
http://www.ee.unlv.edu/~b1morris/ee292/ 

EE292: Fundamentals of ECE 

Fall 2012 

TTh 10:00-11:15 SEB 1242 

 

Lecture 22 

121115 



Outline 

• Review 

▫ Binary Number Representation 

▫ Binary Arithmetic 

• Combinatorial Logic 

 

 

 

 

 

 

 

2 



Digital Signals 
• A signal with discrete “time” variable and only a few 

restricted amplitude values 
 
 
 
 
 
 
 
 

• Binary signals are the most common type of signal 
▫ The output takes only two possible values 
▫ The two output values are often given positive “logical 

values” of a 1 (high) or 0 (low) 

3 



Digital Words 
• Bit – a single binary digit 

▫ Smallest amount of information that can be 
represented in a digital system 

▫ Represents a yes/no for a digital variable 
▫ E.g. 𝑅 = 0, represents not raining while 𝑅 = 1, 

represents raining 
• In order to represent more complex information, 

bits can be combined into digital words 
▫ A byte is 8 bits and a nibble is 4 bits (used often in 

computers, e.g. a byte to represent each key on a 
keyboard) 

• Example 𝑅𝑊𝑆 
▫ 𝑅 for rain, 𝑊 for wind, 𝑆 for sunny 
▫ 𝑅𝑊𝑆 = 110 indicates it is raining, with winds, and 

cloudy (e.g. not sunny) 
 

4 



Positional Notation for Numbers 
• Base B number B symbols per digit 

▫ Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9 
▫ Base 2 (binary) 0, 1 

• Number representation 
▫ 𝑑𝑁−1𝑑𝑁−2…𝑑2𝑑1𝑑0 is 𝑁 digit number 

 2𝑁 different numbers can be represented  
▫ Value =𝑑𝑁−1𝐵

𝑁−1  + 𝑑𝑁−2𝐵
𝑁−2 + … +  𝑑1𝐵

1 +  𝑑0𝐵
0 

 

• Examples 

▫ (Decimal): 90  
 = 9101 + 0100 

▫ (Binary): 1011010  
 = 126 + 025 + 124 + 123 + 022 + 121 + 020 
 = 64 + 16 + 8 + 2 
 = 90 

▫ 7 binary digits needed for 2 digit decimal number 
 

5 



Conversion from Decimal to Base B 

• Integer conversion is done by repeatedly 
dividing by the decimal number by base B 

▫ The remainder is a base B digit 

▫ Continue dividing until quotient equals zero 

▫ Arrange into digital word from right to left 

 

 

6 



Conversion from Decimal to Binary 

• Convert decimal 34310 to binary (base 2) 

 

7 



Hexadecimal Number: Base 16 

• More human readable than binary 

• Base with easy conversion to binary 

▫ Any multiple of 2 base could work (e.g. octal) 

• Hexadecimal digits 

 

 

 

▫ 1 hex digit represents 16 decimal values or 4 
binary digits 
 Will use 0x to indicate hex digit 

 

8 

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

Hex (16) 0 1 2 3 4 5 6 7 8 9 A B C D E F 

octal (8) 0 1 2 3 4 5 6 7 



Hex/Binary Conversion 

 
 

• Convert between 4-bits and a hex digit using the 
conversion table above 

• Examples 
▫ 1010 1100 0101 (binary) 

 = 0xAC5 

▫ 10111 (binary) 
 = 0001 0111 (binary) 
 = 0x17 

▫ 0x3F9 
 = 0011 1111 1001 (binary) 

 = 11 1111 1001 (binary) 

9 

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 



Binary Arithmetic 

• Addition in binary is the same as with decimal 

▫ Only have 2 values (0, 1) in binary 

 

 

10 

Sum Carry 

0 +  0 = 0 0 

0 +  1 = 1 0 

1 +  1 = 0 1 

1 +  1 +  1 = 1 1 



Signed Numbers 

• N bits represents 2N values 

• Unsigned integers 
▫ Range [0, 2N-1] 

• How can negative values be indicated? 

▫ Use a sign-bit 

▫ Boolean indicator bit (flag) 

 

11 



Sign and Magnitude 

• 16-bit numbers 
▫ +1 (decimal) = 0000 0000 0000 0001 = 0x0001 

▫ -1 (decimal) = 1000 0000 0000 0001 = 0x8001  

• Problems 

▫ Two zeros 
 0x0000 

 0x8000 

▫ Complicated arithmetic 

 Special steps needed to handle when signs are same 
or different (must check sign bit) 

 

12 



Ones Complement 

• Complement the bits of a number 

▫ +1 (decimal) = 0000 0000 0000 0001 = 0x0001 

▫ -1 (decimal) = 1111 1111 1111 1110 = 0xFFFE 

• Positive number have leading zeros 

• Negative number have leading ones 

• Arithmetic not too difficult 

• Still have two zeros 

13 



Two’s Complement 

• Subtract large number from a smaller one 

▫ Borrow from leading zeros 

▫ Result has leading ones 

• Unbalanced representation 

▫ Leading zeros for positive 

 2N-1 non-negatives 

▫ Leading ones for negative number 

 2N-1 negative number 

▫ One zero representation 

• First bit is sign-bit (must indicate width) 

▫ Value = d31-231 + d30230 + … + d121 + d020 

14 

Binary Decimal 

… 0011 3 

… 0100 4 

… 1111 -1 

Negative value for sign bit 



Two’s Complement Negation 

• Shortcut = invert bits and add 1 

▫ Number + complement = 0xF..F = -1 

 𝑥 + 𝑥 = −1 

 𝑥 + 1 = −𝑥 

• Example 

▫
𝑥 1111 1110
𝑥 0000 0001

𝑥 + 1 0000 0010
 

 

15 



Two’s Complement Sign Extension 

• Machine’s have fixed width (e.g. 32-bits) 

▫ Real numbers have infinite width (invisible 
extension) 

 Positive has infinite 0’s 

 Negative has infinite 1’s 

• Replicate sign bit (msb) of smaller container to 
fill new bits in larger container 

• Example 

▫ 1111 1111 1111 1110
1111 1111 1111 1111 1111 1111 1111 1110

 

16 



Overflow 

• Fixed bit width limits number representation 

• Occurs if result of arithmetic operation cannot 
be represented by hardware bits 

• Example 

▫ 8-bit: 127 + 127 

 

 

 

 

17 

Binary Decimal 

0111 1111 127 

0111 1111 127 

1111 1110 -2 (254)  



Two’s Complement Subtraction 

• Subtraction (𝑥 − 𝑦) can be performed by adding 
𝑥 and the two’s complement of 𝑦 

• Example  

▫ 8-bit 29 - 27 

18 

Binary Decimal 

0001 1101 29 

0001 1011 27 

1110 0100 27 

1110 0101 27 + 1 = −27 

𝟎𝟎𝟎𝟎 𝟎𝟎𝟏𝟎 2  



Combinatorial Logic Circuits 

• Combine logical variable inputs to produce a 
logic-variable output 

• Logic can be specified by enumerating the 
output for all possible input combinations in a 
truth table 

 

• Considered memoryless circuits 

▫ The output at a given time instant are only 
dependent on the input at the same time instant 

19 



Inverter 

• NOT operation inverts a logic variable 

▫ We have seen this as complement already 

 NOT(𝐴)  =  𝐴  

 

20 



AND Gate 

• Logic gate computes the logical multiplication of 
input variables  

▫ AND(𝐴, 𝐵)  = 𝐴𝐵 

21 



OR Gate 

• Logic gate computes the logical addition of input 
variables  

▫ OR 𝐴, 𝐵 = 𝐴 + 𝐵 

 

22 



More Logic Gates 
• In silicon chips, other gates are 

simpler to implement 

• Buffer = NOT followed by NOT 

▫ Returns the same value 

• NAND = AND followed by 
NOT 

• NOR = OR followed by NOT 

• XOR is the exclusive-OR gate 

▫ XOR 𝐴, 𝐵 = 𝐴⊕ 𝐵 

 

 

23 

𝐴 𝐵 𝐴⊕ 𝐵 

0 0 0 

0 1 1 

1 0 1 

1 1 0 



Boolean Algebra 

• Mathematical theory of logical variables 

 

• Use basic AND, OR, and NOT relationships to 
prove a Boolean expression 

▫ Can generate a truth table to specify the output 
relationship for all possible input values 

 

24 



De Morgan’s Laws 

• Provides a way to convert an AND relationship into 
an OR relationship and vice versa 
 

• 𝐴𝐵𝐶 = 𝐴 + 𝐵 + 𝐶  
 

• 𝐴 + 𝐵 + 𝐶 =  𝐴 𝐵 𝐶  
 

• Implications: 
▫ Any logic function can be implemented using AND 

gates and inverters 
▫ Any logic function can be implemented using OR gates 

and inverters 
▫ Only need either AND gates or OR gates (not both) 

25 



Implementation of Boolean Expressions 

• A logical variable can be composed of Boolean 
relationships 
▫ AND, OR, NOT, etc.  

• Gate level implementation is straightforward 
 

• Example 

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + (𝐶 + 𝐷)(𝐷 + 𝐸) 

26 



Simplifying Boolean Expression 

• Find simpler equivalent expressions by 
manipulation of equation and Boolean relations 

 

• Example 

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + (𝐶 + 𝐷)(𝐷 + 𝐸) 

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐶𝐷 + 𝐶𝐸 + 𝐷𝐷 + 𝐷𝐸  

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸  

• 𝐹 = 𝐴𝐶 𝐵 + 𝐵 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸  

• 𝐹 = 𝐴𝐶 1 + 𝐶𝐷 + 𝐶𝐸 + 0 + 𝐷𝐸  

• 𝐹 = 𝐶 𝐴 + 𝐷 + 𝐸 + 𝐷𝐸 

 

27 



Comparison of Implementations 

• 𝐹 = 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + (𝐶 + 𝐷)(𝐷 + 𝐸) 

 

 

 

 

 

 

• 𝐹 = 𝐶 𝐴 + 𝐷 + 𝐸 + 𝐷𝐸 

 

28 



Synthesis of Logic 

• Require methods to convert logic circuit 
specifications into a practical gate level 
implementation 

▫ Often the logic is specified in a natural language 

 

• We will use truth tables to develop Boolean logic 
expressions that can be implemented with gates 

 

29 



Example Truth Table 

• 3 Logical variable input and 1 output 

▫ Enumerate all possible input values and specify 
the corresponding output 

▫ 𝐴, 𝐵, 𝐶 input and 𝐷 output 

30 

𝐴 𝐵 𝐶 𝐷 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 



Sum-of-Products Implementation 
• Find all output rows that have a 1 output 

▫ Determine AND relationship between inputs  

• OR the AND terms from each row 

31 

𝐴 𝐵 𝐶 𝐷 AND 
Term 

0 0 0 1 𝐴 𝐵 𝐶  

0 0 1 0 

0 1 0 1 𝐴 𝐵𝐶  

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 𝐴𝐵𝐶  

1 1 1 1 𝐴𝐵𝐶 

𝐷 = 𝐴 𝐵 𝐶 + 𝐴 𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 
 

Can this be simplified? 



Product-of-Sums Implementation 
• Find all output rows that have a 0 output 

▫ Determine OR relationship between inputs  

• AND the OR terms from each row 

 

32 

𝐴 𝐵 𝐶 𝐷 OR 
Term 

0 0 0 1 

0 0 1 0 𝐴 + 𝐵 + 𝐶  

0 1 0 1 

0 1 1 0 𝐴 + 𝐵 + 𝐶  

1 0 0 0 𝐴 + 𝐵 + 𝐶 

1 0 1 0 𝐴 + 𝐵 + 𝐶  

1 1 0 1 

1 1 1 1 

𝐷 = (𝐴 + 𝐵 + 𝐶 )(𝐴 + 𝐵 + 𝐶 )(𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶 ) 
 


