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- Feature-Based Alignment
- Image Warping
- 2D Alignment Using Least Squares
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Quantifying Performance

» Confusion matrix-based metrics A wide range of metrics can be

> Binary {1,0} classification tasks
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True positives (TP) - # correct
matches

False negatives (FN) - # of
missed matches

False positives (FP) - # of
incorrect matches

True negatives (TN) - # of non-
matches that are correctly
rejected

defined

True positive rate (TPR)
(sensitivity)
- TPR=—=—
TP+FN P
= Document retrieval = recall —
fraction of relevant documents
found

False positive rate (FPR)

o FPR=——="2

.. FP+7:N N
Positive predicted value (PPV)
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= Document retrieval 2>
recision — number of relevant
ocuments are returned

Accuracy (ACC)

TP+TN
= ACC =
P+N
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Receiver Operating Characteristic (ROC)

- Evaluate matching performance based on threshold
= Examine all thresholds 6 to map out performance
curve
- Best performance in upper left corner
= Area under the curve (AUC) is a ROC performance metric
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- 2D point features only provide a ) limited number of ‘eood”
locations for matching

- Edges are plentiful and carry semantic significance

- Edges detected by gradient — slope and direction

- JGO) =TI = (5, 2) (1)

ox’ 0y
- Smooth with Gaussian kernel before computation

@ Jo(x) = VIGs(x) x I(x)] = V[Gg(x)] * I(x)

9G, 3IG, 1 2 +y?
© VGy(x) = (ax, E,y)(ac)—[ x, =yl —exp (—ng)

- Sharper edges obtained by Laplacian (274 derivative)
° Se(x) =V - J5(x) = [V2Gs(x) * 1 (x)]

= Laplacian of Gaussian (LoG) kernel

- V2G,(x) = %(2 — x2+y2) exp (— x2+y2)

202 202
- Can be approximated with difference of Gaussian (DoG) kernel



Canny Edge Detection

- Popular edge detection + 3) Use non-maximal
algorithm that produces a thin suppression to get thin edges
lines > Compare edge value to

- 1) Smooth with Gaussian neighbor edgels in gradient
kernel direction

- 2) Compute gradient f
> Determine magnitude and

orientation (45 degree 8- P4

connected neighborhood) P th

-
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| A .
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» 4) Use hysteresis thresholding
to prevent streaking

= High threshold to detect edge

pixel, low threshold to trace

object Sobel Canny the edge
http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm




+ Original image

e Marr-Hildreth algorithm
« Canny algorithm (low noise, thin lines)




- Edges and curves make up contours of natural
objects
» Man-made world uses straight lines

- 3D lines can be used to determine vanishing
points and do camera calibration

- Estimate pose of 3D scene



Hough Transform

 Lines in the real-world can be broken, collinear, or
occluded

= Combine these collinear line segments into a larger
extended line

- Hough transform creates a parameter space for the
line
= Every pixel votes for a family of lines passing through
it
= Potential lines are those bins (accumulator cells) with
high count

- Uses global rather than local information

- See hough.m, radon.m in Matlab
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Hough Transform Insight o o

(b) Parameter
space.

- Want to search for all points : _ b .
that lie on a line \
= This is a large search (take b=-xaty

number of edgels) T /
- Infinite lines pass through a \ 00 \
single point (x;, y;) \ -
oy =ax;+b *
- Select any a, b
- Reparameterize
o h= —X;a + Vi
= ab-space representation has
single line defined by point

s (i, yi) :
two points and count the \ \I

- All points on a line will
intersect in parameter space

= Divide parameter space into
cells/bins and accumulate
votes across all a and b values

(xi, y1) for a particular point

= Cells with high count are
indicative of many points
voting for the same line
parameters (a, b)
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Hough Transform in Practice

- Use a polar parameterization of a line — why?

|||||||
““““““““““““““““““““

x;cosf + y;sinfl = p

Y
P P

- After finding bins of high count, need to verify edge

= Find the extent of the edge (edges do not go across the
whole image)

- This technique can be extended to other shapes like
circles
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Hough Transform Example |

Input image

-90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80
0

Hough space Top edges
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Hough Transform Example Il

-300
-200

-100

100
200

300

-80 -60 -40  -20 0 20 40 60 80
o (degrees)

http://www.mathworks.com/help/images/analyzing-images.html
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Feature-Based Alignment

- After detecting and matching features, may want to verify if the
matches are geometrically consistent

= Can feature displacements be described by 2D and 3D geometric
transformations

A —
g /—m projective
translation
—r
Euclidean /
\—/ affine -
X

Figure 6.2 Basic set of 2D planar transformations

Provides

Geometric registration

= 2D/3D mapping between images

Pose estimation

= Camera position with respect to a known 3D scene/object

Intrinsic camera calibration

> Find internal parameters of cameras (e.g. focal length, radial distortion)



Motion models .

- What happens when we take two images with a
camera and try to align them?

translation?
rotation?
scale?

- affine?
perspective?

Richard Szeliski



Image Stitching  Richard Szeliski

Image Warping

- image filtering: change range of image

« g(x) = h(f(x))
f/‘\/ N eu f/\/

- Image warping: change domain of image

> g(x) = f(h(x))

f f
N A N
X

X

X
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Image Warping

- image filtering: change range of image

- Image warping: change domain of image
g 9C) =f(R))
Yy g e

— s h —




Image Stitching  Richard Szeliski

Parametric (global) warping

- Examples of parametric warps:

affine perspective cylindrical
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Richard Szeliski

2D coordinate transformations

 translation: x’=x+1t x = (xy)

- rotation: x’=Rx+t

- similarity: x’=sRx+1t

- affine: x’=Ax+t

- perspective: x’=zH Xx x = (x,y,1)

(x is a homogeneous coordinate)
- These all form a nested group (closed w/ inv.)
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Image Warping

» Given a coordinate transform x’ = h(x) and a
source image flx), how do we compute a
transformed image g(x’) = flh(x))?
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Forward Warping .

- Send each pixel f{x) to its corresponding
location x’ = h(x) in g(x’)

« What if pixel lands “between” two pixels?




Forward Warping

- Send each pixel flx) to its corresponding
location x’ = h(x) in g(x’)

« What if pixel lands “between” two pixels?

* Answer: add “contribution” to several pixels,
normalize later (splatting)

e See griddata.m
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Inverse Warping

- Get each pixel g(x’) from its corresponding
location x = h(x’) in_f{x)

 What if pixel comes from “between” two pixels?




Inverse Warping

- Get each pixel g(x’) from its corresponding
location x = h(x’) in_f{x)

 What if pixel comes from “between” two pixels?

« Answer: resample color value from
Interpolated (prefiltered) source image

e See interp2.m

s
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Image Stitching  Richard Szeliski

Interpolation

- Possible interpolation filters:
> nearest neighbor
> bilinear
= bicubic (interpolating)
> sinc / FIR |
- Needed to prevent “jaggies
and “texture crawl” (see demo)




Forward vs. Inverse Warping
- Which type of warping is better?
- Usually inverse warping is preferred

= It eliminates holes

= However, it requires an invertible warp function
- Not always possible

Alyosha Efros
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Least Squares Alignment

- Given a set of matched features {(x;, x;)},
minimize sum of squared residual error
° Ers = Xillnill? =2l f CGeis p) — 112
* f(x;; p) - is the predicted location based on the
transformation p

- The unknowns are the parameters p
= Need to have a model for transformation

= Estimate the parameters based on matched
features
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Linear Least Squares Alignment

- Many useful motion models have a linear
relationship between motion and parameters p
s Ax =x"—x=J(x)p
- ] = Z—;; - the Jacobian of the transform f with respect to
the motion parameters p
- Linear least squares
* Erps = Xl (x))p — Ax;||* =p"Ap — 2p"b + ¢
* Quadratic form
» The minimum is found by solving the normal

equations

s Ap = b
- A=Y,J"(x)J(x;) — Hessian matrix
© b =3%;]"(x)Ax;

= Gives the LLS estimate for the motion parameters



Jacobians of 2D Transformations

Transform Matrix Parameters p Jacobian J
10 4, (10
translation 0 1 1y (te,ty) 0 1
co —Sp tr [ 1 —Spar — CoY
Euclidean so  co (tz,ty.0) 0 1 cor—sgy
I+a —b t; [ 1 0 = —y
similarity b 1+a t, (te,ty,a,b) 0 1 y
1+ ago aoi tr 1 0 =x Y 0 0
affine aio 1+an ty (tz, ty. aoo, ao1, a1, a11) 01 0 0 = y
[ 1+hoo  hoi hoz2 -‘
h1o 14+ hi1r hie
projective hoo hoq 1 (hoo. hot.. ... ha1) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations ' = f(a; p) shown in Table 2.1,
where we have re-parameterized the motions so that they are identity for p = 0.



.

Improving Motion Estimates

- A number of techniques can improve upon linear least
squares
Uncertainty weighting

> Weight the matches based certainty of the match — texture
in the match region

Non-linear least squares

= Iterative algorithm to guess parameters and iteratively
improve guess

Robust least squares

= Explicitly handle outliers (bad matches) — don’t use L2
norm

RANSAC

- Randomly select subset of corresponding points, compute
initial estimate of p, count the inliers from all the other
correspondences, good match has many inliers



