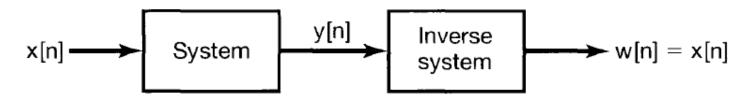
Examples

•
$$y(t) = (2x(t) - x^{2}(t))^{2}$$

• $y[n] = x[n]$
• $y[n] = x[n-1]$
• $y[n] = x[n] + y[n-1]$

INVERTIBILITY

A system is invertible if distinct inputs lead to distinct outputs



- Rules for proving invertible systems
 - Show invertible by given the inverse system expression/formula
 - Show non-invertible by any counter example

EXAMPLES: INVERSE SYSTEMS

• $y(t) = (\cos t + 2)x(t)$

•
$$x(t) = \frac{y(t)}{\cos t + 2}$$

Invertible (no divide by zero!)

- $y[n] = \sum_{k=-\infty}^{n} x[k]$
 - $\Rightarrow y[n] = x[n] + y[n-1]$
 - $\Rightarrow x[n] = y[n] y[n-1]$
 - Invertible

$$\mathbf{y}(t) = x^2(t)$$

- $x_1(t) = 1 \Rightarrow y_1(t) = 1$
- $x_2(t) = -1 \Rightarrow y_2(t) = 1$
- Need unique input → distinct output
- Not invertible

CAUSALITY

- A system is causal if the output at any time t depends only on the input at same time t or past times τ < t
- Real systems must be causal because we cannot know future values
 - Buffering gives the appearance of non-causality

- Examples
 - y[n] = x[n]
 - y[n] = x[n] + x[n+1]
 - $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$
 - y[n] = x[-n]
 - $y(t) = x(t)(\cos(t+2))$

STABILITY

- A system is stable if a bounded input results in a bounded output signal → BIBO stable
- \blacksquare A signal is bounded if there exists a constant B such that
 - $|x(t)| \le B \quad \forall t \text{ and } B < \infty$
- BIBO condition
 - $|x(t)| \le B \longrightarrow |y(t)| < \infty$

EXAMPLES: BIBO STABILITY

•
$$y(t) = 2x^2(t-1) + x(3t)$$

$$y[n] = \begin{cases} 0 & n < 0\\ 1.01y[n-1] + x[n] & n \ge 0 \end{cases}$$

TIME INVARIANCE

• A system is time-invariant if a time shift in input signal results in an identical time shift in the output signal

$$\begin{array}{c} \chi(t-t_{\circ}) \\ \chi(n-n,] \longrightarrow \int \overline{J_{systen}} \longrightarrow \chi(t-t_{\circ}) \\ \chi(n-n,] \longrightarrow \chi(n-n,] \end{array}$$

Steps to check for TI

- Assume $x(t) \rightarrow y(t)$
- 1. Check $y_1(t) = y(t t_0)$ time shift on output
- 2. Check $y_2(t) = f(x(t t_0))$ operate on time shifted input
- 3. Verify $y_1(t) = y_2(t)$ for TI

EXAMPLES: TIME INVARIANT SYSTEMS

•
$$y(t) = sin(x(t))$$

• $y[n] = nx[n]$

LINEARITY

- A system is linear if it is additive and scalable
- If $x_1(t) \rightarrow y_1(t)$ and $x_2(t) \rightarrow y_2(t)$
 - Additive
 - $\bullet x_1(t) + x_2(t) \longrightarrow y_1(t) + y_2(t)$
 - Scalable

$$\bullet ax_1(t) \to ay_1(t) \qquad a \in \mathbb{C}$$

 $\blacksquare \text{Then}, \, ax_1(t) + bx_2(t) \longrightarrow ay_1(t) + by_2(t)$

EXAMPLES: LINEAR SYSTEMS

•
$$y(t) = tx(t)$$
 • $y[n] = 2x^2[n]$