EE292: Fundamentals of ECE

Fall 2012
TTh 10:00-11:15 SEB 1242

Lecture 22
121115

http://www.ee.unlv.edu/~bimorris/ee292/

Outline

» Review
= Binary Number Representation
= Binary Arithmetic

- Combinatorial Logic

3
Digital Sighals

- A signal with discrete “time” variable and only a few
restricted amplitude values
Amplitude Amplitude

1 0 1 1 Logic

/\/\ +A values
Fd / .

Time | Time
/ V T 2T »p

(a) Analog signal (b) Digital signal
g sig

- Binary signals are the most common type of signal
= The output takes only two possible values

= The two output values are often given positive “logical
values” of a 1 (high) or o (low)

. 4
Digital Words

- Bit — a single binary digit
= Smallest amount of information that can be
represented in a digital system
= Represents a yes/no for a digital variable
- E.g. R = 0, represents not raining while R = 1,
represents raining
- In order to represent more complex information,
bits can be combined into digital words

= A byte is 8 bits and a nibble is 4 bits (used often in

computers, e.g. a byte to represent each key on a
keyboard)

- Example RWS
= R for rain, W for wind, S for sunny
= RWS = 110 indicates it is raining, with winds, and
cloudy (e.g. not sunny)

|

Positional Notation for Numbers

- Base B number - B symbols per digit
= Base 10 (Decimal): 0,1,2,3,4,5,6,7,8,9
= Base 2 (binary) o, 1
- Number representation
s dy_1dy—_3 ...d,d,d,is N digit number
- 2N different numbers can be represented
o Value =dy_{xB"N™1 +dy_,xBN"2+ .. + d;xB! + d xB°

- Examples

= (Decimal): 90
© = 09x10! + 0x10°

= (Binary): 1011010
© = 1x20 + OX25 + 1x24 + 1x23 + 0x22 + 1x2! + 0x2°
c=64+16+8 +2
. =90

= 7 binary digits needed for 2 digit decimal number

Conversion from Decimal to Base B

- Integer conversion is done by repeatedly
dividing by the decimal number by base B
» The remainder is a base B digit
= Continue dividing until quotient equals zero
= Arrange into digital word from right to left

Conversion from Decimal to Binary

- Convert decimal 343, to binary (base 2)

Quotient Remainder

343/2 = 171 1 —— 101010111,
171/2 = 85 1

85/2 = 42 1

42/2 = 21 O | Read binary equivalent
21/2 = 10 1 | 1nreverse order

10/2 = 5 0

5/2 = 2 1

2/2 = 1 0

1/2 = 0 1

\ Stop when quotient equals zero

Hexadecimal Number: Base 16

- More human readable than binary
- Base with easy conversion to binary

= Any multiple of 2 base could work (e.g. octal)
- Hexadecimal digits

Decimal 0 1 2 3

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex (16) | © 1 2 3 4 5 6 7 8 9 A B C D E F

octal (8) 0 1 2 3 4 5 6 7

s 1 hex digit represents 16 decimal values or 4
binary digits
- Will use 0x to indicate hex digit

Hex/Binary Conversion

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 2 3 4 5 6 7 8 ©

- Convert between 4-bits and a hex digit using the
conversion table above

- Examples

5 1010 1100 0101 (binary)
- = 0OxACS

> 10111 (binary)
= 0001 0111 (binary)
c = 0Ox17

= Ox3F9
+ = 0011 1111 1001 (binary)
=11 1111 1001 (binary)

hex

Binary Arithmetic

- Addition in binary is the same as with decimal
> Only have 2 values (0, 1) in binary

—-m
0+0 = 0
0+1 = 1 0
1+ 1 = 0 1
1+1+1 = 1 1

Sighed Numbers

- N bits represents 2N values

- Unsigned integers
= Range [0, 2N-1]

- How can negative values be indicated?
» Use a sign-bit
> Boolean indicator bit (flag)

- =
Sigh and Magnitude

+ 16-bit numbers
= +1 (decimal) = 0000 0000 0000 0001 = 0x0001
s -1 (decimal) = 1000 0000 0000 0001 = 0x8001

» Problems
= Two zeros
* 0x0000
* 0x8000

= Complicated arithmetic

- Special steps needed to handle when signs are same
or different (must check sign bit)

- un
Ones Complement

- Complement the bits of a number
= +1 (decimal) = 0000 0000 0000 0001 = 0x0001

= -1 (decimal) = 1111 1111 1111 1110 = OxFFFE
- Positive number have leading zeros
- Negative number have leading ones
 Arithmetic not too difficult
- Still have two zeros

- ul
Two’s Complement

- Subtract large number from a smaller one

= Borrow from leading zeros
3

= Result has leading ones .. 0011
. 0100 4

- Unbalanced representation

= Leading zeros for positive
- 2N non-negatives
= Leading ones for negative number
- 2N-1 pegative number
= One zero representation
- First bit is sign-bit (must indicate width)
= Value = d, x-23' + d,,x23° + ... + d,x2! + d,x2°

Negative value for sign bit

Two’s Complement Negation

- Shortcut = invert bits and add 1
> Number + complement = OxF..F = -1

x+x=-1
x+1=—x
- Example

X 1111 1110
X 0000 0001
x+1 00000010

|

Two’s Complement Sign Extension

- Machine’s have fixed width (e.g. 32-bits)
= Real numbers have infinite width (invisible
extension)
- Positive has infinite 0’s
- Negative has infinite 1’s
- Replicate sign bit (msb) of smaller container to
fill new bits in larger container

- Example

111111111111 1110
111111111111 1111} 111111111111 1110

O

Overflow

- Fixed bit width limits number representation

» Occurs if result of arithmetic operation cannot
be represented by hardware bits

- Example
= 8-bit: 127 + 127

0111 1111 127
0111 1111 127

Two’s Complement Subtraction

- Subtraction (x — y) can be performed by adding
x and the two’s complement of y

- Example
= 8-bit 29 - 27
iy e
00011101 29

0001 1011 27
1110 0100 27
1110 0101 27 +1=-27

.
Combinatorial Logic Circuits

- Combine logical variable inputs to produce a
logic-variable output

- Logic can be specified by enumerating the
output for all possible input combinations in a
truth table

- Considered memoryless circuits

> The output at a given time instant are only
dependent on the input at the same time instant

Inverter

- NOT operation inverts a logic variable
= We have seen this as complement already

- NOT(4) = A
A A
0 I
1 0
(a) Truth table

A—%Z

(b) Symbol for an inverter

Copyright © 2011, Pearson Education, Inc.

AND Gate

- Logic gate computes the logical multiplication of

input variables A B C | D=ABC
- AND(A,B) = AB & @B 5
0 0 1 0
A B C=AB 0 1 0 0
0 1 1 0
0 0 0 10 0 0
0 1 0 10 1 0
10 0 11 0 0
1 1 1 R 1
(a) Truth table (a) Truth table

A g_

(b) Symbol for two-input AND gate (b) Symbol for three-input AND gate

Copyright © 2011, Pearson Education, Inc. Copyright © 2011, Pearson Education, Inc.

OR Gate

- Logic gate computes the logical addition of input
variables

A B =A+B
- OR(4,B) = A+ B LEas
0 0 0
0 1 1
1 0 1
1 1 1
(a) Truth table
A
B C=A+8B

(b) Symbol for two-input OR gate

Copyright © 2011, Pearson Education, Inc.

More Logic Gates

- In silicon chips, other gates are

simpler to implement A —% A

- Buffer = NOT followed by NOT

= Returns the same value (d) Buffer
- NAND = AND followed by A —] .
NOT 1 —a

- NOR = OR followed by NOT) NAND gat
- XOR is the exclusive-OR gate 4 gate

> XOR(A,B) =ADB Q:D%(ATB)
EREEEDT

0
0
1
1

(b) NOR gate

A_\
D—A@B
B —1

(c) XOR gate

0 0
1 1
0 1
1 0

.
Boolean Algebra

- Mathematical theory of logical variables

- Use basic AND, OR, and NOT relationships to
prove a Boolean expression

= Can generate a truth table to specify the output
relationship for all possible input values

- x|

De Morgan’s Laws

- Provides a way to convert an AND relationship into
an OR relationship and vice versa

- ABC=A+B+C

- (A+B+C)= ABC

- Implications:
= Any logic function can be implemented using AND
gates and inverters

= Any logic function can be implemented using OR gates
and inverters

= Only need either AND gates or OR gates (not both)

|

Implementation of Boolean Expressions

- Alogical variable can be composed of Boolean
relationships

= AND, OR, NOT, etc.
- Gate level implementation is straightforward

- Example
« F=ABC + ABC + (C + D)(D + E)
[\ ABC

e

@ B ABC
o—

A% >

C+D

4>c
1

. =
Simplifying Boolean Expression

- Find simpler equivalent expressions by
manipulation of equation and Boolean relations

- Example
«F=ABC + ABC+ (C + D)(D + E)

«F =ABC + ABC + (CD + CE + DD + DE)
«F =ABC + ABC + (CD + CE + 0 + DE)
«F=AC(B+B)+ (CD+CE + 0+ DE)
«F=AC(1)+ (CD + CE + 0 + DE)
«F=C(A+D+E)+DE

Comparison of Implementations
«F=ABC+ABC+ (C+D)(D +E)

ADC D ABC

zg Py © B ABC
C T —1_
C+D g
D
T_Dc 3(?+D)(5+E)
E D+E

«F=C(A+D+E)+DE
A — C C(A+D+E)
P D ET_/ A+D+E }
F

-

. =
Synthesis of Logic

- Require methods to convert logic circuit
specifications into a practical gate level
implementation
= Often the logic is specified in a natural language

- We will use truth tables to develop Boolean logic
expressions that can be implemented with gates

Example Truth Table

- 3 Logical variable input and 1 output

> Enumerate all possible input values and specify
the corresponding output

= A, B, C input and D output

Al Bl C D
0

0

S = O = T = Nl = N
S G = N < S S G SE Gy
h, O R O R O R
N S G = T < T < S = S o S

Sum-of-Products Implementation

- Find all output rows that have a 1 output
= Determine AND relationship between inputs
- OR the AND terms from each row

A C AND
Term
0 1 ABC

0 0
0 0 1 0
0 1 0 1 ABC
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 ABC Can this be simplified?
1 1 1 1 ABC
D = ABC + ABC + ABC + ABC

Product-of-Sums Implementation

- Find all output rows that have a 0 output
= Determine OR relationship between inputs
- AND the OR terms from each row

A C OR
Term

0 0 0 1
0 0 1 0 A+B+C
0 1 0 1
0 1 1 0 A+B+C
1 0 0 0 A+B+C
1 0 1 0 A+B+C
1 1 0 1
1 1 1 1

D=(A+B+C)(A+B+C)A+B+C)(A+B+0()

