
Signals and Systems I Discussion EE360D: Spring 24

Computer Assignment #3
Due Su. 2/25

LTI Systems and Fourier Series

Recall that the Fourier Series allows you to represent a periodic signal as a linear combination of
(harmonic) complex exponentials
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where the period of x[n] is N and the fundamental frequency is ω0 = 2π
N . Also, LTI systems have

the eigensignal property

zn −→ H(z)zn H(z) =
∞∑

n=−∞
x[n]z−n.

Together, a periodic input signal x[n] results in periodic output signal

y[n] =
∑

k=<N>

bke
jkω0n =

∑
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where H(ejω) is known as the frequency response. The LTI system effectively scales the harmonic
components of x[n]. The LTI system designer then would be looking to build H(ejω) to affect
harmonic frequencies in a desired manner. As an example, a low pass filter is a system H(ejω)
designed such that lower frequency harmonics (those with small k for frequency ω = kω0) do not
change while higher frequency harmonics (k large) are zero.

The following exercises will demonstrate the effects of different LTI systems on periodic input
signals and give some intuition.

Low Pass Filtering

A low pass filter can be thought of as a system that “smooths” a signal. By smoothing a signal,
high frequency variations are reduced. A natural way to smooth a signal would be to average
consecutive values with difference equation

y[n] =
1

M + 1

M∑
k=0

x[n− k].

This definition makes the output at time n the average of the last M + 1 samples. This should
remove high frequency variations in the signal. Notice that this difference equation is equivalent to
an impulse response of

h[n] =

{
1

M+1 0 ≤ n ≤ M

0 else
.

This is known as and M+1 tap low pass averaging filter. Note that this is a causal averaging filter.
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Exercises

1. Visualize the filter response by plotting the symmetric (non-causal) averaging filter

H(ejω) =
sin(ω(M + 1/2))

sin(ω/2)

between −π ≤ ω ≤ π for M = 4. You only need to consider the magnitude response |H(ejω)|.

2. Use convolution (conv.m) to overlay the output y[n] over the input x[n] for input signals

(a) x0[n] = cos
(
π
10n

)
(b) x1[n] = cos (πn)

(c) x2[n] = x0[n] + x1[n]

Generate three plots in a row using the subplot.m command. Be sure to label your axis
(xlabel and ylabel) and insert a legend (legend.m). You may want to play with the plot
thickness and color for better visualization. Explain the effects of the LP filter on the signals.

3. Repeat 2, but this time add white Gaussian noise to the signal xi[n]. You can add white noise
using the function randn.m, e.g. x0 = x0 + randn(1,100) assuming x0 has 100 samples.
Explain the affects of the LP filter on the signals.

4. Repeat 2, but use the filter command rather than conv.

5. Repeat 3, using the filter command.

High Pass Filtering

In contrast to a low pass filter, the high pass filter will accentuate high frequency components and
suppress low frequency. A simple high pass filter can be obtained by approximating a derivative
function with h[n] = {1,−1} or as the difference between samples.

Exercises

6. Visualize the filter frequency response by plotting

H(ejω) = 1− e−jω

between −π ≤ ω ≤ π. Note this is a complex function so you will need to plot the magnitude.

7. Use convolution to overlay the output y[n] over the input x[n] for input signals

(a) x0[n] = cos
(
π
10n

)
(b) x1[n] = cos (πn)

(c) x2[n] = x0[n] + x1[n]

Explain the effects of the HP filter on the signals.

8. Repeat 7, but this time add white Gaussian noise to the signal xi[n]. Explain the affects of
the HP filter on the signals.

9. Repeat 7, using the filter command.

10. Repeat 8, using the filter command.
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