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Outline 

• Review 

▫ Canny Edge Detector 

▫ Hough Transform 

• Feature-Based Alignment 

• Image Warping 

• 2D Alignment Using Least Squares 
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Quantifying Performance 
• Confusion matrix-based metrics 

▫ Binary {1,0} classification tasks 
 
 
 
 
 
 

 
 

• True positives (TP) - # correct 
matches 

• False negatives (FN) - # of 
missed matches 

• False positives (FP) - # of 
incorrect matches 

• True negatives (TN) - # of non-
matches that are correctly 
rejected 

• A wide range of metrics can be 
defined 
 

• True positive rate (TPR) 
(sensitivity) 

▫ 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=
𝑇𝑃

𝑃
 

▫ Document retrieval  recall – 
fraction of relevant documents 
found 

• False positive rate (FPR) 

▫ 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=
𝐹𝑃

𝑁
 

• Positive predicted value (PPV) 

▫ 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃′
 

▫ Document retrieval  
precision – number of relevant 
documents are returned  

• Accuracy (ACC) 

▫ 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
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Receiver Operating Characteristic (ROC) 

• Evaluate matching performance based on threshold 
▫ Examine all thresholds 𝜃 to map out performance 

curve 
• Best performance in upper left corner 

▫ Area under the curve (AUC) is a ROC performance metric 
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Edges 
• 2D point features only provide a limited number of “good” 

locations for matching 
• Edges are plentiful and carry semantic significance 

 
• Edges detected by gradient – slope and direction  

▫ 𝐽 𝑥 = 𝛻𝐼 𝑥 =
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦
(𝑥) 

 Smooth with Gaussian kernel before computation 

▫ 𝐽𝜎 𝑥 = 𝛻 𝐺𝜎 𝑥 ∗ 𝐼(𝑥) = 𝛻 𝐺𝜎 𝑥 ∗ 𝐼 𝑥  

 𝛻𝐺𝜎 𝑥 =
𝜕𝐺𝜎

𝜕𝑥
,
𝜕𝐼𝐺𝜎

𝜕𝑦
𝑥 = −𝑥,−𝑦

1

𝜎3
exp⁡ −

𝑥2+𝑦2

2𝜎2
 

• Sharper edges obtained by Laplacian (2nd derivative) 

▫ 𝑆𝜎 𝑥 = 𝛻 ∙ 𝐽𝜎 𝑥 = 𝛻2𝐺𝜎 𝑥 ∗ 𝐼 𝑥  
▫ Laplacian of Gaussian (LoG) kernel 

 𝛻2𝐺𝜎 𝑥 =
1

𝜎3
2 −

𝑥2+𝑦2

2𝜎2
exp⁡ −

𝑥2+𝑦2

2𝜎2
 

 Can be approximated with difference of Gaussian (DoG) kernel 
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Canny Edge Detection 
• Popular edge detection 

algorithm that produces a thin 
lines 

• 1) Smooth with Gaussian 
kernel 

• 2) Compute gradient 

▫ Determine magnitude and 
orientation (45 degree 8-
connected neighborhood) 

• 3) Use non-maximal 
suppression to get thin edges 

▫ Compare edge value to 
neighbor edgels in gradient 
direction 

 

 

 

 

 

 

• 4) Use hysteresis thresholding 
to prevent streaking 

▫ High threshold to detect edge 
pixel, low threshold to trace 
the edge 
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𝑝 
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𝑝− 
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𝑡𝑙  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm 

object Sobel Canny 



Canny Edge Detection Results 

• Original image 

• Thresholded gradient of smoothed image (thick lines) 

• Marr-Hildreth algorithm 

• Canny algorithm (low noise, thin lines) 
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Lines 

• Edges and curves make up contours of natural 
objects 

▫ Man-made world uses straight lines 

 

• 3D lines can be used to determine vanishing 
points and do camera calibration 

• Estimate pose of 3D scene 
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Hough Transform 

• Lines in the real-world can be broken, collinear, or 
occluded 
▫ Combine these collinear line segments into a larger 

extended line 

• Hough transform creates a parameter space for the 
line 
▫ Every pixel votes for a family of lines passing through 

it 
▫ Potential lines are those bins (accumulator cells) with 

high count 

• Uses global rather than local information 
 

• See hough.m, radon.m  in Matlab 
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Hough Transform Insight 
• Want to search for all points 

that lie on a line 
▫ This is a large search (take 

two points and count the 
number of edgels) 

• Infinite lines pass through a 
single point (𝑥𝑖 , 𝑦𝑖) 

▫ 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 
 Select any 𝑎, 𝑏 

• Reparameterize  

▫ 𝑏 = −𝑥𝑖𝑎 + 𝑦𝑖  
▫ 𝑎𝑏-space representation has 

single line defined by point 
(𝑥𝑖 , 𝑦𝑖) 

 

 

 

 

 

 

 

 

• All points on a line will 
intersect in parameter space 
▫ Divide parameter space into 

cells/bins and accumulate 
votes across all 𝑎 and 𝑏 values 
for a particular point 

▫ Cells with high count are 
indicative of many points 
voting for the same line 
parameters (𝑎, 𝑏) 
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Hough Transform in Practice 

• Use a polar parameterization of a line – why? 

 

 

 

 

 

• After finding bins of high count, need to verify edge 

▫ Find the extent of the edge (edges do not go across the 
whole image) 

 

• This technique can be extended to other shapes like 
circles 
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Hough Transform Example I 
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Hough Transform Example II 

 

13 

http://www.mathworks.com/help/images/analyzing-images.html 



Feature-Based Alignment 
• After detecting and matching features, may want to verify if the 

matches are geometrically consistent 
▫ Can feature displacements be described by 2D and 3D geometric 

transformations 
 
 
 
 
 
 

 
• Provides 
• Geometric registration 

▫ 2D/3D mapping between images 
• Pose estimation 

▫ Camera position with respect to a known 3D scene/object 
• Intrinsic camera calibration 

▫ Find internal parameters of cameras (e.g. focal length, radial distortion) 
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Richard Szeliski Image Stitching 
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Motion models 

• What happens when we take two images with a 
camera and try to align them? 

• translation? 

• rotation? 

• scale? 

• affine? 

• perspective? 

Richard Szeliski 



Richard Szeliski Image Stitching 
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Image Warping 

• image filtering: change range of image 

• g(x) = h(f(x)) 

 

 

 

• image warping: change domain of image 
• g(x) = f(h(x)) 
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Richard Szeliski Image Stitching 
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Image Warping 

• image filtering: change range of image 
• g(x) = h(f(x)) 

 
 

 

• image warping: change domain of image 

• g(x) = f(h(x)) 
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Richard Szeliski Image Stitching 
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Parametric (global) warping 

• Examples of parametric warps: 

translation rotation aspect 

affine 
perspective 

cylindrical 



Richard Szeliski Image Stitching 
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2D coordinate transformations 

• translation: x’ = x + t   x = (x,y) 

• rotation:  x’ = R x + t 

• similarity: x’ = s R x + t 

• affine:  x’ = A x + t 

• perspective: x’  H x   x = (x,y,1) 
 (x is a homogeneous coordinate) 

• These all form a nested group (closed w/ inv.) 



Richard Szeliski Image Stitching 
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Image Warping 

• Given a coordinate transform x’ = h(x) and a 
source image f(x), how do we compute a 
transformed image g(x’) = f(h(x))? 

f(x) g(x’) 
x x’ 

h(x) 



Richard Szeliski Image Stitching 

21 

Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel lands “between” two pixels? 



Richard Szeliski Image Stitching 
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Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel lands “between” two pixels? 

• Answer: add “contribution” to several pixels, 

normalize later (splatting) 

• See griddata.m  



Richard Szeliski Image Stitching 
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Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

f(x) g(x’) 
x x’ 

h(x) 

• What if pixel comes from “between” two pixels? 



Richard Szeliski Image Stitching 
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Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

• What if pixel comes from “between” two pixels? 

• Answer: resample color value from 

interpolated (prefiltered) source image 

• See interp2.m  

f(x) g(x’) 
x x’ 



Richard Szeliski Image Stitching 
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Interpolation 

• Possible interpolation filters: 

▫ nearest neighbor 

▫ bilinear 

▫ bicubic (interpolating) 

▫ sinc / FIR 

• Needed to prevent “jaggies” 
 and “texture crawl” (see demo) 



Forward vs. Inverse Warping 

• Which type of warping is better? 

 

• Usually inverse warping is preferred 

▫ It eliminates holes 

▫ However, it requires an invertible warp function 

 Not always possible 
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Alyosha Efros 



Least Squares Alignment 

• Given a set of matched features 𝑥𝑖 , 𝑥𝑖
′ , 

minimize sum of squared residual error 

▫ 𝐸𝐿𝑆 =  𝑟𝑖
2 =𝑖  𝑓 𝑥𝑖; 𝑝 − 𝑥𝑖

′ 2
𝑖  

 𝑓 𝑥𝑖; 𝑝  - is the predicted location based on the 
transformation 𝑝 

 

• The unknowns are the parameters 𝑝 

▫ Need to have a model for transformation 

▫ Estimate the parameters based on matched 
features 
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Linear Least Squares Alignment 
• Many useful motion models have a linear 

relationship between motion and parameters 𝑝 

▫ Δ𝑥 = 𝑥′ − 𝑥 = 𝐽 𝑥 𝑝 

 𝐽 =
𝜕𝑓

𝜕𝑝
 - the Jacobian of the transform 𝑓 with respect to 

the motion parameters 𝑝 

• Linear least squares 

▫ 𝐸𝐿𝐿𝑆 =  𝐽 𝑥𝑖 𝑝 − Δ𝑥𝑖
2 =𝑖 𝑝𝑇𝐴𝑝 − 2𝑝𝑇𝑏 + 𝑐 

 Quadratic form 

• The minimum is found by solving the normal 
equations 

▫ 𝐴𝑝 = 𝑏 
 𝐴 =  𝐽𝑇(𝑖 𝑥𝑖)𝐽(𝑥𝑖) – Hessian matrix 

 𝑏 =  𝐽𝑇(𝑖 𝑥𝑖)Δ𝑥𝑖 
▫ Gives the LLS estimate for the motion parameters 
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Jacobians of 2D Transformations 
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Improving Motion Estimates 
• A number of techniques can improve upon linear least 

squares 
• Uncertainty weighting  

▫ Weight the matches based certainty of the match – texture 
in the match region 

• Non-linear least squares 
▫ Iterative algorithm to guess parameters and iteratively 

improve guess 

• Robust least squares 
▫ Explicitly handle outliers (bad matches) – don’t use L2 

norm 

• RANSAC 
▫ Randomly select subset of corresponding points, compute 

initial estimate of 𝑝, count the inliers from all the other 
correspondences, good match has many inliers  
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