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Computer Vision

- Interpretation and understanding of images

Output:
Input:
Recognition of objects
1. Image derived Computer ?md events erpbedded in
measurements Vision images and video
2. Models (prior
knowledge) (“Semantic” level

classification)

Examples:

Object recognition
Face recognition
Lane detection
Activity analysis
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Image as Function

- Image is a function, f, that maps from R4 to R
= 0 < f(x,y) < 11isthe intensity at a point (x, y)
= In reality, an image is defined over a rectangle
with a finite range of values
* f:la,b] X [c,d] = [0,1]
- Computationally, [0,1] range is convenient but
usually we have an 8-bit quantized
representation

= 0 < f(x,y) < 255

- Color image is just three separate functions
pasted together

o fle,y) =[r(xy);9(xy);b(x,y)]



Image as Function

- Multiple equivalent - Surface
representations
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Image Processing

- Usually the first stage of computer vision
applications

> Input an image to a system - get a processed
image as output

flx,y) — T —> g(x,y)

= g(x,y) =Tlf(x,y)]

- Digital Image Processing by Gonzalez and Woods is a great book to learn more
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Pixel Transforms

- Gain and bias (Multiplication and addition of
constant)
= g(x,y) =al,y)f(x,y) + b(x,y)
s a (gain) controls contrast

= b (bias) controls brightness

- Notice parameters can vary spatially (think
gradients)

» Linear blend
o g(x) =1 —a)fo(x) + afi(x)
= We will see this used later for motion detection in
video processing



Compositing and Matting

Techniques to remove an object and place it in a new scene

= E.g. blue screen

- Matting — extracting an object from an original image
- Compositing — inserting object into another image (without visible artifacts)
- A fourth alpha channel is added to an RGB image
= a describes the opacity (opposite of transparency) of a pixel
- Over operator
= C=(0—-a)B+aF

x  (1- )+ —
T
B o aF C




Histogram Processing

- Digital image histogram is the count of pixels in
an image having a particular value in range
[0,L — 1]
° h(r) = ny
- 17, - the kth gray level value
- Set of r,are known as the bins of the histogram
* ng, - the numbers of pixels with kth gray level
- Empirical probability of gray level occurrence is
obtained by normalizing the histogram
° p(ry) = ng/n
- n — total number of pixels



Histogram Example

i S | - X-axis — intensity value
i > Bins [0, 255]

| - y-axis — count of pixels
|

Ll Jilel | | |
I I I I

: HERRR | - Dark image

- | 1 = Concentration in lower values
| - Bright image
A 1 1111 = Concentration in higher

SR, S I values
- = - Low-contrast image
‘ = Narrow band of values
Ul - High-contrast image

M e P = Intensity values in wide band
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Histogram Equalization

Let s by the cumulative

» Assume continuous functions

(rather than discrete images) distribution function (CDF)
- Define a transformation of the © s=T@) = [ py(w)dw
intensity values to “equalize” . Then
each pixel in the image ds
= s=T(r) 0<r<1 E'E:pr(r)
> Notice: intensity values are » Which results in a uniform
normalized between o0 and 1 PDF for the output intensity
- The inverse transformation is ° ps(s) =1
given as
s r=T7"1(s) 0<s<1 - Hence, using the CDF of a
- Viewing the gray level of an histogram will “equalize” an
image as a random variable Image
B dr = Make the resulting histogram
" Ps(8)=pr (N[5 flat across all intensity levels
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Discrete Histogram Equalization

- The probability density is approximated by the

normalized histogram
ng

s p-(p) =— k=0,..,L—1

n
» The discrete CDF transformation is

o s, =T (1) = Yoo pr (1)

o g, =Yk Ik
Sk = Lj=07,

- This transformation does not guarantee a
uniform histogram in the discrete case

> It has the tendency to spread the intensity values
to span a larger range



Histogram Equalization Example

I I T - i3

- RREEEEIES = - Histograms have wider
: spread of intensity levels

l "Mmmm‘m - Notice the equalized

images all have similar

visual appearance
L > Even though histograms

are different
255
Il L | | 7

o Contrast enhancement
128

1 ! !
] I I T
Histogram of light image

| | 14 |
I I I I
Histogram of low-contrast image

FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq.(3.3-8).

| HANNN | |
I I I T
Histogram of high-contrast image

64

Original histogram original image histogram equalized  equalized image



Local Histogram Enhancement

- Global methods (like - Original image
histogram equalization as
presented) may not always
make sense
> 'What happens when

properties of image regions
are different?

- Compute histogram over
smaller windows
> Break image into “blocks”
= Process each block separately

- Notice the blocking effects that
cause noticeable boundary
effects



Local Enhancement

- Compute histogram over a block (nelghborhood) for every pixel in a moving window

o T )

5 AT
)

B i

aliblle

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.

o Adaptive histogram equalization (AHE) is a computationally efficient method to

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.
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Image Processing Motivation

- Image processing is useful for
the reduction of noise

- Common types of noise

> Salt and pepper — random
occurrences of black and
white pixels

> Impulse — random
occurrences of white pixels

= (Gaussian — variations in
intensity drawn from normal
distribution

Impulse noise Gaussian noise
Adapted from S. Seitz
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ldeal Noise Reduction

- How can we reduce noise given a single camera
and a still scene?
= Take lots of images and average them

e

. V‘\fihat-about 1f you only have a single image?

Adapted from S. Seitz
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Image Filtering

- Filtering is a neighborhood operation

= Use the pixels values in the vicinity of a given pixel
to determine its final output value

« Motivation: noise reduction

= Replace a pixel by the average value in a
neighborhood
= Assumptions:

- Expect pixels to be similar to their neighbors (local
consistency)

- Expect noise processes to be independent from pixel
to pixel (i.i.d.)
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Linear Filtering

- Most common type of neighborhood operator

» Output pixel is determined as a weighted sum of
input pixel values

> g, y) =2 f(x +ky + Dw(k, )
- w — is known as the kernel, mask, filter, template, or
window
- w(k,l) — entry is known as a kernel weight or filter
coefficient

- This is also known as the correlation operator
*g=1ew



Filtering Operation

« glx,y) =
Y fx+ky+DwkD) —

» The filter mask is moved from /

point to point in an image

- The response is computed e
based on the sum of products of

the mask coefficients and

image

e
H

bl

w(—1,—1) | w(=1,0) | w(-1.1)

w(0,-1) | w(©.0) | w(0.1)

w(l,—1) w(1,0) w(l,1)

- Notice the mask is centered at
w(0,0)
- Usually we use odd sized masks
so that the computation is
symmetrically defined

fa—1y+1) Filter coefficients

fx=1y-=1)

flx+1Ly+1)

« Matlab commands

o imfilter.m, filter2.m,
convz2.m



Connection to Signal Processing

- General system notation

« LTI system
= Convolution relationship

- Discrete 1D LTI system - Discrete 2D LTI system
x[n] — h —> yIn] fxy) — w —> g(x,y)
yInl = ) x[kIhn - k] g = D D feywix—sy 1)
k=—o0 S=—00 t=—00

= Linear filtering is the same as
convolution without flipping
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Border Effects

- The filtering process suffers from boundary
effects
» What should happen at the edge of an image?
= No values exist outside of image

- Padding extends image values outside of the
image to “fill” the kernel at the borders

= Zero — set pixels to o0 value
- Will cause a darkening of the edges of the image

= Constant — set border pixels to fixed value
» Clamp — repeat edge pixel value
» Mirror — reflect pixels across image edge
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Computational Requirements

- Convolution requires K2 - Separable kernel
operations per pixel for a o w = vhT
K X K size filter - v — vertical kernel

- Total operations on an image - h - horizontal kernel
isM X N x K? - Defined by outer product

« This can be computationally - Can approximate a separable
expensive for large K kernel using singular value

- Cost can be greatly improved if decomposition (SVD)
the kernel is separable = Truly separable kernels will
o First do 1D horizontal only have one non-zero

convolution singular value

= Follow with 2D vertical
convolution
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Smoothing Filters

- Smoothing filters are used for blurring and noise
reduction
= Blurring is useful for small detail removal (object
detection), bridging small gaps in lines, etc.
- These filters are known as lowpass filters
= Higher frequencies are attenuated
> What happens to edges?
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Linear Smoothing Filter

» The simplest smoothing filter is the moving
average or box filter I[1] |1

= Computes the average over a constant _, 1 SRR
neighborhood

- This is a separable filter
» Horizontal 1D filter L1 |1

» Remember your square wave from DSP
(1 0<sn<M
hln] = {O else

- Fourier transform is a sinc function
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More Linear Smoothing Filters

- More interesting filters can be readily obtained

- Weighted average kernel (bilinear) - places more
emphasis on closer pixels ——

1
= More local consistency 12
1]2]1

- Gaussian kernel - an approximation of a
Gaussian function

- Has variance parameter to control the kernel
“Width” o 0.0 '
° fspecial.m h(u,v) = P N

Ad&zlf)?:ed from S. Seitz



Smoothing Examples

FIGURE 3.33 (a) Original image, of size 500 < 500 pixels (b)—f) Results of smoothing a b

. o with square averaging filter masks of sizes m = 3,5,9,15, and 35, respectively. The black ¢ d

(N N | . . (N N . . squares at the top are of sizes 3,5,9,15,25,35,45, and 55 pixels respectively; their borders g f
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
= ; increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
Y ) S o0e@ wide and 100 pixels high: their separation is 20 pixels. The diameter of the circles is 25

DA pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
: black in increments of 20%. The background of the image is 10% black. The noisy
Ay rectangles are of size 50 x 120 pixels.

e s

aaaaadadd aaaaadadd

SHTT ] BT ]

a a Object detection
oee “ee ) -
111 11} '

aaaaaadaadd saaaaaad

«xmnbp R R

N | ¥ B

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
I I I | I I I I ’ I | 15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)
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Median Filtering

- Sometimes linear filtering is not sufficient
> Non-linear neighborhood operations are required

- Median filter — replaces the center pixel in a mask
by the median of its neighbors
= Non-linear operation, computationally more expensive

= Provides excellent noise-reduction with less blurring
than smoothing filters of similar size (edge preserving)
For 1mpulse and salt- and pepper noise

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Bilateral Filtering

- Combine the idea of a weighted filter kernel with
a better version of outlier rejection

» a-trimmed mean calculates average in
neighborhood excluding the a fraction that are
smallest or largest

- w(i,j, k) =d(,j, k1) xr(,j k1)
= d(i, ], k, 1) - domain kernel specifies “distance”
similarity between pixels (usually Gauassian)
» (i, j, k,1) — range kernel specifies “appearance
(intensity)” similarity between pixels



Bilateral Filtering Example

(b)

(d) (e) (H)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) (© 2002 ACM: (a) noisy step
edge input: (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output: (f) 3D distance between pixels.
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Sharpening Filters

- Sharpening filters are used to highlight fine
detail or enhance blurred detail

- Smoothing we saw was averaging
= This is analogous to integration

- Since sharpening is the dual operation to
smoothing, it can be accomplished through
differentiation



=
Digital Derivatives

- Derivatives of digital functions are defined in
terms of differences
= Various computational approaches

- Discrete approximation of a derivative
?
L= fx+ D - f@

0
L=+ D - fx- 1)
- Center symmetric

» Second-order derivative
0%f

s S =fl+ D+ flx—1) —2f(x)



Difference Properties

- 15t derivative
= Zero in constant segments
= Non-zero at intensity transition ety ransiton

6B B —B— Ok EE EE S |
> Non-zero along ramps s |- N constant w !
intensity Rum !
d . . =z 41— -\/— P Step Fr
- 2nd derivative N0 o
= Zero 1in constant areas - il e f
= Non-zero at intensity transition 0 *
= 7ero alone ramps nar [efelefe[s[ala2[1]t]1[1]1]t]e 666 6]~
g p 1st den'\_fati\.fe o 0-1-1-1-1-1 0 0 O 0O O 5 0 0 0 O
° 2nd OrdeI' fllter 1S more 2ndcle1wat;ve_0 0-1 0 0 00O 1 0O0O0O0 ;‘J—S 00 0
. . 4 Ir‘\;"‘
aggressive at enhancing sharp '
edges 2 [
. z B, [
s Qutputs different at ramps e 000 e e
. E 1 ‘Bf-e--e-e-ea ZET0CTOSSING ! !
- 18t order produces thick edges N .
] —3= o Hist derivative I‘n ,‘r‘
- 2nd order produces thin edges N e e
> Notice: the step gets both a sk :

negative and positive response
in a double line
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The Laplacian

- 2nd derivatives are generally better for image
enhancement because of sensitivity to fine detail

- The Laplacian is simplest isotropic derivative operator
2 9*f | 9*f
o V f — _I_ —
= Isotropic — rotation invariant

ax2 | 9x2
- Discrete implementation using the 274 derivative
previously defined

.azf =fx+Ly)+fx—1y)=2f(x,y)
. azf =flx,y+ 1D+ f(x,y—1)—2f(x,y)

ax?
o V2f =
[f(x+1,y)+f(x—1,y)+f(X,y+1)+f(X,y—1)] _

4f (x,y)



Discrete Laplacian

- Zeros in corners give isotropic
results for rotations of 90

- Non-zeros corners give A A
isotropic results for rotations (0 i mask e
o O Implemen
of 45 Lo o4 | o8| Gl aectsed o
. . . implement an
> Include diagonal derivatives extension of s
in Laplacian definition A I b ?)lgddg)‘Tm
Gomsoftne
. . . . 0 -1 0 -1 -1 -1 Eaplaciegl found
- Center pixel sign indicates practice.”
light-to-dark or dark-to-light PR I AP | R O
transitions
0 -1 0 -1 -1 -1




Sharpening Images

- Sharpened image created by
addition of Laplacian
> glx,y) =
{f(x, y) = V2f(x,y) w(0,0)<0
fGey) +V2f(x,y) w(0,0)>0

- Notice: the use of diagonal
entries creates much sharper
output image

- How can we compute g(x,y)
in one filter pass without the
image addition?
> Think of a linear system

a6

a
bec
de

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA))



Unsharp Masking

- Edges can be obtained by subtracting

a blurred version of an image a
- fusGoy) = £ y) = FG5,) DIP-XE g
> Blurred image .
FIGURE 3.40

* fy) = hplyr * F () DI P_XE i(gl)agg_iginal
- Sharpened image blaring with a
© fi(ty) = f¥) + v fus(x, ) (©) Unsharp
-
'j . mask. (d) Result
= L_) ﬂ EN ' of using unsharp

R, masking.
Original signal ccl (¢) Result of
FIGURE 3.39 1-D using highboost
filtering.

illustration of the
P .
mechanics of
unsharp masking,
Blurred signal (a) Original
=7 signal. (b) Blurred
signal with
original shown

dashed for refere-
Unsharp mask nce. (c¢) Unsharp A

mask. (d) Sharp-
S\
NS
Sharpened signal

ened signal,
obtained by
adding (c) to (a).
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The Gradient

- 15t derivatives can be useful for - Sobel operators

enhancement of edges - Have directional sensitivity

= Useful preprocessing before = Coefficients sum to zero
edge extraction and interest - Zero response in constant
point detection intensity region

- The gradient is a vector
indicating edge direction
af

G ax
Gy la_f 0 0 0 -2 0 2
oy

- The gradient magnitude can be
approximated as

© Vf = |Gyl + |G,
> This give isotropic results for
rotations of 90
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Morphological Image Processing

- Filtering done on binary images
= Images with two values [0,1], [0, 255], [black,white]

= Typically, this image will be obtained by thresholding

. (1 fCo,y)>T
9= fay<T

- Morphology is concerned with the structure and
shape

- In morphology, a binary image is convolved with a
structuring element s and results in a binary image

- See Chapter 9 of Gonzalez and Woods for a more
complete treatment
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Mathematical Morphology

- Tool for extracting image components that are
useful in the representation and description of
region shape
= Boundaries, skeletons, convex hull, etc.

- The language of mathematical morphology is set
theory
= A set represents an object in an image

- This is often useful in video processing because
of the simplicity of processing and emphasis on
“objects”

» Handy tool for “clean up” of a thresholded image
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Morphological Operations

- Threshold operation - Dilation
. B(F, 1) = {1 f=t = dilate(f,s) = 0(c,1)
’ -0 else = Grows (thickens) 1 locations
« Structuring element « FErosion

= s —e.g. 3x 3 box filter (1’s indicate
included pixels in the mask)
= § —number of “on” pixels in s

Count of 1s in a structuring element

= erode(f,s) = 60(c,S)

= Shrink (thins) 1 locations
Opening

= open(f,s) = dilate(erode(f, s), s)

5 ¢ = S
- Cor r]:e l(f’)cion (filter) raster scan = Generally smooth the contour of an
rocedur object, breaks narrow isthmuses,
procecure and eliminates thin protrusions
- Closing
= close(f,s) = erode(dilate(f, s), s)
= Generally smooth the contour of an
object, fuses narrow
- Basic morphological operations can breaks/separations, eliminates
be extended to grayscale images small holes, and fills gaps in a

contour
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Morphology Example

) [ ] - - [ [
(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion: (d)
majority; (e) opening: (f) closing. The structuring element for all examples is a 5 x 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

Dilation - grows (thickens) 1 locations

Erosion - shrink (thins) 1 locations

Opening - generally smooth the contour of an object,
breaks narrow isthmuses, and eliminates thin
protrusions

Closing - generally smooth the contour of an object,
fuses narrow breaks/separations, eliminates small holes,
and fills gaps in a contour



Connected Components

- Semi-global image operation to provide consistent labels to similar
regions
> Based on adjacency concept

- Most efficient algorithms compute in two passes

i +

[ foCECe e e *‘ ——————— e
* HE T s |+ HE .

= [+ [ * [IE | -
B - H . ¥ -y ’

* 3 hr - * * ki h!

- -
+ - b » .
L + 4 ;— -------------- -
+ i *

(a) (b) (c)

Figure 3.23 Connected component computation: (a) original grayscale image: (b) horizontal
runs (nodes) connected by vertical (graph) edges (dashed blue )—runs are pseudocolored with
unique colors inherited from parent nodes; (c) re-coloring after merging adjacent segments.

- More computational formulations (iterative) exist from morphology

i Xk=(Xk—1@B)nA\St
,]\ €

Connected component  Structuring element

4

s
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More Connected Components

- Typically, only the “white” pixels will be considered
objects
= Dark pixels are background and do not get counted

- After labeling connected components, statistics from
each region can be computed

= Statistics describe the region — e.g. area, centroid,
perimeter, etc.

- Matlab functions
© bwconncomp.m, labelmatrix.m (bwlabel.m)-
label image
= label2rgb.m — color components for viewing
» reglionprops.m — calculate region statistics
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Connected Component Example

Opened Image Labeled image — 91 grains of rice



