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Filtering Filtering as Detection

- Filtering (correlation) can be used a simple object
detector
= Mask provides a search template

= “Matched filter” — kernels look like the effects they are
intended to find

- Use normalized cross-correlation for intensity
matching between mask and image
D 1 (f e y) =)t (x,y)-D)
NCC=—3,, e
* f,0r - mean, std of image,
- t, 0.~ mean, std of template

= This is the inner product, and NCC is the cosine angle
between the image vectors




Correlation Masking

) §

template

This is who I am.
Nobody] said
you had to like it.

correlation detected letter

0.9 max threshold 0.5 max threshold

Adapted from http://kurser.iha.dk/ee-ict-master/ticovi/ correlation map



Detection of Similar Objects

- Previous examples are detecting exactly what we want to find
= Give the perfect template

- What happens with similar objects

Template

Detected template

- Works fine when scale, orientation, and general orientation
are matched

- What to do with different sized objects, new scenes

Adapted from K. Grauman



Pyramids

- Image processing so far has input/output images of
the same size
= WIill want to change the size of an image
- Interpolation to make small image larger
- Decimation to operate on a smaller image

- Sometimes we may not know the appropriate

resolution

= What size cars are we looking for in the previous
example?

= Create a “pyramid” of images at different resolutions
to do processing
- Accelerates search process
- Multi-scale representation and processing
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Decimation

- Also known as downsampling
= Decreases the size of an image by removing pixels

- Easiest form of decimation is subsampling by a
factor of 2

s Throw away pixels

- What can we say about the quality of this?
= Will hae aliasing |

1/ 8 (4x zoom) Adapted from S. Seitz

1/2 1/4 (2x zoom)



Smooth to Avoid Aliasing

- Low-pass smoothing filter avoids aliasing

- In practice, the convolution can be evaluated at a
reduced rate

> 90, J) = X fUe, Dh(ri —k,7j = 1)
- r — the downsampling rate

ki | |
N ,f/ \j i E ) }‘ I

(a) (b)

Figure 3.30 Signal decimation: (a) the original samples are (b) convolved with a low-pass
filter before being downsampled.



Downsample Filters

« A number of filters can be used and have various
performance

> Amount of high-frequency removal
- Bilinear filter is the simplest

- Bicubic fits a 3™ degree polynomial to the
neighborhood

1 —_— " —Linear
Binomial
08 —Cubic a=-1
Cubic Cubic Windowed JPEG —Cubic 2=-0.3
|n| | Linear Binomial a=-1 a=-0.5 sinc QMF-9 2000 —Wind. sinc
06 —OMFS
0 0.50 0.3750  0.5000  0.50000 0.4939  0.5638  0.6029 04 —IPEG 2000
1 0.25 0.2500 0.3125  0.28125 0.2684 0.2932  0.2669
2 0.0625  0.0000  0.00000 0.0000 -0.0519 -0.0782 02
3 -0.0625  -0.03125 -0.0153  -0.0431 -0.0169
4 0.0000 0.0198  0.0267 0 : : e
01 0.2 03 04 03
Table 3.4 Filter coefficients for 2x decimation. These filters are of odd length, are sym- o
metric, and are normalized to have unit DC gain (sum up to 1). See Figure 3.31 for their
associated frequency responses. Figure 3.31 Frequency response for some 2 decimation filters. The cubic o = —1 filter

has the sharpest fall-off but also a bit of ringing; the wavelet analysis filters (QMF-9 and
JPEG 2000), while useful for compression, have more aliasing.



Subsampling with Gaussian pre-filtering

Adapted from S. Seitz

- Improved results by first smoothing

Gaussian 1/2
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Interpolation

- Also known as upsampling
» Increases the size of an image by inserting new
pixels between existing ones
- This can be done with a modified convolution
operation
o g(i,)) = Xyer f(k, DR(i — Tk, j —T1)
* r — the upsampling rate
- Each new pixel is a weighted R TN s

sum of samples >< %{@
L D




- =i
Multi-Resolution Pyramids

Accelerates coarse-to-fine
search algorithms

= Faster search at lower
resolution and higher
resolution for better
localization

- Detect objects at different
scales

> Use same template with
different sized images =

having different sized

Figure 3.32 A traditional image pyramid: each level has half the resolution (width and
templates o e pynme
eight), and hence a quarter of the pixels, of its parent level.

 Perform multi-resolution
blending operations
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Laplacian (Gauassian) Pyramid

« [Burt and Adelson, 1983]

’ Bl}lI‘. and. subsample the Idea: Represent NxN image as a “pyramid” of
original image by a factor of 1x1, 2x2, 4x4,..., 2*x2% images (assuming N=2¥)
2 at each level

> Avoid aliasing with level k (= 1 pimq

decimation ;

- Keep the Laplacian image level k-1 \/\ ﬁ.-
for reconstruction of higher \ y
X E

resolution image
level k-2

> Laplacian (derivative of —
Gaussian) required for

perfect reconstruction / ,

lewvel O (= original image)
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Gaussian Pyramid

» Construction

—>0@

Ifoxofl

Decimated pixels <
~—— filter kernel
. .
Repeat: —

DFﬂter e e e o eole o
= Subsample

» Until minimum resolution is reached

- The whole pyramid is only 4/3 the size of the
original image
= Each higher level is V4 the size of lower level

Adapted from S. Seitz



Gaussian Pyramid Signal Processing Diagram

[Down] High resolution image - [Down] Low resolution image
to coarse resolution to fine resolution
> Smooth then decimate = Interpolate by upsample and
smooth
I //
/‘

0]
1/3% o TV

(b)

Figure 3.33 The Gaussian pyramid shown as a signal processing diagram: The (a) analysis
and (b) re-synthesis stages are shown as using similar computations. The white circles in-
dicate zero values inserted by the | 2 upsampling operation. Notice how the reconstruction
filter coefficients are twice the analysis coefficients. The computation is shown as flowing
down the page, regardless of whether we are going from coarse to fine or vice versa.
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Feature Detection and Matching

- Essential component of modern computer vision

= E.g. alignment for image stitching,
correspondences for 3D model construction,
object detection, stereo, etc.

» Need to establish some features that can be
detected and matched
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Determining Features to Match

- What can help establish correspondences between images?




Different Types of Features

(©) (d)

Figured4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) (©) 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban er al. 2004) (©) 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) (© 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) (©) 2008 ACM.



Different Types of Features

- Points and patches
- Edges
- Lines

- Which features are best?
= Depends on the application

= Want features that are robust
- Descriptive and consistent (can readily detect)
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Points and Patches

- Maybe most generally useful feature for
matching

= E.g. Camera pose estimation, dense stereo, image
stitching, video stabilization, tracking

= Object detection/recognition

- Key advantages:

= Matching is possible even in the presence of
clutter (occlusion)

= and large scale and orientation changes
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Point Correspondence Techniques

- Detection and tracking
= Initialize by detecting features in a single image
= Track features through localized search
= Best for images from similar viewpoint or video
- Detection and matching
= Detect features in all images

» Match features across images based on local
appearance

= Best for large motion or appearance change
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Keypoint Pipeline

- Feature detection (extraction)

= Search for image locations that are likely to be
matched in other images

- Feature description

> Regions around a keypoint are represented as a
compact and stable descriptor

- Feature matching

= Descriptors are compared between images
efficiently

- Feature tracking
> Search for descriptors in small neighborhood
= Alternative to matching stage best suited for video



Feature Detectors

- Must determine image locations that can be
reliably located in another image

Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.
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Comparison of Image Patches

- Textureless patches

= Nearly impossible to localize
and match

- Sky region “matches” to all
other sky areas

- Edge patches
= Large contrast change
(gradient) ‘ ‘
= Suffer from aperture problem

- Only possible to align
patches along the direction
normal the edge direction

- Corner patches

> Contrast change in at least
two different orientations

o Easiest to localize




Aperture Problem |

- Only consider a small window of an image
> Local view does not give global structure
= Causes ambiguity

- Best visualized with motion (optical flow later)
» Imagine seeing the world through a straw hole
= Aperture Problem - MIT — Demo
= Also known as the barber pole effect



http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

Aperture Problem Il

(a) (b) (c)

Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like™) flow;
(b) classic aperture problem (barber-pole illusion); (¢) textureless region. The two images [
(yellow) and I; (red) are overlaid. The red vector w indicates the displacement between the
patch centers and the w(x;) weighting function (patch window) is shown as a dark circle.

- Corners have strong matches

- Edges can have many potential matches
= Constrained upon a line

- Textureless regions provide no useful information
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WSSD Matching Criterion

- Weighted summed squared difference

* Ewssp(W) = X;w(x) [ (x; —u) — Iy(x)]?
- 1,1, - two image patches to compare
- u = (u,v) — displacement vector
- w(x) - spatial weighting function
- Normally we do not know the image locations to
perform the match
> Calculate the autocorrelation in small
displacements of a single image
- Gives a measure of stability of patch

* Egc(Au) = Z;wlx;) o (x; — Au) — Io(x;)]?



Image Patch Autocorrelation

Eqjc(Au) = Z w(x;) [I,(x; — Aw) — I,(x;)]? * Example autocorrelation

B Z w(x) [VIp(x;) - Aul?

i
= Au’ AAu
- VI,(x;) -image gradient
> We have seen how to
compute this

« A — autocorrelation matrix

2
A=W*[Ix ley]

2

Iylx Iy

> Compute gradient images and
convolve with weight function

= Also known as second
moment matrix



Image Autocorrelation Il

(b)

(c)

(d)

Figure 4.5 Three auto-correlation surfaces Eac(Awu) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of

Au.




Image Autocorrelation Il

- The matrix A provides a
measure of uncertainty in
location of the patch

- Do eigenvalue decomposition

> Get eigenvalues and
eigenvector directions

- Good features have both
eigenvalues large
> Indicates gradients in

orthogonal directions (e.g. a
corner)

- Uncertainty ellipse

direction of the
fastest change

direction of the
slowest change

- Many different methods to
quantify uncertainty

= Fasiest: look for maxima in
the smaller eigenvalue



Basic Feature Detection Algorithm

1. Compute the horizontal and vertical derivatives of the image I, and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.
4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature

point locations.

Algorithm 4.1 Outline of a basic feature detection algorithm.



