Outline

- Review
- More Diodes
- Lab Kits
Diode Voltage/Current Characteristics

- **Forward Bias (“On”)**
 - Positive voltage v_D supports large currents
 - Modeled as a battery (0.7 V for offset model)

- **Reverse Bias (“Off”)**
 - Negative voltage \rightarrow no current
 - Modeled as open circuit

- **Reverse-Breakdown**
 - Large negative voltage supports large negative currents
 - Similar operation as for forward bias
Ideal Diode Model

• Two state model
• “On” State
 ▫ Forward operation
 ▫ Diode is a perfect conductor \rightarrow short circuit
• “Off” State
 ▫ Reverse biased
 ▫ No current through diode \rightarrow open circuit

• Useful for “quick and dirty” understanding of a complicated circuit
• Will improve this model to make it more realistic (offset model)
Circuit Analysis with Diodes

• Assume state \{on, off\} for each ideal diode and check if the initial guess was correct
 ▫ \(i_d > 0\) positive for “on” diode
 ▫ \(v_d < 0\) negative for “off” diode
 • These imply a correct guess
 ▫ Otherwise adjust guess and try again

• Exhaustive search is daunting
 ▫ \(2^n\) different combinations for \(n\) diodes
• Will require experience to make correct guess
Ideal Diode Example

- Use the ideal-diode model to analyze the circuit. Start by assuming D_1 is off and D_2 is on.

(a) Circuit diagram
Ideal Diode Example

- D_1 is on \rightarrow short circuit
- D_2 is off \rightarrow open circuit

- Using voltage divider
 - $v_C = 10 \left(\frac{6}{10} \right) = 6 \text{ V}$
 - $v_{D2} = 3 - v_C = 3 - 6 = -3 \text{ V}$
 - Reverse biased \rightarrow “off” \rightarrow correct operation
- D_1 current through series resistance
 - $i_{D1} = \frac{10}{(4+6)k} = \frac{10}{10k} = 1 \text{ mA} > 0$
 - Current flow \rightarrow forward bias \rightarrow “on” \rightarrow correct operation
Offset Diode Model

- (Simple piecewise-linear diode equivalent circuit in book)
- Two state model
- “On” State
 - Forward operation
 - Diode has a fixed voltage across terminals
 - \(v_f = v_{on} = 0.7 \, V \)
- “Off” State
 - Reverse biased
 - No current through diode \(\rightarrow \) short circuit
- More realistic than the ideal model
- Circuit analysis works in the same way as for ideal case
 - Replace “on” diode with 0.7 V battery
Rectifier Circuits

- Convert AC power into DC power
- These are the basis for power supplies and battery chargers
 - E.g. turning the 60 Hz AC wall power into a 9 V DC voltage for use in a radio
Half Wave Rectifier Circuit

- AC source only supplies current to load when the voltage is positive
- The ideal diode has matches the positive halves of the sine wave
- Actual rectifiers have a small voltage loss due to the “on” voltage of real diodes
Half Wave Rectifier as Battery Charger

- Current only flows when V_{in} is greater than V_B
 - Diode is forward biased ("on")
- R is used to limit current into the battery and to avoid destroying the diode
Rectifier with Smoothing Capacitor

- Capacitor gets charged by AC source
- Reverse biased diode does not allow any current from the source
 - Capacitor supplies energy – capacitor discharges energy
 - Discharge causes “ripple” between half wave peaks
Zener Diode

- Diode intended to be operated in breakdown
 - **Constant voltage at breakdown**
- Three state diode
 1. On – 0.7 V forward bias
 2. Off – reverse bias
 3. Breakdown
 v_{BD} reverse breakdown voltage

![Zener Diode Diagram](image)
Voltage-Regulator Circuits

- Regulator – produces a constant output voltage from a variable DC source
 - E.g. a 10-14 V battery (voltage lowers as it discharges) and constant 5 V needed for electronic circuits
Zener Diode Regulator Circuit

- Select Zener $v_{BD} = v_o$ for the desired output voltage
- Since the diode is in reverse orientation $\rightarrow i_D$ cannot be positive
- For $V_{ss} > v_o$
 - Zener diode is reverse bias
 - Operating in breakdown
 - $v_D = -v_{BD} = -v_o$
 - Remember Zener diodes are designed to operate in breakdown
Clipper Circuit

- If first \((D_1, D_2)\) branch conducting
 - A is higher voltage than B
 - \(D_1\) on \(\rightarrow 0.6\) V drop across it
 - \(D_2\) (reverse biased) operating in breakdown \(\rightarrow v_{BD} = 5.4\) V drop across it
 - \(v_{AB} = 0.6 + 5.4 = 6\) V

- If the second \((D_3, D_4)\) branch conducting
 - B is higher voltage than A
 - \(D_4\) on \(\rightarrow 0.6\) V drop across it
 - \(D_3\) (reverse biased) operating in breakdown \(\rightarrow v_{BD} = 8.4\) V drop across it
 - \(v_{BA} = 0.6 + 8.4 = 9\) V, \(v_{AB} = -9\) V
Clipper Circuit

- v_{in} between [6, -9] volts, both paths are not conducting
 - D_1 and D_4 are off

\[v_o = v_{in} \]