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Outline 

• Review 

▫ Stereo 

• Dense Motion Estimation 

• Translational Alignment 

• Optical Flow 
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Stereo Matching 

• Given two more images of the same scene or 
object, compute a representation of its shape 

 

• Common application is generating disparity or 
depth map 

▫ Popularized for games recently by Kinect 

• What are applications? 
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CSE 576, Spring 
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Stereo matching 
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Stereo Matching 

• Given two or more images of the same scene or 

object, compute a representation of its shape 

 

• What are some possible representations? 

▫ depth maps 

▫ volumetric models 

▫ 3D surface models 

▫ planar (or offset) layers 



CSE 576, Spring 
2008 

Stereo matching 
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Stereo Matching 

• What are some possible algorithms? 

▫ match “features” and interpolate 

▫ match edges and interpolate 

▫ match all pixels with windows (coarse-fine) 

▫ use optimization: 

 iterative updating 

 dynamic programming 

 energy minimization (regularization, stochastic) 

 graph algorithms 



Stereo: epipolar geometry 

• Match features along epipolar lines 
 
 
 
 
 
 
 
 

• Rectification:  warping the input images 
(perspective transformation) so that epipolar 
lines are horizontal 
 

CSE 576, Spring 
2008 

Stereo matching 
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viewing ray epipolar plane 

epipolar 
line 



Rectification 

• Project each image onto same plane, which is parallel to 
the epipole 

• Resample lines (and shear/stretch) to place lines in 
correspondence, and minimize distortion 
 

•  
 
 
 
 
 

• [Loop and Zhang, CVPR’99] 
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Rectification 
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Stereo matching 
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BAD! GOOD! 
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Stereo matching 
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Finding correspondences 

• apply feature matching criterion (e.g., 
correlation or Lucas-Kanade) at all pixels 
simultaneously 

• search only over epipolar lines (many fewer 
candidate positions) 
 



CSE 576, Spring 
2008 

Stereo matching 
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Your basic stereo algorithm 

For each epipolar line 

 For each pixel in the left image 

• compare with every pixel on same epipolar line in right image 

• pick pixel with minimum match cost 
Improvement:  match windows 

• This should look familar... 

 



Image registration (revisited) 

• How do we determine correspondences? 

▫ block matching or SSD (sum squared differences) 

 

 

d is the disparity (horizontal motion) 

 

 

 

• How big should the neighborhood be? 

CSE 576, Spring 
2008 

Stereo matching 

11 



CSE 576, Spring 
2008 

Stereo matching 
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Neighborhood size 

• Smaller neighborhood: more details 

• Larger neighborhood:  fewer isolated mistakes 

 

 
 
 
 
 

•         w = 3  w = 20 
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Traditional Stereo Matching 

• Advantages: 
▫ gives detailed surface estimates 
▫ fast algorithms based on moving averages 
▫ sub-pixel disparity estimates and confidence 

• Limitations: 
▫ narrow baseline  noisy estimates 
▫ fails in textureless areas 
▫ gets confused near occlusion boundaries 



CSE 576, Spring 
2008 

Stereo matching 
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Feature-based stereo 

• Match “corner” (interest) points 
 
 
 
 
 

 
 
 

• Interpolate complete solution 
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Stereo matching 
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Data interpolation 

• Given a sparse set of 3D points, how do we 
interpolate to a full 3D surface? 

• Scattered data interpolation [Nielson93] 

• triangulate 

• put onto a grid and fill (use pyramid?) 

• place a kernel function over each data point 

• minimize an energy function 

 

• Lots of more advanced stereo matching options 
and algorithms exist 



CSE 576, Spring 
2008 

Stereo matching 
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Depth Map Results 

 

 
 
 

• Input image   Sum Abs Diff 
 

 

 

 

 

 

• Mean field   Graph cuts 



Dense Motion Estimation 

• Motion is extremely important in vision 

• Biologically: motion indicates what is food and 
when to run away 

▫ We have evolved to be very sensitive to motion 
cues (peripheral vision) 

• Alignment of images and motion estimation is 
widely used in computer vision 

▫ Optical flow 

▫ Motion compensation for video compression 

▫ Image stabilization 

▫ Video summarization 
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Biological Motion 
• Even limited motion information is perceptually 

meaningful 
 
 
 
 
 
 
 
 
 
 
 

• http://www.biomotionlab.ca/Demos/BMLwalker.html 
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Translational Alignment 
• Motion estimation between images requires a error 

metric for comparison 
• Sum of squared differences (SSD) 

▫ 𝐸𝑆𝑆𝐷 𝑢 =  [𝐼1 𝑥𝑖 + 𝑢 − 𝐼0 𝑥𝑖 ]
2 =  𝑒𝑖

2
𝑖𝑖  

 𝑢 = (𝑢, 𝑣) – is a displacement vector (can be subpixel) 
 𝑒𝑖 - residual error 

• Brightness constancy constraint 
▫ Assumption that that corresponding pixels will retain 

the same value in two images 
▫ Objects tend to maintain the perceived brightness 

under varying illumination conditions [Horn 1974] 
• Color images processed by channels and summed or 

converted to colorspace that considers only 
luminance 

19 



SSD Improvements 

• As we have seen many times in class, SSD is the 
simplest approach and can be improved 

• Robust error metrics 
▫ 𝐿1 norm (sum absolute differences) 

 Better outlier resilience  

• Spatially varying weights 
▫ Weighted SSD to weight contribution of each pixel 

during matching 
 Ignore certain parts of the image (e.g. foreground), 

down-weight objects during images stabilization 

• Bias and gain 
▫ Normalize exposure between images 

 Address brightness constancy 
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Correlation  

• Instead of minimizing pixel differences, 
maximize correlation 

• Normalized cross-correlation 

 

 

 

 

 

▫ Normalize by the patch intensities 

▫ Value is between [-1, 1] which makes it easy to use 
results (e.g. threshold to find matching pixels) 
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Optical flow 

 



Problem definition:  optical flow 

• How to estimate pixel motion from image H to image I? 

• Solve pixel correspondence problem 

– given a pixel in H, look for nearby pixels of the same color in I 

Key assumptions 

• color constancy:  a point in H looks the same in I 

– For grayscale images, this is brightness constancy 

• small motion:  points do not move very far 

This is called the optical flow problem 



Optical flow constraints (grayscale images) 

• Let’s look at these constraints more closely 
• brightness constancy:   Q:  what’s the equation? 

• 𝐻(𝑥, 𝑦)  =  𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) 

• small motion:  (u and v are less than 1 pixel) 

– suppose we take the Taylor series expansion of I: 



Optical flow equation 

• Combining these two equations 

In the limit as u and v go to zero, this becomes exact 

 



Optical flow equation 

• Q:  how many unknowns and equations per pixel? 
▫ 𝑢 and 𝑣 are unknown, 1 equation 

Intuitively, what does this constraint mean? 

 
• The component of the flow in the gradient direction is determined 

• The component of the flow parallel to an edge is unknown 

This explains the Barber Pole illusion 

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm 

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm


Aperture problem 

 



Aperture problem 

 



Solving the aperture problem 

• Basic idea:  assume motion field is smooth 
 

• Horn & Schunk:  add smoothness term 
 
 

• Lucas & Kanade:  assume locally constant motion 
▫ pretend the pixel’s neighbors have the same (u,v) 

 

 
• Many other methods exist.  Here’s an overview: 

▫ S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and 
evaluation methodology for optical flow. In Proc. ICCV, 2007  

▫ http://vision.middlebury.edu/flow/  

http://vision.middlebury.edu/flow/


Lucas-Kanade flow 
• How to get more equations for a pixel? 

▫ Basic idea:  impose additional constraints 

 most common is to assume that the flow field is smooth locally 

 one method:  pretend the pixel’s neighbors have the same (u,v) 

 If we use a 5x5 window, that gives us 25 equations per pixel! 



RGB version 
• How to get more equations for a pixel? 

▫ Basic idea:  impose additional constraints 

 most common is to assume that the flow field is smooth locally 

 one method:  pretend the pixel’s neighbors have the same (u,v) 

 If we use a 5x5 window, that gives us 25*3 equations per pixel! 



Lucas-Kanade flow 
Prob:  we have more equations than unknowns 

• The summations are over all pixels in the K x K window 

• This technique was first proposed by Lucas & Kanade (1981) 

Solution:  solve least squares problem 

• minimum least squares solution given by solution (in d) of: 



Conditions for solvability 

• Optimal (u, v) satisfies Lucas-Kanade equation 
 
 
 
 

• When is This Solvable? 
• ATA should be invertible  

• ATA should not be too small due to noise 

– eigenvalues l1 and l2 of ATA should not be too small 

• ATA should be well-conditioned 

–   l1/ l2 should not be too large (l1 = larger eigenvalue) 

 

• Does this look familiar? 
• ATA is the Harris matrix 

 



Observation 

• This is a two image problem BUT 
▫ Can measure sensitivity by just looking at one of the images! 

▫ This tells us which pixels are easy to track, which are hard 

 very useful for feature tracking... 



Errors in Lucas-Kanade 

• What are the potential causes of errors in this 
procedure? 

▫ Suppose ATA is easily invertible 

▫ Suppose there is not much noise in the image 

• When our assumptions are violated 
• Brightness constancy is not satisfied 

• The motion is not small 

• A point does not move like its neighbors 

– window size is too large 

– what is the ideal window size? 



Improving accuracy 

• Recall our small motion assumption 

 

 

• Not exact, need higher order terms to do better 

 

• Results in polynomial root finding problem 

▫ Can be solved using Newton’s method 

 Also known as Newton-Raphson 

• Lucas-Kanade method does a single iteration of 
Newton’s method 

▫ Better results are obtained with more iterations 

1D case 
on board 



Iterative Refinement 

• Iterative Lucas-Kanade Algorithm 
1. Estimate velocity at each pixel by solving Lucas-Kanade equations 

2. Warp H towards I using the estimated flow field 

 - use image warping techniques 

3. Repeat until convergence 

 



Revisiting the small motion assumption 

• Is this motion small enough? 

▫ Probably not—it’s much larger than one pixel (2nd order terms dominate) 

▫ How might we solve this problem? 



Reduce the resolution! 

 



image I image H 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 

 



image I image J 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

Coarse-to-fine optical flow estimation 

run iterative L-K 

run iterative L-K 

warp & upsample 

. 

. 

. 



Optical flow result 

Dewey morph 

http://www.cs.washington.edu/education/courses/576/CurrentQtr/images/alice.avi


Robust methods 

• L-K minimizes a sum-of-squares error metric 

▫ least squares techniques overly sensitive to 
outliers 

quadratic truncated quadratic lorentzian 

Error metrics 



Robust optical flow 

• Robust Horn & Schunk 

 

• Robust Lucas-Kanade  

first image quadratic flow lorentzian flow detected outliers 

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on 

Computer Vision (ICCV), 1993, pp. 231-236 

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf   

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf


Benchmarking optical flow algorithms 

• Middlebury flow page 

▫ http://vision.middlebury.edu/flow/ 

 

http://vision.middlebury.edu/flow/


Discussion:  features vs. flow? 

• Features are better for: 

 

 

• Flow is better for: 



Advanced topics 

• Particles:  combining features and flow 

▫ Peter Sand et al. 

▫ http://rvsn.csail.mit.edu/pv/ 

 

• State-of-the-art feature tracking/SLAM 

▫ Georg Klein et al. 

▫ http://www.robots.ox.ac.uk/~gk/ 

 

http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/

