
http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 23

121120

Outline

• Review

▫ Combinatorial Logic

• Sequential Logic

2

Combinatorial Logic Circuits

• Combine logical variable inputs to produce a
logic-variable output

• Logic can be specified by enumerating the
output for all possible input combinations in a
truth table

• Considered memoryless circuits

▫ The output at a given time instant are only
dependent on the input at the same time instant

3

Basic Logic Gates
• Inverter – NOT operation or

complement of a variable

▫ NOT(𝐴) = 𝐴

• AND - computes the logical
multiplication of input
variables

▫ AND(𝐴, 𝐵) = 𝐴𝐵

• OR - computes the logical
addition of input variables

▫ OR 𝐴, 𝐵 = 𝐴 + 𝐵

4

More Logic Gates
• In silicon chips, other gates are

simpler to implement

• Buffer = NOT followed by NOT

▫ Returns the same value

• NAND = AND followed by
NOT

• NOR = OR followed by NOT

• XOR is the exclusive-OR gate

▫ XOR 𝐴, 𝐵 = 𝐴⊕ 𝐵

5

𝐴 𝐵 𝐴⊕ 𝐵

0 0 0

0 1 1

1 0 1

1 1 0

Boolean Algebra

• Mathematical theory of logical variables

• Use basic AND, OR, and NOT relationships to
prove a Boolean expression

▫ Can generate a truth table to specify the output
relationship for all possible input values

• De Morgan’s Laws

▫ Provides a way to convert an AND relationship
into an OR relationship and vice versa

▫ 𝐴𝐵𝐶 = 𝐴 + 𝐵 + 𝐶

▫ 𝐴 + 𝐵 + 𝐶 = 𝐴 𝐵 𝐶

6

Implementation of Boolean Expressions

• A logical variable can be composed of Boolean
relationships
▫ AND, OR, NOT, etc.

• Gate level implementation is straightforward
• Example

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + (𝐶 + 𝐷)(𝐷 + 𝐸)

7

Simplifying Boolean Expression

• Find simpler equivalent expressions by
manipulation of equation and Boolean relations

• Example

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + (𝐶 + 𝐷)(𝐷 + 𝐸)

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐶𝐷 + 𝐶𝐸 + 𝐷𝐷 + 𝐷𝐸

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸

• 𝐹 = 𝐴𝐶 𝐵 + 𝐵 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸

• 𝐹 = 𝐴𝐶 1 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸

• 𝐹 = 𝐶 𝐴 + 𝐷 + 𝐸 + 𝐷𝐸

8

Synthesis of Logic
• Require methods to convert

logic circuit specifications into
a practical gate level
implementation

▫ Often the logic is specified in
a natural language

• Example: automatic
windshield wipers

▫ When it is raining (input 1)
and cloudy (input 2) the
wipers should be on (output)

• Example: 3 Logical variable
input and 1 output

▫ Enumerate all possible input
values and specify the
corresponding output

▫ 𝐴, 𝐵, 𝐶 input and 𝐷 output

9

𝐴 𝐵 𝐶 𝐷

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Sum-of-Products Implementation
• Find all output rows that have a 1 output

▫ Determine AND relationship between inputs

• OR the AND terms from each row

10

𝐴 𝐵 𝐶 𝐷 AND
Term

0 0 0 1 𝐴 𝐵 𝐶

0 0 1 0

0 1 0 1 𝐴 𝐵𝐶

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1 𝐴𝐵𝐶

1 1 1 1 𝐴𝐵𝐶

𝐷 = 𝐴 𝐵 𝐶 + 𝐴 𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶

Product-of-Sums Implementation
• Find all output rows that have a 0 output

▫ Determine OR relationship between inputs

• AND the OR terms from each row

11

𝐴 𝐵 𝐶 𝐷 OR
Term

0 0 0 1

0 0 1 0 𝐴 + 𝐵 + 𝐶

0 1 0 1

0 1 1 0 𝐴 + 𝐵 + 𝐶

1 0 0 0 𝐴 + 𝐵 + 𝐶

1 0 1 0 𝐴 + 𝐵 + 𝐶

1 1 0 1

1 1 1 1

𝐷 = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶)

Sequential Logic

• Combinatorial logic output is only dependent on
input at the given time

• Sequential logic has outputs that are dependent
not only on current input but past input as well

▫ The circuits have “memory”

• Often times sequential circuits use a clock signal
to regulate when the output should change

▫ These are called synchronous circuits

▫ Asynchronous circuits are able to change as soon
as inputs change (no clock signal is required)

12

The Flip-Flop
• This is the basic building block

for sequential circuits

• A flip-flop has two allowable
“states” of operation

▫ It is able to store a bit of
information

• When 𝑄 is high

▫ 𝑄 will be low

• When 𝑄 is low

▫ 𝑄 will be high

• Coupled inverter configuration
ensures the state does not
change

• Once 𝑄 is set, it does not
change

• How can we set the flip-flop
state?

13

SR Flip-Flops
• Set-reset (SR) flip-flop allows

control of the state

• When 𝑅 and 𝑆 are low

▫ This behaves as the coupled
inverters

▫ Remains in “set state” (𝑄 set
stays high)

• When 𝑆 is high and 𝑅 is low

▫ Top NOR is an inverter and
𝑄 is forced high and 𝑄 low

• When 𝑅 is high and 𝑆 is low

▫ Bottom NOR is an inverter
and 𝑄 is forced high and 𝑄 is
low

• 𝑅 and 𝑆 cannot both be set at
the same time

14

SR Flip-Flop Truth Table
• 𝑆 = Set

• 𝑅 = Reset

• Truth Table

• The circuit remember what
was the last input

• 𝑄𝑛 - represents the output at a
time 𝑛

• 𝑄𝑛−1 - represents the output at
an earlier time 𝑛 − 1

▫ Time 𝑛 − 1 is the time when
either 𝑆 or 𝑅 was last high

• Notice that set and reset
inputs are not allowed to be
high at the same time

▫ Circuit cannot operate in this
condition

15

Debouncing a Switch
• Physical switches do not make

perfect contact when moving
from one position to another

▫ The voltage across the switch
is said to bounce

• An SR flip-flop can be used to
debounce the switch

▫ Make a “good” contact and
prevent voltage from
bounching

• Debounced output

16

Clocked SR Flip-Flop
• The previous SR flip-flop state

changes as soon as either 𝑆 or
𝑅 is set

• Often we would like to have
control on when the state is
allowed to change

▫ Want a synchronous circuit

• Add a clock signal to the flip-
flop

▫ Only when the clock is high s
the output allowed to change

• AND gates prevent 𝑅 or 𝑆 from
reaching the flip-flop unless
the clock 𝐶 is high

17

Clocked SR with Asynchronous Input

• Clocked set and reset functionality with
asynchronous set and reset as well

• Add OR gates at 𝑄𝑄 outputs to automatically set or
reset
▫ Notice that the clocked 𝑆 and 𝑅 cannot be high at the

same time and neither can the asynchronous preset Pr
and clear 𝐶𝑙

18

Edge-Triggered Circuits

• The clocked SR flip-flop uses the clock signal as an
enable signal
▫ When the clock is high the circuit is allowed to change

• Edge-triggered circuits only respond at the time
when the clock changes between low and high
▫ Positive-edge-triggered – low to high transition

 Known as the leading edge

▫ Negative-edge-triggered – high to low transition
 Known as the training edge

19

D Flip-Flop

• The delay (D) flip-flop is edge-triggered to take
make the output the same as the input right
before the clock transition

• The triangle by the clock signal C indicates it is
positive-edge-triggered

▫ Up arrow in truth table indicates rising edge

20

Example: D Flip-Flop

• Positive-edge-triggered

21

JK Flip-Flop

• Similar operation to the SR flip-flop
▫ Except when 𝐽 and 𝐾 are both high, the output

state 𝑄 will toggle

• Notice this is a negative-edge-triggered
▫ Triangle with a preceding invert bubble

22

Registers

• A flip-flop is able to store a single bit

• A register is an array of flip-flops used to store a
digital word

▫ A hexadecimal number requires 4 bits so 4 flip-
flops are required to internally store the hex
number

23

http://enpub.fulton.asu.edu/cse517/Lab3.html

Serial-In Parallel-Out Shift Register

• Serial-in – implies bit are presented to the
register one at a time (in a sequence)

• Parallel-out – implies the contents of the
register (all the bits) can be accessed at the same
time

24

Serial-In Parallel-Out Operation
• Data is presented to a single

input at the “front” of the word

• At each clock transition the
data is shifted from one flip-
flop to the next

• After 4 clock cycles, the full
word is available to be read in
the register

25

Parallel-In Serial Out Shift Register
• Parallel data is provided as

input and the output is serial
data
▫ E.g. transmission of data on a

telephone line

• The register can be cleared
asynchronously to initialize
the register

• Data is set on inputs and a
parallel enable signal
asynchronously loads the data

• The output is serially
transmitted from the last flip-
flop stage

26

Counters
• Circuit used to count the

pulses in an input signal
▫ Often the number of clocks

are the signal of interest

• Inputs of JK flip-flop are tied
together and high
▫ Causes the output state to

toggle with each clock cycle

▫ Notice this is negative-edge-
triggered

• Output of one JK flip-flop is
the clock input of the next
stage
▫ The word 𝑄2𝑄1𝑄0 is the

binary representation of the
count

27

Minimization of Logic Circuits

• We saw you can minimize logic variable
representations using Boolean algebra but this
can be tedious and prone to error

• The Karnaugh map (K-map) (Ch 7.5) is a
principled method for determining the
minimum representation

▫ This method is usually only practical for 4
variables (maybe 5 or 6)

▫ We will not cover this in class but it is an
interesting read

28

