Outline

- Review
 - Feature-Based Alignment
 - Image Warping
 - 2D Alignment Using Least Squares
- Mosaics
- Panoramas
Feature-Based Alignment

- After detecting and matching features, may want to verify if the matches are geometrically consistent
 - Can feature displacements be described by 2D and 3D geometric transformations

- Provides
 - Geometric registration
 - 2D/3D mapping between images
 - Pose estimation
 - Camera position with respect to a known 3D scene/object
 - Intrinsic camera calibration
 - Find internal parameters of cameras (e.g. focal length, radial distortion)
Image Warping

- image filtering: change range of image
 - \(g(x) = h(f(x)) \)

- image warping: change domain of image
 - \(g(x) = f(h(x)) \)
Image Warping

- image filtering: change range of image
 \[g(x) = h(f(x)) \]

- image warping: change domain of image
 \[g(x) = f(h(x)) \]
Parametric (global) warping

- Examples of parametric warps:

 - translation
 - rotation
 - aspect
 - affine
 - perspective
 - cylindrical
2D coordinate transformations

- translation: \(x' = x + t \), \(x = (x, y) \)
- rotation: \(x' = R x + t \)
- similarity: \(x' = s R x + t \)
- affine: \(x' = A x + t \)
- perspective: \(x' \approx H x \) \(x = (x, y, 1) \)
 (+ \(x \) is a **homogeneous** coordinate)

- These all form a nested **group** (closed w/ inv.)
Image Warping

- Given a coordinate transform $x' = h(x)$ and a source image $f(x)$, how do we compute a transformed image $g(x') = f(h(x))$?
Forward Warping

- Send each pixel $f(x)$ to its corresponding location $x' = h(x)$ in $g(x')$

- What if pixel lands “between” two pixels?
Forward Warping

- Send each pixel $f(x)$ to its corresponding location $x' = h(x)$ in $g(x')$

- What if pixel lands “between” two pixels?
- Answer: add “contribution” to several pixels, normalize later (splatting)

- See griddata.m
Inverse Warping

• Get each pixel \(g(x') \) from its corresponding location \(x = h^{-1}(x') \) in \(f(x) \)

• What if pixel comes from “between” two pixels?
Inverse Warping

- Get each pixel $g(x')$ from its corresponding location $x = h^{-1}(x')$ in $f(x)$

- What if pixel comes from “between” two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

- See interp2.m
Forward vs. Inverse Warping

- Which type of warping is better?

- Usually inverse warping is preferred
 - It eliminates holes
 - However, it requires an invertible warp function
 - Not always possible
Least Squares Alignment

• Given a set of matched features \{ (x_i, x'_i) \}, minimize sum of squared residual error
 \[E_{LS} = \sum_i \| r_i \|^2 = \sum_i \| f (x_i; p) - x'_i \|^2 \]
 * \(f (x_i; p) \) - is the predicted location based on the transformation \(p \)

• The unknowns are the parameters \(p \)
 ▫ Need to have a model for transformation
 ▫ Estimate the parameters based on matched features
Linear Least Squares Alignment

- Many useful motion models have a linear relationship between motion and parameters p
 - $\Delta x = x' - x = J(x)p$
 - $J = \frac{\partial f}{\partial p}$ - the Jacobian of the transform f with respect to the motion parameters p
- Linear least squares
 - $E_{LLS} = \sum_i \|J(x_i)p - \Delta x_i\|^2 = p^TAp - 2p^Tb + c$
 - Quadratic form
- The minimum is found by solving the normal equations
 - $Ap = b$
 - $A = \sum_i J^T(x_i)J(x_i)$ – Hessian matrix
 - $b = \sum_i J^T(x_i)\Delta x_i$
 - Gives the LLS estimate for the motion parameters
Jacobians of 2D Transformations

<table>
<thead>
<tr>
<th>Transform</th>
<th>Matrix</th>
<th>Parameters p</th>
<th>Jacobian J</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \end{bmatrix}$</td>
<td>(t_x, t_y)</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Euclidean</td>
<td>$\begin{bmatrix} c_\theta & -s_\theta & t_x \ s_\theta & c_\theta & t_y \end{bmatrix}$</td>
<td>(t_x, t_y, θ)</td>
<td>$\begin{bmatrix} 1 & 0 & -s_\theta x - c_\theta y \ 0 & 1 & c_\theta x - s_\theta y \end{bmatrix}$</td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} 1 + a & -b & t_x \ b & 1 + a & t_y \end{bmatrix}$</td>
<td>(t_x, t_y, a, b)</td>
<td>$\begin{bmatrix} 1 & 0 & x & -y \ 0 & 1 & y & x \end{bmatrix}$</td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} 1 + a_{00} & a_{01} & t_x \ a_{10} & 1 + a_{11} & t_y \end{bmatrix}$</td>
<td>$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$</td>
<td>$\begin{bmatrix} 1 & 0 & x & y & 0 & 0 \ 0 & 1 & 0 & 0 & x & y \end{bmatrix}$</td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} 1 + h_{00} & h_{01} & h_{02} \ h_{10} & 1 + h_{11} & h_{12} \ h_{20} & h_{21} & 1 \end{bmatrix}$</td>
<td>$(h_{00}, h_{01}, \ldots, h_{21})$</td>
<td>(see Section 6.1.3)</td>
</tr>
</tbody>
</table>

Table 6.1 Jacobians of the 2D coordinate transformations $x' = f(x; p)$ shown in Table 2.1, where we have re-parameterized the motions so that they are identity for $p = 0$.
Improving Motion Estimates

- A number of techniques can improve upon linear least squares
- Uncertainty weighting
 - Weight the matches based certainty of the match – texture in the match region
- Non-linear least squares
 - Iterative algorithm to guess parameters and iteratively improve guess
- Robust least squares
 - Explicitly handle outliers (bad matches) – don’t use L2 norm
- RANSAC
 - Randomly select subset of corresponding points, compute initial estimate of p, count the inliers from all the other correspondences, good match has many inliers
Image Mosaics

Goal: Stitch together several images into a seamless composite
Motion models

Translation

Affine

Perspective

3D rotation

2 unknowns

6 unknowns

8 unknowns

3 unknowns
Plane perspective mosaics

- 8-parameter generalization of affine motion
 - works for pure rotation or planar surfaces

- Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively
Image warping with homographies
Rotational mosaics

- Directly optimize rotation and focal length
- Advantages:
 - ability to build full-view panoramas
 - easier to control interactively
 - more stable and accurate estimates
3D → 2D Perspective Projection

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix}
= \begin{bmatrix}
R
\end{bmatrix}_{3 \times 3}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
+ t
\]

\[
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix}
\sim
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix}
= \begin{bmatrix}
f & 0 & u_c \\
0 & f & v_c \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix}
\]

\[(X_c,Y_c,Z_c)\]
Rotational mosaic

- Projection equations

1. Project from image to 3D ray
 - \((x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)\)

2. Rotate the ray by camera motion
 - \((x_1, y_1, z_1) = R_{01} (x_0, y_0, z_0)\)

3. Project back into new (source) image
 - \((u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)\)
Image reprojection

- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - The mosaic is formed on this plane
Image Mosaics (stitching)

- Blend together several overlapping images into one seamless *mosaic* (composite)
 - [Szeliski & Shum, SIGGRAPH’97]
 - [Szeliski, FnT CVCG, 2006]
Mosaics for Video Coding

- Convert masked images into a background sprite for content-based coding
Establishing correspondences

1. Direct method:
 ▫ Use generalization of affine motion model
 [Szeliski & Shum ’97]

2. Feature-based method
 ▫ Extract features, match, find consistent inliers
 ▫ Compute R from correspondences
 (absolute orientation)
Stitching demo
Panoramas

- What if you want a 360° field of view?

mosaic Projection Cylinder
Cylindrical panoramas

- Steps
 - Reproject each image onto a cylinder
 - Blend
 - Output the resulting mosaic
Cylindrical Panoramas

- Map image to cylindrical or spherical coordinates
 - need *known* focal length

Image 384x300 \(f = 180 \) (pixels) \(f = 280 \) \(f = 380 \)
Cylindrical projection

Map 3D point \((X,Y,Z)\) onto cylinder

\[
(x, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)
\]

- Convert to cylindrical coordinates

 \[
 (\sin \theta, h, \cos \theta) = (\hat{x}, \hat{y}, \hat{z})
 \]

- Convert to cylindrical image coordinates

 \[
 (\tilde{x}, \tilde{y}) = (s \theta, sh) + (\tilde{x}_c, \tilde{y}_c)
 \]

 - \(s\) defines size of the final image
Cylindrical warping

- Given focal length f and image center (x_c, y_c)

\[
\begin{align*}
\theta &= \frac{(x_{cyl} - x_c)}{f} \\
h &= \frac{(y_{cyl} - y_c)}{f} \\
\hat{x} &= \sin \theta \\
\hat{y} &= h \\
\hat{z} &= \cos \theta \\
x &= \frac{f \hat{x}}{\hat{z}} + x_c \\
y &= \frac{f \hat{y}}{\hat{z}} + y_c
\end{align*}
\]
Spherical warping

- Given focal length f and image center (x_c, y_c)

\[\theta = \frac{(x_{cyl} - x_c)}{f} \]
\[\varphi = \frac{(y_{cyl} - y_c)}{f} \]
\[\hat{x} = \sin \theta \cos \varphi \]
\[\hat{y} = \sin \varphi \]
\[\hat{z} = \cos \theta \cos \varphi \]
\[x = f\hat{x}/\hat{z} + x_c \]
\[y = f\hat{y}/\hat{z} + y_c \]
3D rotation

- Rotate image before placing on unrolled sphere

\[
\begin{align*}
\theta &= \frac{(x_{cyl} - x_c)}{f} \\
\varphi &= \frac{(y_{cyl} - y_c)}{f} \\
\hat{x} &= \sin \theta \cos \varphi \\
\hat{y} &= \sin \varphi \\
\hat{z} &= \cos \theta \cos \varphi \\
x &= f \frac{\hat{x}}{\hat{z}} + x_c \\
y &= f \frac{\hat{y}}{\hat{z}} + y_c \\
p &= Rp
\end{align*}
\]
Distortion Correction

- Radial distortion
 - Correct for “bending” in wide field of view lenses

- Fisheye lens
 - Extreme “bending” in ultra-wide fields of view

Adapted from R. Szeliski
Image Stitching

1. Align the images over each other
 - camera pan ↔ translation on cylinder
2. Blend the images together
Image stitching steps

1. Take pictures on a tripod (or handheld)
2. Warp images to spherical coordinates
3. Extract features
4. Align neighboring pairs using RANSAC
5. Write out list of neighboring translations
6. Correct for drift
7. Read in warped images and blend them
8. Crop the result and import into a viewer
Matching features

What do we do about the “bad” matches?
RAndom SAmple Consensus

Select *one* match, count *inliers*
RAndom SAmple Consensus

Select one match, count inliers
Least squares fit

Find “average” translation vector
Assembling the panorama

- Stitch pairs together, blend, then crop
Problem: Drift

- Error accumulation
 - small (vertical) errors accumulate over time
 - apply correction so that sum = 0 (for 360° pan.)
Problem: Drift

Solution

- add another copy of first image at the end
- this gives a constraint: $y_n = y_1$
- there are a bunch of ways to solve this problem
 - add displacement of $(y_1 - y_n)/(n - 1)$ to each image after the first
 - compute a global warp: $y' = y + ax$
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as “bundle adjustment”
Full-view Panorama
Texture Mapped Model
Global alignment

- Register *all* pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- *Infer* overlaps based on previous matches (incremental)
- Optionally *discover* which images overlap other images using feature selection (RANSAC)
Recognizing Panoramas

[Brown & Lowe, ICCV’03]
Finding the panoramas
Finding the panoramas
Finding the panoramas
Finding the panoramas
Fully automated 2D stitching

• Free copy from Microsoft Essentials
Final thought: What is a “panorama”?

- Tracking a subject
 - Panorama

- Repeated (best) shots
 - Photo Fuse

- Multiple exposures
 - Photo Fuse

- “Infer” what photographer wants?