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Feature Detection and Matching

- Essential component of
modern computer vision
= E.g. alignment for image
stitching, correspondences
for 3D model construction,
object detection, stereo, etc.

» Need to establish some
features that can be detected
and matched

> Points and patches
- Edges
= Lines
« Which features are best?
= Depends on the application
= Want features that are

robust
D it d istent Figured4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
escrlp lYe and consisten match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) (©) 2005
(can readily detect) IEEE; (b) region-like interest operators (Matas, Chum, Urban er al. 2004) © 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) (©) 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) (©) 2008 ACM.

(© (d)
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Points and Patches

- Maybe most generally useful feature for matching

» E.g. Camera pose estimation, dense stereo, image
stitching, video stabilization, tracking

= Object detection/recognition
- Key advantages:

= Matching is possible even in the presence of clutter
(occlusion)

= and large scale and orientation changes
- 2 General techniques

= Detect and track — initialize features in a single image
and look for them close by in next image (video)

= Detect and match — find features in all images
separately and match based on local appearance
similarity (large motion or appearance change)
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Keypoint Pipeline

- Feature detection (extraction)

= Search for image locations that are likely to be
matched in other images

- Feature description

> Regions around a keypoint are represented as a
compact and stable descriptor

- Feature matching

= Descriptors are compared between images
efficiently

- Feature tracking
= Search for descriptors in small neighborhood
= Alternative to matching stage best suited for video



Feature Detectors

- Must determine image locations that can be
reliably located in another image

Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.
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Comparison of Image Patches

- Textureless patches

= Nearly impossible to localize
and match

- Sky region “matches” to all
other sky areas

- Edge patches
= Large contrast change
(gradient) ‘ ‘
= Suffer from aperture problem

- Only possible to align
patches along the direction
normal the edge direction

- Corner patches

> Contrast change in at least
two different orientations

o Easiest to localize




Aperture Problem

(a) (b) ()

Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like™) flow;
(b) classic aperture problem (barber-pole illusion); (¢) textureless region. The two images I
(yellow) and I; (red) are overlaid. The red vector u indicates the displacement between the
patch centers and the w(x;) weighting function (patch window) is shown as a dark circle.

 Only consider a small window of an image
= Local view does not give global structure — causes ambiguity
Corners have strong matches

Edges can have many potential matches
= Constrained upon a line

Textureless regions provide no useful information
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WSSD Matching Criterion

- Weighted summed squared difference
* Ewssp(W) = X;w(xy) [I; (x; — ) — Ip(x)]°
- 1,1, - two image patches to compare
- u = (u,v) — displacement vector
- w(x) - spatial weighting function
- Normally we do not know the image locations to
perform the match
= Calculate the autocorrelation in small
displacements of a single image

- Gives a measure of stability of patch — how well can
a patch be distinguished

* Egc(Au) = Z;waxp) o (x; — Au) — Io(x;)]?



Image Patch Autocorrelation

Eqjc(Au) = Z w(x;) [I,(x; — Aw) — I,(x;)]? * Example autocorrelation

B Z w(x) [VIp(x;) - Aul?

i
= Au’ AAu
- VI,(x;) -image gradient
> We have seen how to
compute this

« A — autocorrelation matrix

2
A=W*[Ix ley]

2

Iylx Iy

> Compute gradient images and
convolve with weight function

= Also known as second
moment matrix



Image Autocorrelation Il

(b)

(c)

(d)

Figure 4.5 Three auto-correlation surfaces Eac(Awu) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of

Au.




Image Autocorrelation Il

- The matrix A provides a
measure of uncertainty in
location of the patch

- Do eigenvalue decomposition

> Get eigenvalues and
eigenvector directions

- Good features have both
eigenvalues large
> Indicates gradients in

orthogonal directions (e.g. a
corner)

- Uncertainty ellipse

direction of the
fastest change

direction of the
slowest change

- Many different methods to
quantify uncertainty
- Easiest: look for maxima in
the smaller eigenvalue [Shi
and Tomasi]

o det(A) — a trace(4)? [Harris]
= See book for other methods



Basic Feature Detection Algorithm

1. Compute the horizontal and vertical derivatives of the image I, and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.
4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature

point locations.

Algorithm 4.1 Outline of a basic feature detection algorithm.



Interest Point Detection

The correlation matrix gives a measure of edges in a patch
Corner
= Gradient directions

11 10
e
= Correlation matrix
1 0
A X 0 1
Edge

= Gradient directions
1
H
= Correlation matrix
1 0
A X [0 0]
Constant
= Gradient directions

ol
= Correlation matrix
c A [g g




Improving Feature Detection

« Corners may produce more than one strong
response (due to neighborhood)

= Estimate corner with subpixel accuracy —
use edge tangents

> Non-maximal suppression — only select
features that are far enough away

«  Create more uniform distribution — can
be done through blocking as well

« Scale invariance

= Use an image pyramid — useful for images
of same scale

= Compute Hessian of difference of Gaussian
(DoG) image
= Analyze scale space [SIFT — Lowe 2004]
- Rotational invariance

> Need to estimate the orientation of the
feature by examining gradient information

« Affine invariance

> Closer to apgearance change due to
perspective distortion

= Fit ellipse to autocorrelation matrix and use
it as an affine coordinate frame

> Maximally stable region (MSER) [Matas
2004] — regions that do not change much
through thresholding

(a) Strongest 250
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Feature Descriptors

- Once keypoints have been detected the local
appearance needs to be compactly represented
= The representation should enable efficient matching

- Why not use the image patch itself as the descriptor?

= The descriptor should remain the same in any image

- Robust to photometric effects, lighting, orientation, scale,
affine deformation

= The patch intensity can be used in cases where the
isn’t much appearance change between images (e.g.
stereo images, satellite images, video)
- The definition of descriptors to deal with the
aforementioned issues is still very active
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Bias and Gain Normalization (MOPS)

- Simple process to use normalized patch
intensities

= Tasks that do not have large amounts of
foreshortening (perspective distortion causing
differences in relative size of an objects parts)

» Patch intensities are re-scaled to be zero-mean
and unit variance

 Descriptor computation:
= Normalization of image intensity
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Scale Invariant Feature Transform (SIFT)

» One of the most popular feature descriptor [Lowe 2004]
= Many variants have been developed

+ Descriptor is invariant to uniform scaling, orientation, and partially
invariant to affine distortion and illumination changes

- Descriptor computation:

= Compute gradient 16 X 16 grid around keypoint

- Keep orientation and down-weight magnitude by a Gaussian fall off
function

- Avoid sudden changes in descriptor with small position changes
- Give less emphasis to gradients far from center

> Form a gradient orientation histogram in each 4 x 4 quadrant
- 8 bin orientations

. %‘rlhnear interpolation of gradient magnitude to neighboring orientation
ins

- Gives 4 pixel shift robustness and orientation invariance
= Final descriptor is 4 X 4 X 8 = 128 dimension vector
- Normalize vector to unit length for contrast/gain invariance

+ Values clipped to 0.2 and renormalized to remove emphasis of large
gradients (orientation is most important)



SIFT Schematic
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(a) image gradients (b) keypoint descriptor

Figure 4.18 A schematic representation of Lowe’s (2004) scale invariant feature transform
(SIFT): (a) Gradient orientations and magnitudes are computed at each pixel and weighted
by a Gaussian fall-off function (blue circle). (b) A weighted gradient orientation histogram
1s then computed in each subregion, using trilinear interpolation. While this figure shows an
8 x 8 pixel patch and a 2 x 2 descriptor array, Lowe’s actual implementation uses 16 x 16
patches and a 4 x 4 array of eight-bin histograms.



Gradient Location-Orientation Histogram (GLOH)

- Variant on SIFT to use log-polar binning rather than 4 x 4 quadrant
= Slightly better performance than SIFT
= 272D histogram is projected onto 128D

*

(a) image gradients (b) keypoint descriptor

Figure 4.19 The gradient location-orientation histogram (GLOH) descriptor uses log-polar

bins instead of square bins to compute orientation histograms (Mikolajczyk and Schmid
2005).



L
Other SIFT Variants

- Speeded up robust features (SURF) [Bay 2008]

= Faster computation by using integral images (Szeliski
3.2.3 and later for object detection)

= Popularized because it is free for non-commercial use
- SIFT is patented
- OpenCV implements many
> FAST
= ORB
= BRISK
= FREAK
- OpenCV is maintained by Willow Garage, a robotics
company
= Emphasis on fast descriptors for real-time applications
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Feature Matching

- Given descriptors from images, determine
correspondences between descriptors
- Two parts to the problem

= Matching strategy — how to select “good”
correspondences

» Efficient search — data structures and algorithms
to perform matching quickly
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Matching Strategy

- Generally, assume that the feature descriptor
space is sufficient
= Perform whitening of vector to concentrate on
more interesting dimensions
- Use Euclidean distance as the error metric
- Set threshold to only return potential matches
that are within some predefined “similarity”

= Returns all patches from the other image that are
similar enough

= Threshold must be set appropriately to ensure
matches are detected without introducing too
many erroneous ones




- =
Improved Threshold Matching

- Fixed threshold is difficult to set
» Shouldn’t expect different regions in feature space
to behave the same
- Nearest neighbor matching
= Only return the closest matching feature
= A threshold is still required to restrict matching to
“good” matches
- Nearest neighbor distance ratio

= Adapt threshold for each feature N
- NNDR = % — IPa=Dgll ,
dz  [IDa=Dcll

- Best if d, is a known not to match
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Quantifying Performance

» Confusion matrix-based metrics A wide range of metrics can be

= Binary {1,0} classification tasks defined
actual value « True positive rate (TPR)
(sensitivity)
p n | total
= o s TPR = TP _ E
2 g p | TP | FP | P’ TP+FN P
S 8 : N | = Document retrieval - recall —
=3 I | fraction of relevant documents
total | P N found
. - False positive rate (FPR)
 True positives (TP) - # correct _ FP_FP
matches * FPR =N TN
- False negatives (FN) - # of - Positive predicted value (PPV)
missed matches _ TP TP
" 2 PPV = =2
- False positives (FP) - # of TP+FP P
incorrect matches = Document retrieval 2>

recision — number of relevant
ocuments are returned

- Accuracy (ACC)

TP+TN
= ACC =
P+N

« True negatives (TN) - # of non-
matches that are correctly
rejected



http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Receiver Operating Characteristic (ROC)

- Evaluate matching performance based on threshold
= Examine all thresholds 6 to map out performance
curve
- Best performance in upper left corner
= Area under the curve (AUC) is a ROC performance metric

1 bt

qual error

08F-- rate

,féﬂdem chance
TP N ¥

true positive rate

0 0.1 iy 1
false positive rate
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Efficient Matching

- Straight forward matching compares all features
with every other feature in every image
> Quadratic in the number of features
- More efficient matching is possible with an indexing
structure
= Structure enables quick location of similar features
= Can remove many potential search candidates quickly
- Popular methods are multi-dimensional trees or
hash tables

» Locality sensitive hashing, parameter-sensitive
hashing

o k-d trees
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After Matching

- Matching gives a list of potential correspondences
= Must determine how to handle these maybe matches
- Different approaches depending on task

= Object detection — enough matching points constitutes
a detection

= Image level consistency (e.g. rotation) — determine
inliers/outliers to estimate image transformation
- Random sampling (RANSAC) is very popular when
there is a model to fit

= Take a small random subset of matches, compute the
model, and verify on the remaining matches
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Feature Tracking

- Detect then track approach useful for video
processing

- Use the same features we have already seen

- Tracking accomplished by SSD or NCC
= Usually appearance is sufficient

- Large motions require hierarchical search strategies
= Match in lower-resolution to provide an initial guess

for speeded up search

- Must adapt the appearance model over longer time

periods

= Kanade-Lucas-Tomasi (KLT) tracker estimates affine
transformation of the patch in question



