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INTRODUCTION
CHAPTER 10.0
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Previously we saw the Laplace Transform

 Extension of FS  FT  LT

 Allowed us to study a wide class of signals/systems 
(unstable systems with ROC)

The Z-Transform is the discrete version

 While very similar, must recognize the specific 
differences
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INTRODUCTION



Remember

4

EIGENSIGNAL BACKGROUND



THE Z-TRANSFORM
CHAPTER 10.1
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The eigensignal result leads to the definition of the 
Z-Transform

Shorthand notation
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Z-TRANSFORM DEFINITION



Previously with Laplace, we saw the LT reduced to 
the FT along the 𝑗𝜔-axis (stability constraint)

For the Z-Transform, it reduces to the FT along the 

𝑒𝑗𝜔 = 1 unit circle

When 𝑧 = 𝑒𝑗𝜔

 ȁ𝑋 𝑧 𝑧=𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔 = ℑ{𝑥 𝑛 }

 ℑ{. } is the Fourier Transform
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FOURIER TRANSFORM CONNECTION



 Find the Z-transform of input 𝑥 𝑛 = 𝑎𝑛𝑢[𝑛]
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EXAMPLE 10.1



 Find the Z-transform of input 𝑥 𝑛 = 𝑎𝑛𝑢[𝑛]

 Note: with 𝑧−1 we get a pole
and a zero
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EXAMPLE 10.1

Note: for sum convergence



 Find the Z-transform of input 𝑥 𝑛 = −𝑎𝑛𝑢[−𝑛 − 1]
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EXAMPLE 10.2



 Find the Z-transform of input 𝑥 𝑛 = 7
1

3

𝑛
𝑢 𝑛 − 6

1

2

𝑛
𝑢[𝑛]
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EXAMPLE 10.3



 Find the Z-transform of input 𝑥 𝑛 =
1

3

𝑛
sin

𝜋

4
𝑛 𝑢[𝑛]
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EXAMPLE 10.4



When 𝑋(𝑧) is a ratio of polynomials (from 
difference equation) there is:

 Pole @ ∞ when the degree of the numerator exceeds the 
denominator

 Zero @ ∞ when the numerator is of smaller degree than 
the denominator

Must have balance (equal number of poles and 
zeros)
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RATIONAL 𝑋(𝑧)



THE REGION OF CONVERGENCE FOR THE Z-
TRANSFORM
CHAPTER 10.2
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1. The ROC consists of rings in the z-plane centered 
about the origin

2. The ROC does not contain any poles

3. When 𝑥[𝑛] is finite duration, the ROC is the entire 
z-plane

 Except possibly 𝑧 = 0 and/or 𝑧 = ∞ (poles @ zero 
and/or ∞)
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9 ROC PROPERTIES I



4. When 𝑥[𝑛] is a right-sided sequence, if the circle 
𝑧 = 𝑟0 is in the ROC, then all finite values of z 
for which 𝑧 > 𝑟0 will also be in the ROC

5. When 𝑥[𝑛] is a left-sided sequence, if the circle 
𝑧 = 𝑟0 is in the ROC, then 0 < 𝑧 < 𝑟0 will also 
be in the ROC

6. When 𝑥[𝑛] is a two-sided sequence, if the circle 
𝑧 = 𝑟0 is in the ROC, then the ROC will be a ring 
in the z-plane that includes 𝑧 = 𝑟0
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9 ROC PROPERTIES II



7. If 𝑋 𝑧 is rational, then the ROC is bounded by poles or 
extends to infinity

8. If 𝑋(𝑧) is rational and right-sided, then the ROC is 
outside the outermost pole

 If 𝑥[𝑛] is also causal, the ROC also includes 𝑧 = ∞

9. If 𝑋 𝑧 is rational and left-sided, then the ROC is inside 
the innermost pole (not including poles @ z=0)

 If 𝑥[𝑛] is also anticausal 𝑥 𝑛 = 0 ∀𝑛 > 0 , the ROC also 
includes 𝑧 = 0
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9 ROC PROPERTIES III



 List all possible ROC for

𝑋 𝑧 =
1

1 −
1
3
𝑧−1 1 − 2𝑧−1
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EXAMPLE 10.8



INVERSE Z-TRANSFORM
CHAPTER 10.3
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 Definition

 𝑥 𝑛 =
1

2𝜋𝑗
𝑋ׯ 𝑧 𝑧𝑛−1𝑑𝑧

 This is a contour integral within the ROC

 Like with LT, will avoid solving this directly and instead 
use

 Inspection method (PFE + known pairs [Table 10.2 pg 776])

 Power series expansion
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INVERSE Z-TRANSFORM



Find the inverse of 

21

EXAMPLE 10.10

𝑋 𝑧 =
3 −

5
6
𝑧−1

1 −
1
4
𝑧−1 1 −

1
3
𝑧−1

ROC: 
1

4
< 𝑧 <

1

3



Find the inverse of 

Do PFE and associate ROCs
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EXAMPLE 10.10

𝑋 𝑧 =
3 −

5
6
𝑧−1

1 −
1
4
𝑧−1 1 −

1
3
𝑧−1

ROC: 
1

4
< 𝑧 <

1

3

𝑋 𝑧 =
1

1 −
1
4
𝑧−1

+
2

1 −
1
3
𝑧−1

𝑧 >
1

4
𝑧 <

1

3

right-sided left-sided

𝑥 𝑛 =
1

4

𝑛

𝑢 𝑛 − 2
1

3

𝑛

𝑢[−𝑛 − 1]



For finite sequences, can read of 𝑥[𝑛] directly by 
the z-power (useful for non-rational z-transform)
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POWER SERIES EXPANSION



Find inverse of 
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EXAMPLE 10.12



Find inverse of 
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EXAMPLE 10.12



GEOMETRIC EVALUATION OF THE FT
CHAPTER 10.4
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Z-TRANSFORM PROPERTIES AND PAIRS
CHAPTER 10.5-10.6

27



 Same idea as for LT

 Time Shifting

 𝑥[𝑛 − 𝑛0] ⟷ 𝑧−𝑛0𝑋(𝑧)

 ROC= 𝑅 (with potential addition 
or deletion of origin or infinity)

 Convolution

 𝑥1 𝑛 ∗ 𝑥2[𝑛] ⟷ 𝑋1 𝑧 𝑋2(𝑧)

 ROC ⊃ 𝑅1 ∩ 𝑅2

 Differentiation in z-Domain

 𝑛𝑥 𝑛 ⟷ −𝑧
𝑑𝑋 𝑧

𝑑𝑧

 ROC = 𝑅

 Will rely heavily on time-shift 
(diff-eq) and convolution

 See Table 10.1 for more 
properties
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PROPERTIES OF Z-TRANSFORM



 Will very rarely compute z-
transform directly from 
summation definition

 Bookmark:

 Table 10.1 Properties of Z-
Transform [pg 775]

 Table 10.2 Transform Pairs [pg
776]
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COMMON Z-TRANSFORM PAIRS



ANALYSIS AND CHARACTERIZATION OF LTI 
SYSTEMS USING Z-TRANSFORMS
CHAPTER 10.7
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By convolution property

System/Transfer function

 𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
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LTI SYSTEMS AND Z-TRANSFORMS

𝐻(𝑧)𝑥 𝑛 𝑦 𝑛 = 𝑥[𝑛] ∗ ℎ[𝑛]

𝑋(𝑧) 𝑌 𝑧 = 𝐻 𝑧 𝑋(𝑧)



A causal system has ℎ 𝑛 = 0 for 𝑛 < 0

 Right-sided

 ROC is exterior of circle and includes ∞

For rational 𝐻(𝑧) [diff-eq systems]

 ROC is outside outermost pole

 The order of the numerator cannot be greater than the 
denominator
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CAUSALITY



The ROC must include the unit circle 𝑧 = 1

For a causal LTI system with rational system 
function, all poles of 𝐻(𝑧) must be inside the unit 
circle
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STABILITY



 General difference equation definition

 Take the Z-Transform of both sides

 Always rational

 Need additional constraints (stable, causal) to determine 
ROC
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LTI SYSTEMS FROM DIFFERENCE EQUATIONS

⇒



 Find the impulse response (assume stable system)

𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥 𝑛 +

1

3
𝑥[𝑛 − 1]

35

EXAMPLE 10.25



SYSTEM FUNCTION ALGEBRA AND BLOCK 
DIAGRAM REPRESENTATION
CHAPTER 10.8
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 System functions for 
interconnections

 Handled the same as for LT

 Block diagrams

 Covered in Ch2 notes slide 39

 Direct Forms: DFI, DFII

 Cascade Form (factored)

 Parallel Form (PFE)

 𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=

𝐻1 𝑧

1+𝐻1 𝑧 𝐻2(𝑧)
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INTERCONNECTIONS & BLOCK DIAGRAMS

http://www.ee.unlv.edu/~b1morris/ee360/slides/2_slides_lti_v2.pdf


 Give forms of

 𝐻 𝑧 =
1

1+
1

4
𝑧−1−

1

8
𝑧−2

 (a) Direct form

 (b) Cascade (factored) form

 𝐻 𝑧 =
1

1+
1

2
𝑧−1

1

1+
1

4
𝑧−1

 (c) Parallel form (PFE)

 𝐻 𝑧 =
2/3

1+
1

2
𝑧−1

+
1/3

1+
1

4
𝑧−1
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EXAMPLE 10.30



 Give forms of

 𝐻 𝑧 =
1

1+
1

4
𝑧−1−

1

8
𝑧−2

 (a) Direct form

 (b) Factored form

 𝐻 𝑧 =
1

1+
1

2
𝑧−1

1

1+
1

4
𝑧−1

 (c) Parallel form (PFE)

 𝐻 𝑧 =
2/3

1+
1

2
𝑧−1

+
1/3

1+
1

4
𝑧−1
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EXAMPLE 10.30



UNILATERAL Z-TRANSFORM
CHAPTER 10.9
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Useful for causal LTI systems with non-zero initial 
conditions

 System not initially at rest  system has state/memory

𝑋𝑢 𝑧 = σ𝑛=0
∞ 𝑥 𝑛 𝑧−𝑛

 Summation only from [0,∞] while bilateral [−∞,∞]

 Results in right-sided sequences (in Z-Transform table)
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UNILATERAL Z-TRANSFORM 



 Convolution

 𝑥1 𝑛 ∗ 𝑥2[𝑛] ⟷ 𝑋𝑢1 𝑧 𝑋𝑢2(𝑧)

 𝑥1 𝑛 = 𝑥2 𝑛 = 0 ∀𝑛 < 0

 Shifting 

 𝑦 𝑛 = 𝑥 𝑛 − 1 ⟷ 𝑌𝑢 𝑧 = 𝑥 −1 + 𝑧−1𝑋𝑢(𝑧)

 Need to generalize for 

 𝑥 𝑛 − 𝑛0 ⟷ ?

 Example

𝑦 𝑛 + 3𝑦 𝑛 − 1 = 𝑥[𝑛]

 𝐻 𝑧 =
1

1+3𝑧−1
(from bilateral)

 Now consider input

 𝑥 𝑛 = 𝛼𝑢 𝑛 ⟷ 𝑋𝑢 𝑧 =
𝛼

1−𝑧−1

 Using unilateral (right-sided) inverse

 𝑦 𝑛 =
3

4
𝛼 −3 𝑛𝑢 𝑛 +

1

4
𝛼𝑢 𝑛
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PROPERTIES OF UNILATERAL (TABLE 10.3)



 𝑦 𝑛 + 3𝑦 𝑛 − 1 = 𝑥 𝑛 , 𝑥 𝑛 = 𝛼𝑢[𝑛], 𝑦 −1 = 𝛽

 𝑌𝑢 𝑧 + 3 𝑦 −1 + 𝑧−1𝑌𝑢 𝑧 = 𝑋𝑢(𝑧)

 𝑌𝑢 𝑧 1 − 3𝑧−1 =
𝛼

1−𝑧−1
− 3𝛽

 𝑌𝑢 𝑧 =
𝛼

1−𝑧−1 1−3𝑧−1
−

3𝛽

1+3𝑧−1

 Can solve each part separately with Z-Transform techniques to 
find

 𝑦 𝑛 = 𝑦𝑍𝐼𝐶𝑅 𝑛 + 𝑦𝑍𝐼𝑅[𝑛]
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SOLVING DIFF EQS USING UNILATERAL

Bilateral solution 
Zero initial condition response

Response to initial conditions
Zero-input response


