EE360: SIGNALS AND SYSTEMS I CH10: Z-TRANSFORM

INTRODUCTION

CHAPTER 10.0

INTRODUCTION

- Previously we saw the Laplace Transform
 - $\blacksquare \text{Extension of FS} \xrightarrow{} \text{FT} \xrightarrow{} \text{LT}$
 - Allowed us to study a wide class of signals/systems (unstable systems with ROC)

- The Z-Transform is the discrete version
 - While very similar, must recognize the specific differences

EIGENSIGNAL BACKGROUND

Remember

$$x[n] = z^n \longrightarrow [LTI] \longrightarrow y[n] = \underbrace{H(z)}_{\text{eigenvalue}} z^n$$

$$H(z) = \sum_{n = -\infty}^{\infty} h[n] z^{-n}$$

THE Z-TRANSFORM

CHAPTER 10.1

Z-TRANSFORM DEFINITION

The eigensignal result leads to the definition of the Z-Transform

$$X(z) \triangleq \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Shorthand notation

$$x[n] \stackrel{Z}{\longleftrightarrow} X(z)$$

FOURIER TRANSFORM CONNECTION

- Previously with Laplace, we saw the LT reduced to the FT along the $j\omega$ -axis (stability constraint)
- For the Z-Transform, it reduces to the FT along the $e^{j\omega} = 1$ unit circle
- $\bullet \text{ When } z = e^{j\omega}$

• Find the Z-transform of input $x[n] = a^n u[n]$

• Find the Z-transform of input $x[n] = a^n u[n]$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
$$= \sum_{n=-\infty}^{\infty} a^n u[n]z^{-n} = \sum_{n=0}^{\infty} a^n z^{-n}$$
$$= \sum_{n=0}^{\infty} (az^{-1})^n = \sum_{n=0}^{\infty} \alpha^n$$
$$= \frac{1}{1-az^{-1}} = \frac{z}{z-a}$$

 Note: with z⁻¹ we get a pole and a zero

9

Note: for sum convergence $|\alpha| < 1 \Rightarrow |az^{-1}| < 1$ ROC: |z| > |a|

• Find the Z-transform of input $x[n] = -a^n u[-n-1]$

10

• Find the Z-transform of input
$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

11

• Find the Z-transform of input
$$x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u[n]$$

RATIONAL X(z)

- When X(z) is a ratio of polynomials (from difference equation) there is:
 - Pole @ ∞ when the degree of the numerator exceeds the denominator
 - Zero @ ∞ when the numerator is of smaller degree than the denominator
- Must have balance (equal number of poles and zeros)

THE REGION OF CONVERGENCE FOR THE Z-TRANSFORM

14

CHAPTER 10.2

9 ROC PROPERTIES I

- 1. The ROC consists of rings in the z-plane centered about the origin
- 2. The ROC does not contain any poles
- 3. When x[n] is finite duration, the ROC is the entire z-plane
 - Except possibly z = 0 and/or $z = \infty$ (poles @ zero and/or ∞)

9 ROC PROPERTIES II

4. When x[n] is a right-sided sequence, if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also be in the ROC

16

- 5. When x[n] is a left-sided sequence, if the circle $|z| = r_0$ is in the ROC, then $0 < |z| < r_0$ will also be in the ROC
- 6. When x[n] is a two-sided sequence, if the circle $|z| = r_0$ is in the ROC, then the ROC will be a ring in the z-plane that includes $|z| = r_0$

9 ROC PROPERTIES III

- 7. If X(z) is rational, then the ROC is bounded by poles or extends to infinity
- 8. If X(z) is rational and right-sided, then the ROC is outside the outermost pole
 - If x[n] is also causal, the ROC also includes $z = \infty$
- 9. If X(z) is rational and left-sided, then the ROC is inside the innermost pole (not including poles @ z=0)
 - If x[n] is also anticausal $(x[n] = 0 \forall n > 0)$, the ROC also includes z = 0

List all possible ROC for

$$X(z) = \frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - 2z^{-1}\right)}$$

INVERSE Z-TRANSFORM

CHAPTER 10.3

19

INVERSE Z-TRANSFORM

Definition

•
$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

- This is a contour integral within the ROC
- Like with LT, will avoid solving this directly and instead use
 - Inspection method (PFE + known pairs [Table 10.2 pg 776])
 - Power series expansion

Find the inverse of

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

$$\text{ROC:} \frac{1}{4} < |z| < \frac{1}{3}$$

Find the inverse of

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)} \qquad \text{ROC: } \frac{1}{4} < |z| < \frac{1}{3}$$

Do PFE and associate ROCs

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}} \qquad \longleftrightarrow \qquad x[n] = \left(\frac{1}{4}\right)^n u[n] - 2\left(\frac{1}{3}\right)^n u[-n-1]$$
$$|z| > \frac{1}{4} \qquad |z| < \frac{1}{3}$$

right-sided left-sided

POWER SERIES EXPANSION

• For finite sequences, can read of x[n] directly by the z-power (useful for non-rational z-transform)

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \dots + x[-1]z^1 + x[0] + x[1]z^{-1} + \dots$$

Find inverse of

$$X(z) = 4z^2 + 2 + 3z^{-1}$$

 $0 < |z| < \infty$

Find inverse of

$$X(z) = 4z^{2} + 2 + 3z^{-1} \qquad 0 < |z| < \infty$$
$$= x[-2]z^{2} + x[0]z^{0} + x[1]z^{-1}$$

$$x[n] = \begin{cases} 4 & n = -2 \\ 2 & n = 0 \\ 3 & n = 1 \end{cases} = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$$

GEOMETRIC EVALUATION OF THE FT

CHAPTER 10.4

Z-TRANSFORM PROPERTIES AND PAIRS

CHAPTER 10.5-10.6

PROPERTIES OF Z-TRANSFORM

Same idea as for LT

Differentiation in z-Domain

•
$$nx[n] \leftrightarrow -z \frac{dX(z)}{dz}$$

• ROC = R

- Time Shifting
 - $x[n-n_0] \leftrightarrow z^{-n_0}X(z)$
 - ROC = R (with potential addition or deletion of origin or infinity)
- Convolution
 - $x_1[n] * x_2[n] \leftrightarrow X_1(z)X_2(z)$
 - $\blacksquare \text{ ROC} \supset R_1 \cap R_2$

- Will rely heavily on time-shift (diff-eq) and convolution
- See Table 10.1 for more properties

COMMON Z-TRANSFORM PAIRS

 Will very rarely compute ztransform directly from summation definition

- Bookmark:
 - Table 10.1 Properties of Z-Transform [pg 775]
 - Table 10.2 Transform Pairs [pg 776]

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS		
Signal	Transform	ROC
1. δ[<i>n</i>]	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n - m]$	z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	z > lpha
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	z < lpha
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	z > lpha
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-(2r\cos\omega_0)z^{-1}}$	z > r

 $1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}$

29

ANALYSIS AND CHARACTERIZATION OF LTI SYSTEMS USING Z-TRANSFORMS

30

CHAPTER 10.7

LTI SYSTEMS AND Z-TRANSFORMS

By convolution property

$$x[n] \longrightarrow H(z) \longrightarrow y[n] = x[n] * h[n]$$
$$X(z) \qquad \qquad Y(z) = H(z)X(z)$$

• System/Transfer function • $H(z) = \frac{Y(z)}{X(z)}$

CAUSALITY

- A causal system has h[n] = 0 for n < 0
 - Right-sided
 - \blacksquare ROC is exterior of circle and includes ∞
- For rational H(z) [diff-eq systems]
 - ROC is outside outermost pole
 - The order of the numerator cannot be greater than the denominator

STABILITY

\blacksquare The ROC must include the unit circle |z|=1

• For a causal LTI system with rational system function, all poles of H(z) must be inside the unit circle

LTI SYSTEMS FROM DIFFERENCE EQUATIONS

General difference equation definition

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

■ Take the Z-Transform of both sides

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \quad \Rightarrow \quad H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

- Always rational
- Need additional constraints (stable, causal) to determine ROC

• Find the impulse response (assume stable system)

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

SYSTEM FUNCTION ALGEBRA AND BLOCK DIAGRAM REPRESENTATION

CHAPTER 10.8

36

INTERCONNECTIONS & BLOCK DIAGRAMS

- System functions for interconnections
 - Handled the same as for LT

- Block diagrams
 - Covered in <u>Ch2 notes slide 39</u>
 - Direct Forms: DFI, DFII
 - Cascade Form (factored)
 - Parallel Form (PFE)

•
$$H(z) = \frac{Y(z)}{X(z)} = \frac{H_1(z)}{1 + H_1(z)H_2(z)}$$

• Give forms of

•
$$H(z) = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$

- (a) Direct form
- (b) Cascade (factored) form

•
$$H(z) = \left(\frac{1}{1 + \frac{1}{2}z^{-1}}\right) \left(\frac{1}{1 + \frac{1}{4}z^{-1}}\right)$$

• (c) Parallel form (PFE)

•
$$H(z) = \frac{2/3}{1 + \frac{1}{2}z^{-1}} + \frac{1/3}{1 + \frac{1}{4}z^{-1}}$$

Give forms of

•
$$H(z) = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$

• (a) Direct form

• (b) Factored form

Figure 10.20 Block-diagram representations for the system in Example 10.30: (a) direct form; (b) cascade form; (c) parallel form.

UNILATERAL Z-TRANSFORM

CHAPTER 10.9

40

UNILATERAL Z-TRANSFORM

Useful for causal LTI systems with non-zero initial conditions

• System not initially at rest \rightarrow system has state/memory

$$X_u(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$$

- Summation only from $[0, \infty]$ while bilateral $[-\infty, \infty]$
- Results in right-sided sequences (in Z-Transform table)

PROPERTIES OF UNILATERAL (TABLE 10.3)

Convolution

- $x_1[n] * x_2[n] \leftrightarrow X_{u1}(z)X_{u2}(z)$
 - $x_1[n] = x_2[n] = 0 \ \forall n < 0$

Shifting

- $y[n] = x[n-1] \leftrightarrow Y_u(z) = x[-1] + z^{-1}X_u(z)$
- Need to generalize for
 - $x[n-n_0] \leftrightarrow ?$

• Example

$$y[n] + 3y[n-1] = x[n]$$

•
$$H(z) = \frac{1}{1+3z^{-1}}$$
 (from bilateral)

Now consider input

•
$$x[n] = \alpha u[n] \leftrightarrow X_u(z) = \frac{\alpha}{1-z^{-1}}$$

$$Y_u(z) = H(z)X_u(z) = \left(\frac{1}{1+3z^{-1}}\right) \left(\frac{\alpha}{1-z^{-1}}\right) = \frac{3/4\alpha}{1+3z^{-1}} + \frac{1/4\alpha}{1-z^{-1}}$$

Using unilateral (right-sided) inverse
 y[n] = ³/₄α(-3)ⁿu[n] + ¹/₄αu[n]

SOLVING DIFF EQS USING UNILATERAL

- $y[n] + 3y[n-1] = x[n], x[n] = \alpha u[n], y[-1] = \beta$
- $Y_u(z) + 3\{y[-1] + z^{-1}Y_u(z)\} = X_u(z)$
- $Y_u(z)[1 3z^{-1}] = \frac{\alpha}{1 z^{-1}} 3\beta$

•
$$Y_u(z) = \frac{\alpha}{(1-z^{-1})(1-3z^{-1})} - \frac{3\beta}{1+3z^{-1}}$$

Bilateral solution Zero initial condition response Response to initial conditions Zero-input response

 Can solve each part separately with Z-Transform techniques to find

• $y[n] = y_{ZICR}[n] + y_{ZIR}[n]$