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Abstract—License plate recognition (LPR) algorithms in images
or videos are generally composed of the following three processing
steps: 1) extraction of a license plate region; 2) segmentation of
the plate characters; and 3) recognition of each character. This
task is quite challenging due to the diversity of plate formats
and the nonuniform outdoor illumination conditions during im-
age acquisition. Therefore, most approaches work only under
restricted conditions such as fixed illumination, limited vehicle
speed, designated routes, and stationary backgrounds. Numerous
techniques have been developed for LPR in still images or video
sequences, and the purpose of this paper is to categorize and assess
them. Issues such as processing time, computational power, and
recognition rate are also addressed, when available. Finally, this
paper offers to researchers a link to a public image database to
define a common reference point for LPR algorithmic assessment.

Index Terms—Image processing, license plate identification,
license plate recognition (LPR), license plate segmentation, optical
character recognition (OCR).

I. INTRODUCTION

A. License Plate Recognition (LPR)

INTELLIGENT transportation systems (ITSs) are made up
of 16 types of technology-based systems divided into in-

telligent infrastructure systems and intelligent vehicle systems
[148]. Computer vision and character recognition algorithms
for LPR are used as core modules for intelligent infrastructure
systems like electronic payment systems (toll payment and
parking fee payment) and freeway and arterial management
systems for traffic surveillance.

LPR algorithms are generally composed of the following
three processing steps: 1) location of the license plate (LP)
region; 2) segmentation of the plate characters; and 3) recog-
nition of each character. The first two steps incorporate im-
age processing techniques on still images or frame sequences
(videos), whose evaluation relies on the true recognition rate
and the error recognition rate.
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In addition, LPR algorithms should operate fast enough to
fulfill the needs of ITS. In technical terminology, a “real-time”
operation for LPR stands for a fast-enough operation to not
miss a single object of interest that moves through the scene.
Nevertheless, with the exponential growth of the processing
power, the latest developments operate within less than 50 ms
[3], [152], [156] for plate detection and recognition (processing
more than 20 frames/s for videos).

B. Scope of This Survey

Papers that follow the three-step framework are surveyed
and classified according to their major methodology. When
available, issues such as performance, execution time, and
platform for each method are reported. It should be emphasized
that there is a lack of uniformity in the way that methods are
evaluated, and therefore, it is inappropriate to explicitly declare
which methods actually demonstrate the highest performance.
Indeed, one of the scopes of this paper is to highlight the
lack of common test sets to achieve a common reference
point for algorithmic assessment. As the first step toward
this goal, a large image and video data set of Greek LPs
has been collected and grouped according to several crite-
ria such as type and color of plates, illumination conditions,
various angles of vision, and indoor or outdoor images at
http://www.medialab.ntua.gr/research/LPRdatabase.html.

Aiming to present a comprehensive and critical survey of
up-to-date LPR methods, this paper is organized as follows:
In Section II, we provide a detailed review of techniques to
detect LPs in a single image or video sequence. Character
segmentation methods and criteria are discussed in Section III,
whereas Section IV demonstrates the character classification
techniques. Finally, this paper concludes with a discussion of
current trends and anticipated research in LPR.

II. LP DETECTION

As far as the extraction of the plate region is concerned, a
categorization of methods that were reported in the literature
follows, along with the description of the main processing
method. It should be noted that some of these methods can
be classified into more than one category and that boundaries
between subcategories are not always unambiguous.

A. Binary Image Processing

Techniques based upon combinations of edge statistics and
mathematical morphology [1]–[4] featured very good results.

1524-9050/$25.00 © 2008 IEEE



378 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2008

In these methods, the gradient magnitude and the local variance
of an image are computed, based on the principle that the
change of brightness in the LP region is more remarkable and
more frequent than elsewhere. A disadvantage is that edge-
based methods alone can hardly be applied to complex images,
since they are too sensitive to unwanted edges, which may
also show a high edge magnitude or variance (e.g., the radiator
region in the front view of the vehicle). Despite this, when com-
bined with morphological steps that eliminate unwanted edges
in the processed images, the LP extraction rate is relatively high
and fast, compared to other methods.

In [1], the conceptual model underneath the proposed algo-
rithm is based on the morphological operation called “top-hat,”
which is able to locate small objects of significantly different
brightness [55]. This algorithm, however, with a detection rate
of 80%, is highly dependent on the distance between the camera
and the vehicle, as the morphological operations relate to the
dimensions of the binary objects. A similar application was also
described in [77] with an accuracy of 93%.

In [2], a hybrid LP extraction algorithm based on edge
statistics and morphology for monitoring highway ticketing
systems is proposed. This approach can be divided into the
following four sections: vertical edge detection, edge statisti-
cal analysis, hierarchical-based LP location, and morphology-
based LP extraction. The average accuracy of locating a vehicle
LP is an impressive rate of 99.6% (9786 from 9825 images).
The digital images were acquired from a fixed distance and
angle, and therefore, candidate regions in a specific position
are given priority as already described. This a priori knowledge
would certainly boost the results to a high level of accuracy. Per-
formance measurements were carried out on a P IV 1700-MHz
processor with 256 RAM.

Connected component analysis (CCA) is a vital technique
in binary image processing that scans an already binarized
image and labels its pixels into components based on pixel con-
nectivity (either 4-connected or, usually, 8-connected). Once all
groups of pixels have been determined, each pixel is labeled
with a value according to the component to which was assigned.
Extracting and labeling of various disjoint and connected com-
ponents in an image is basic to many automated image analysis
applications, as many helpful measurements and features in
binary objects may be extracted. Spatial measurements such
as area, orientation, and aspect ratio (AR) are just few of the fea-
tures frequently integrated in image processing algorithms for
LP detection [78], [99]. Then, using simple filtering techniques,
binary objects with measurements that exceed the desired limits
can be eliminated in the next algorithmic steps.

In [3], [4], [44], [45], [89], [100], [101], [125], and [131],
the vertical edges of a car image using image enhancement
and a Sobel operator were employed, followed by removing
most of the background and noise edges and searching for the
plate region using a rectangular window. Fig. 1 demonstrates
the effect of applying a vertical edge Sobel operator in an
input image. According to Zheng et al. [3], if the vertical
edges are extracted from the car image and most of the back-
ground edges are removed, the plate area can be easily isolated
from the whole edge image. The overall success rate was
reported to be around 97%. The total time of processing one

Fig. 1. Scanning in N rows and counting the existent edges.

384 × 288 image is 47.9 ms, meeting the requirements of real-
time processing.

B. Gray-Level Processing

1) Global Image Processing: Comelli et al. [6] presented in
1995 a system (RITA) for the recognition of car LPs. In terms of
image processing for plate identification, RITA was composed
of an LP area location module and a preprocessing module. LP
location steps were hinged on the structure of the Italian LP,
which is rectangular and contains black characters over a white
background. Thus, the algorithm selects the area that presents
the maximum local contrast that (possibly) corresponds to the
rectangle that contains the LP.

The approach used in [14] for the plate location was to hori-
zontally scan the image, looking for repeating contrast changes
on a scale of 15 pixels or more. Draghici set the assumptions
that the contrast between the characters and the background of
the plate is sufficiently good and that there are at least three
to four characters on a plate whose minimum vertical size is
about 15 pixels. It should be noted that the particular value of
15 pixels is determined by the resolution of the camera/frame
grabber used, the average distance of the vehicle from the
camera, as well as the real size of the characters.
2) Partial Image Analysis: Similar methods appear in

[15]–[17], [87], and [137], where the vehicle image is scanned
with N -row distance, counting the existent edges (see Fig. 1).
If the number of the edges is greater than a threshold value,
the presence of a plate can be assumed. Specifically, in [15],
if the plate is not found in the first scanning process, then
the algorithm is repeated, reducing the threshold for counting
edges. The method features very fast execution times as it only
scans some rows of the image. Nonetheless, this method is too
simple to locate LPs in several scenarios, and moreover, it is not
size or distance independent.
3) Statistical Measurements: Block-based gray-level pro-

cessing was also presented in the literature [5]. Similar to the
methods described above, blocks with a high edge magnitude
or high edge variance are identified as possible LP regions.
Since block processing does not depend on the edge of the LP
boundary, it can be applied to an image with an unclear LP
boundary and can be implemented simply and fast. However,
as not all blocks detected are LP regions, those who satisfy
geometrical criteria like area and AR are favored. The accuracy
rate reported in [5] in 180 pairs of images, which mainly include
motorcycles, was reported to be 92.5%.
4) Hierarchical Representations: In [33], a method based

on vector quantization (VQ) to process vehicle images is
presented. VQ encoding can give some hints about the con-
tents of image regions, giving additional information that can
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Fig. 2. (Top) Image-compression and LP location schema proposed in [33].
(Bottom) Example of quadtree decomposition and stripe extraction.

be exploited to boost location performance. Stripe extraction
takes advantage of the same adaptive mechanism as adopted
by VQ encoding, as image regions with higher contrast and
more details are mapped by smaller blocks. LPs belong to this
class of regions due to the high contrast between the text and
the background. In addition, average background information
could be of great aid to stripe identification, as LPs have either
a bright or a dark background. Thus, the set of interesting image
regions can be easily compiled by the following: 1) scanning the
image structure (quadtree) for adjacent areas mapped by small-
size blocks and 2) scanning the corresponding set of block mean
values for high-brightness (or low-brightness) contiguous seg-
ments. Fig. 2 illustrates a plate detection example. Each stripe
is scored by rewarding its consistency with the expected size.
There, as a modified VQ method is initiated [34]–[36], a set
of codewords is compiled and used to encode the blocks in the
extracted stripes. Each stripe is characterized according to the
sum of its values. Thus, the final score is associated with stripe
results from the following two additive terms: 1) the partial
term from stripe extraction (consistency with expected size) and
2) codeword scores that take into account the actual contents
of the coded blocks. The location process eventually selects
the highest score stripe from the final sorted list. According to
Zunino et al., LPs are identified within the two highest score
stripes in 98.0% of the cases (87.6% belong to the highest score
stripe).
5) Region Segmentation: An adaptive image segmentation

technique sliding concentric windows (SCW) is considered
for LP location in [39]. The SCW method was developed to
describe the “local” irregularity in the image. The method
uses image statistics such as the standard deviation and the
mean value as a “heuristic” for possible plate location. In
two concentric windows A and B of different sizes (X1 × Y1

and X2 × Y2, respectively), which scan the image from left
to right and from top to bottom, the mean value [39], [40]
or the standard deviation [41] is calculated (see the top part
of Fig. 3). If the ratio of the statistical measurements in the
two windows exceeds a threshold set by the user, then the
central pixel of the concentric windows is considered to belong
to an LP. The result is a binary image, which eliminates all
the redundant regions from the original image (see the bottom
part of Fig. 3). Anagnostopoulos et al. report a success rate
of 96.5% for plate localization with proper parameterization
of the method in conjunction with CCA measurements and the
Sauvola binarization method [42].
6) Probabilistic Object Tracking in Videos: A novel method

for position estimation and tracking of LPs in 3-D from a
monocular camera view has been recently proposed by Yalçın

Fig. 3. (Top) SCW method. (Bottom) Resulting image after SCW execution
featured in [39].

and Gökmen in [106]. Given an initial estimate, the position of
the plate is tracked in the successive video frames. To estimate
the object and filter the measurements, the authors developed
a new algorithm composed of the probability density propa-
gation of the condensation algorithm [107] and a fine-scale
optimization step according to the differential evolution (DE)
algorithm [108]. According to the experiments carried out in
[106], the DE–condensation algorithm outperformed the stan-
dard condensation algorithm, decreasing the computation time
by about 35%, for the same level of tracking accuracy.
7) Image Transformations: Image transformations were

also widely implemented for LP location. Gabor filters have
been one of the major tools for texture analysis. This technique
has the advantage of analyzing texture in an unlimited number
of directions and scales. The results reported in [21] were
encouraging (98% for LP detection) when applied to digital
images acquired strictly in a fixed and specific angle. However,
this method was tested on small sample images, as the method
is computationally expensive and slow for images with large
analysis.

In the method that uses Hough transform (HT), edges in the
input image are detected first. Then, HT is applied to detect the
LP regions. In [25], the authors acknowledge that the execution
time of the HT requires too much computation when applied
to a binary image with great number of pixels. As a result, the
algorithm they used was a combination of the HT and a contour
algorithm, which produced higher accuracy and faster speed so
that it could be applied to real-time systems. However, since
HT is very sensitive to boundary deformation, this approach
achieved very good results (98.8% average accuracy) when
applied only to close shots of the vehicle. Similar applications
are described in [48], [49], [50], and [138]. Kamat and Ganesan
considerably reduced the computational overhead of perform-
ing the transformation, by implementing a lookup table, limited
angle, limited magnitude, and limited area transformation on
a window of interest. Kong et al. [87] implemented a radon
transform stage [105] in their LPR algorithm to draw parallel
lines along the horizontal edges of the plate and detect their
angle in relation to the horizontal axis. Thus, they achieved
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Fig. 4. Reference line for plate location was reported to be found in 1LH
according to [26]. The method was executed in an image of the sample
described in [39].

skew correction for plate localization with a performance rate
of 96.1% in 380 images.

A wavelet transform (WT)-based method is used in [26]
for the extraction of important contrast features to be used as
guides in searching for LPs. In the WT, there are four subimages
(subbands), namely LL, LH, HL, and HH, where L and H stand
for low and high frequency, respectively. According to [26], a
reference line in the first-level LH subband (1LH) subimage
exactly above the plate is noticeable. Using the above reference
line, a searching mask is created, speeding up the execution
time. The average accuracy of detection was 92.4%. Neverthe-
less, the method is unreliable when the distance between the
vehicle and the acquisition camera is either too far or too close
or the angle of viewpoint is wide. Fig. 4 illustrates the results of
first-level WT using the Haar scaling factor when executed in a
close view of a vehicle image from the sample in [39].

Symmetry is also used as a feature for car LP extraction. The
generalized symmetry transform (GST) produces continuous
features of symmetry between two points by combining the
locality constraint and reflectional symmetry. In [27], the au-
thors propose a scan line decomposition method of calculating
GST to achieve considerable reduction of the computational
load. The computational speed of the proposed GST schema
is approximately 30 times faster than the conventional GST.
However, the effective distance is limited by the algorithm, as
a closer view of the plate results to increased processing time.
Moreover, this approach is insufficient in the case of slightly
rotated or distorted plates. The performance was reported to be
around 93% in 330 images.

C. Color Processing

Many color-based processing methods are proposed in the
literature for LP location. These techniques make use of the
expected plate appearance (plate background and text color)
in each country. On the other hand, the solutions currently
available do not provide a high degree of accuracy in natural
scenery, since color is not stable when the lighting conditions
change. In addition, as these methods are color based, they are
country specific.
1) Color Model Transformation: The basic idea of the ex-

traction of a plate region, according to the work proposed in [7]
and [43], is that the color combination of a plate (background)

and character (foreground) is unique, and this combination
occurs almost only in a plate region. As the Chinese LPs
have specific formats, Shi et al. propose that all the pixels
in the input image should be classified using the HLS color
model into the following 13 categories: 1) dark blue; 2) blue;
3) light blue; 4) dark yellow; 5) yellow; 6) light yellow; 7) dark
black; 8) black; 9) gray black; 10) gray white; 11) white;
12) light white; and 13) other. After the classification of a region
in the above colors, the AR of the expected plate is then verified.
2) Fuzzy Sets Theory: Fuzzy logic has been applied to the

problem of locating LPs [18]–[20]. The authors made some
intuitive rules to describe the LP and gave some membership
functions for the fuzzy sets “bright,” “dark,” “bright and dark
sequence,” “texture,” and “yellowness” to get the horizontal
and vertical plate positions.

Zimic et al. [18] defines the following intuitive rules based
on human perception for the object “LP”: 1) bright rectangle
area within which there are some dark areas; 2) located approx-
imately in the middle or lower middle part of the image; 3) the
border of the plate is bright; and 4) the approximate dimension
of the plate is 530 × 120 mm. The concepts of “brightness” or
“darkness,” which are present in rules 1) and 3), are described
as a fuzzy set with trapezoidal membership functions on the in-
terval [0, 255], where 0 represents black, and 255 represents the
white color in gray scale. The input image (768 × 576 pixels)
is partitioned into subimages (elements) of size 75 × 25 pixels.
After partitioning the image, every partitioning element com-
putes its fitness to the four intuitive rules. The algorithm suc-
cessfully located LPs in 97 out of 100 images, requiring 5 s
on an SG-INDIGO 2 workstation for every image. The time
was later reduced to 2 s, taking into account only every fourth
line of an image. However, rules 2) and 4) restrict this algorithm
to identify LPs in a specific distance.

In [19], the segmentation method incorporates the fuzzy sets
of “yellowness” and “texture.” The membership function for
“yellowness” is determined using a histogram-based method.
First, the red–green–blue (RGB) values of pixels taken from
a large number of hand-cut LPs were used to construct a
frequency table. For each RGB value, the aforementioned table
gives the number of times each particular color occurs in the
created set. The membership function was directly derived from
this table by normalizing it so that the most frequently used
color has a membership degree of 1. On the other hand, the
membership function for “texture” in a pixel was determined
on the basis of the gray-scale values of its 8-pixel neighbor-
hood. Finally, the segmentation is performed using a fuzzy
c-means clustering algorithm with two clusters (LP and non-
LP). The system was tested in a huge data set of approximately
10 000 images. The system performance reached 75.4% in LP
location.

The algorithm in [20] begins with an edge detector sensitive
to only three kinds of edges, black–white, red–white, and
green–white, as this research focuses on Korean LPs. Thus, the
method creates an initial edge image E in which all other color
tones beside white, black, red, and green are eliminated. Next,
the RGB model of the input color image is transformed into the
hue–saturation–intensity (HSI) model, and the respective H, S,
and I maps of the initial image are generated. Since every map
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Fig. 5. (Left) Subregions being scanned in the original image. (Right) Exam-
ple of features selected by AdaBoost in the 45 × 15 regions [28] over the LP
region. The sum of values computed over colored regions is subtracted from
noncolored regions.

encodes some characteristics about the scene, the entry of any
pixel in the map expresses the degree of the pixel possessing
the property. This was the basic idea of generating a fuzzy map
from a given one (e.g., H̃ from H). Each of the four fuzzy maps,
i.e., H̃ , S̃, Ĩ , and Ẽ, serves as a universal set of the complete
fuzzy set and is defined with specific distinctive membership
functions. Finally, fuzzy maps H̃ , S̃, Ĩ , and Ẽ are integrated

into a single map
↔
M . Based on this map, regions of interest

(ROIs; plates) are located in the input image, which have locally
maximal values. When tested in 1088 images, the above method
had the remarkable success rate of 97.9%. A similar work based
on fuzzy logic was implemented in a parallel cluster unit of five
personal computers to keep the processing time below 1 s [129],
but the results were not reported.
3) Histogram Processing: The mean-shift estimate of the

gradient of a density function and the associated iterative
procedure of mode seeking is presented in [93] by Cheng. In
[94], Comaniciu and Meer propose a practical method that
employs mean shift in the joint spatial-range domain of color
images for discontinuity-preserving filtering and image seg-
mentation. Based on the above work, Jia et al. [95] applied
a mean-shift procedure for color segmentation of the vehicle
images to directly obtain candidate regions that may include LP
regions. According to the statistical analysis performed in [95],
compared to all other objects, LPs adhere to a unique feature
combination of rectangularity, AR, and edge density. These
three features were then calculated to candidate regions to
decide whether these regions represent an LP or not. The
same problem was further investigated in [96] using a modified
histogram intersection (HI) method. Motivated from the work
presented in [98], Jia et al. proposes a Gaussian weighted
HI (GWHI) algorithm to facilitate the color matching using
histograms. It was proved that using this algorithm, the within-
class variability becomes smaller, whereas the between-class
variability is maximized.

D. Classifiers

1) Statistical Classifiers: Adaptive boosting (AdaBoost)
[21], [157] was used in conjunction with Haar-like features for
training cascade classifiers in [28], [109], [110], and [156]. In
[28], a total of 100 Haar-like features are applied to subregions
sized 45 × 15 pixels being scanned as expected LP areas in
the original image (e.g., Fig. 5). In these features, 37 are based

on variance, 40 on the x-derivative, 18 on the y-derivative,
and five on the mean pixel intensity. The classifier used was
a conditional density function. Despite the fact that this study
appears to be promising for the task of LP detection (success
95.6%), the authors denote that since the classifier is applied
to subregions of a specific dimension, the system could not
detect plates of different sizes or images acquired from different
views/distances without retraining. Similar works that imple-
ment Haar-like features in conjunction with cascade classifiers
are presented in [109], [110], and [156]. Decision trees were
selected for the cascade classifier in [109] with a detection rate
of 94.5% for the perceptrons in [110] with a success rate of
93.5% and for the statistical functions in [156].

An enhanced color–texture-based method for detecting LPs
in images was presented in [8]. Kim et al. focus their attention
on a support vector machine (SVM)-based approach that ex-
tended previous works [9]–[12] for texture classification and on
the continuous adaptive mean shift (CAMShift) algorithm [13].
Specifically, the system uses a small window to scan an input
image and classifies the pixel located at the center of the
window into plate or nonplate (background) by analyzing its
color and texture properties using an SVM. Instead of running
the SVM in the whole image, it was executed only in search
windows W s within the image at a regular interval (e.g., 5 × 5
sized windows located at a regular interval of [25, 25]). Then,
an LP score image is generated, in which each pixel represents
the possibility of the corresponding pixel in the input image
being a part of a plate region followed by the identification
of LP bounding boxes by applying the CAMShift algorithm.
This method was originally used to locate faces in a video
stream by seeking the modes of flesh probability distribution
[13]. Kim et al. [8] replaced the flesh probability with the
LP score that is obtained by performing color texture analysis
on the input image. The combination of CAMShift and SVM
produced efficient LP detection by excluding a considerable
number of pixels (91.3% of all the pixels in the image) from the
color texture analysis, therefore achieving a substantial benefit
in terms of computational time.
2) Computational Intelligence: Apart from image process-

ing techniques, various computational intelligence architectures
were proposed and implemented for plate identification, such as
artificial neural networks (ANNs), genetic programming (GP),
and genetic algorithms (GAs). In [29], the authors demonstrate
that the most intensive computational steps in LPR could
be accomplished by discrete-time cellular neural networks
(DTCNNs). The tests revealed that the DTCNNs were capable
of correctly identifying 85% out of all the LPs. Inspired by the
work in [19], two features, “grayness” (“yellowness” in [19])
and “texture,” have been appointed to each pixel in the image.
The ranges for “grayness” and “texture” were determined by a
histogram-based method. For the “grayness” feature, the gray
values of pixels taken from a large number of exemplary LPs
are used to construct a frequency table. Pixels that belong
to fixed ranges were then identified using several DTCNNs,
whose templates were constructed by combining the appropri-
ate morphological operations and traditional filter techniques
(dilation, Sobel, and Laplacian operators), according to the
research described in [30]. In [31], the pulse-coupled neural
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Fig. 6. Neural network proposed in [51] for LP location.

network (PCNN) schema was described to generate candidate
regions that may contain an LP. A number of modifications
and variations were introduced to the pioneering research in
[122] and [123] to tailor its performance to image processing
algorithms [124]. The results in [31] indicate that the PCNN
could serve as a good preprocessing element for plate detection,
but much research still remains to be performed.

Impressively good results were achieved in [32], where the
time-delay neural network (TDNN) schema was implemented.
TDNN is a multilayer feedforward network, whose hidden
neurons and output neurons are replicated across time. TDNNs
have the ability to represent relationships between events in
time and to use them in trading relations for making optimal
decisions [121]. Kim et al. presented an LP segmentation
module that extracts the LP using two TDNNs as filters for
analyzing color and texture properties of the LP by examining
small windows of vertical and horizontal cross sections of the
image. The results were remarkable in terms of speed (less than
1 s) and accuracy (97.5%). It should also be noted that there was
a rough knowledge of possible plate location, which explains
the fast execution time versus the complexity of the algorithm.
A similar application is presented in [120].

Recently, multilayered feedforward ANNs were introduced
as the first stage for LP detection, taking as input a current pixel
and its neighborhood. An early research was initiated in [51],
where a backpropagation neural network of 24-30-4 topology
was trained to classify the color of a pixel into four distinct
classes (green, red, white, and other), according to the classes of
Korean LPs (see Fig. 6). The 24 input nodes correspond to the
H, S, and I values of the eight neighboring pixels in a 3 × 3 pixel
neighborhood, whereas the neurons in the hidden layer were
experimentally set to 30. The main drawback was reported to
be the long execution time while the performance reached 90%.
Similarly, Li et al. [88] trained an ANN whose topology was
27-30-6 neurons with an accuracy of 92%. An identical topol-
ogy is also proposed in [126] and [79]. Oz and Ercal utilized
the ANN to identify LPs as text (plate) regions in a gray-level
image and classified all other pixels as nontext (nonplate).

Remarkably successful results (98%) were reported in [102],
where an LP detector has been proposed based on a con-
volutional neural network (CNN) verifier that was originally
introduced by Garcia and Delakis [103]. The input image
was repeatedly subsampled by a factor of 1.2, and the CNN-
based verifier operated on each pyramid image to find possible
text candidates that appear in the LP regions. Then, the text
candidates were fused and labeled to locate the LPs using
pyramid-based techniques and geometrical rules. Two geomet-
rical constraints were designed to remove the false alarms. The
width/height ratio had to be larger than 1.5, and the size of an
LP had to be larger than 60 × 25 pixels. Lately, the architecture
of a fuzzy neural network [139], [140] has been used for LP
classification between the six official types in Iran, after their
successful extraction using HT [138].

GP [22] and GAs [23], [24], [46], [47] were also imple-
mented for the task of LP location. GP is usually much more
computationally intensive than GA, although the two evolu-
tionary paradigms share the same basic algorithm. The higher
requirements in terms of computing resources with respect to
GAs are essentially due to the much wider search space and
the higher complexity of the decoding process, as well as the
crossover and mutation operators. The authors indicate that the
research carried out in [22]–[24], despite encouraging results,
is still very preliminary and requires deeper analysis. Although
the authors of [22] and [24] do not clearly report the results
of their work, in [23], the identification ratio reached 80.6% on
average, with a very fast execution time (0.18 s). In [24], the GA
was implemented in video sequences for character extraction.
Finally, recent researches incorporating GAs [46], [47] featured
promising results in a limited testing set.

E. Discussion

In the LPR algorithms presented in the literature, experimen-
tation setups are typically restricted to well-defined working
conditions to obtain predictable scene features (e.g., perspec-
tive, distance, background, illumination, and vehicle position).
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TABLE I
PLATE DETECTION PERFORMANCE AND MINIMUM PLATE RESOLUTION

To overcome the problem of varying illumination, IR auxiliary
units have been successfully used. This method emerged from
the nature of the LP surface (retroreflective material) and has
already been tested in the literature [14], [37], [79], [89], [145],
[149] and in several commercial systems. Indicatively, the test
set in [89] includes 2483 images of Iranian vehicles captured
using IR illumination units, achieving an impressive detection
rate of 99.3%.

In addition, some authors claim that their plate detection
systems are able to cope with highly variable camera-to-car
distances [17], [150]. However, the majority of the experiments
verified that there is always a tradeoff between detection accu-
racy and minimum plate resolution. Table I holds the perfor-
mance rates for LP detection over the minimum necessary plate
resolution reported. There are several studies that report suc-
cessful plate localization when the vertical resolution (height)
of the plate ranges from 10 to 16 pixels [28], [29], [43], [89],
[109], [110], [156]. However, such poor plate resolution does
not allow reliable extraction of the characters, and therefore,
these studies address only the task of LP detection.

In most systems with a subsequent recognition module, the
vertical resolution of the plate fluctuates from 20 to 40 pixels.
Later on, to proceed to character recognition, the segmented
plates are spatially transformed and/or are subjected to en-
hancement techniques. The algorithms in [6], [19], [39], and
[130] reveal that plates with a height of at least 20–25 pixels
can be successfully processed for character segmentation and
recognition, provided, of course, that the plates are in suffi-
ciently good condition.

III. CHARACTER SEGMENTATION

The LP candidates considered in the plate location stage
are examined in the phase of character segmentation. A wide
variety of techniques to segment each character after plate
localization has been developed, as described in this section,
which groups them according to their methodology. Again,
it should be emphasized that many papers incorporate more
than one method (e.g., adaptive thresholding followed by the
projection method), and therefore, the classification that follows
is not unique.

Fig. 7. Character extraction using the horizontal and vertical projection
method.

A. Binary Image Processing

1) Projections and Binary Algorithms: Reviewing the lit-
erature, it was evident that the method that exploits vertical
and horizontal projections of the pixels [7], [16], [25], [32],
[49], [51], [52], [77]–[79], [87], [125], [130], [134], [137]
is the most common and simplest one. Obtaining a binary
image, the idea is to add up image columns or rows and
obtain a vector (or projection), whose minimum values allow
us to segment characters (see Fig. 7). CCA is also intensely
involved in character segmentation, in conjunction with binary
object measurements such as height, width, area [1], [19], [88],
[89], [90], and orientation [4], [89]. In other cases, CCA is
supported by either VQ [21] or mathematical morphology [29],
[52], [128]. Usually, the CCA method labels the pixels into
components based on 8-neighborhood connectivity, but in [65],
the binarized image is decomposed into 4-neighbor connected
components.
2) Mathematical Morphology: The work in [52] is com-

pletely dedicated to the task of character segmentation, de-
scribing a morphology-based adaptive approach for seriously
degraded plate images. Following the adaptive binarization
method in [53] for color images, noise is identified by applying
the thickening [54] and pruning algorithm [55] to the binary
image. Nomura et al. performs an adaptive segmentation of
characters, searching for natural segmentation points in the
projection histogram and merging fragments that belong to the
same character. For the aforementioned task, prior knowledge
of the maximum quantity of segments for each set (letters
or digits) was employed to decide whether the merging is
necessary. The mathematical operators for the merging process,
as well as the respective ones for separating overlapping or
connected characters, mainly exploit the information provided
by the vertical projection of the set and are given in detail in
[52]. From a test set of 1189 degraded plate images, the entire
character content was correctly segmented in 1005 of them.
3) Contours: Contour tracking and modeling is also in-

corporated for character segmentation. In [64], an algorithm
inspired by the contour tracking method known as “bug follow-
ing” [117] is implemented for character segmentation. Capar
and Gokmen [111] established a shape-driven active contour
model, which utilizes a variational fast marching algorithm,
and applied it to the plate character-segmentation problem.
First, coarse location of each character is found by an ordinary
fast marching technique [112] combined with a gradient- and



384 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2008

Fig. 8. (Top) Segmentation sequence. (Bottom) Merging broken characters.

curvature-dependent speed function, as presented in [113]. The
method proceeds with the segmentation of exact boundaries
through the calculation of a special fast marching methodology,
which depends on gradient, curvature, and shape similarity
information. Shape similarity statistics were again embedded
into a fast marching method to stop the evolving front when the
front resembles one of the trained shapes (e.g., top of Fig. 8). In
addition, Fig. 8 (bottom) demonstrates an example of initially
broken characters and the final merged segmentation results
using this method.

B. Gray-Level Processing

1) Histogram Processing: Draghici [14] concluded that no
unique thresholding technique can produce acceptable results in
most situations. Therefore, the system proposed in [14] handled
the character segmentation problem on a higher level by com-
bining the results of various histogram-thresholding techniques,
like using intensity–gradient scattergrams or finding a valley in
the intensity distribution [63], also using feedback from later
stages of the system itself. Recently, a similar histogram-based
method was implemented in [15], where after the histogram
generation of the plate image, the threshold is determined by
a formula that employs the entropy values of background and
foreground or by cumulative distribution functions.
2) Local/Adaptive Thresholding and Transformations:

Since binarization with one global threshold cannot always
produce useful results in such cases, adaptive local binarization
methods were also implemented. In many local binarization
methods, an image is divided into m × n blocks, and a
threshold is chosen for each block. The research carried
out in [37] follows the above block division technique that
implements the dynamic binarization method of Otsu [38].
Using the configurations of the sensor and the distance between
the sensor and vehicles, the expected size of characters in the
images was estimated in advance. To efficiently deal with all
possible combinations of candidate regions of characters, the
authors employed several hypotheses that were represented
using tree interpretation, as in [58]. Similarly, in [65] and
[127], local thresholding techniques are used for each pixel.
In [65], the threshold is computed by subtracting a constant c
from the mean gray level in an m × n window centered in the
pixel, whereas in [127], the threshold is given by the Niblack
binarization formula T (i, j) = m(i, j) + k · σ(i, j), where T
is the threshold at pixel (i, j), k = −0.2 is a weight factor, and

Fig. 9. Binarization results from left to right: noisy LP image, global thresh-
old, and adaptive threshold in [59].

Fig. 10. Successful segmentation of characters following the SCW method.
(Left column) Original segmented plate, (middle column) SCW result, and
(right column) character segmentation after negation and height and orientation
measurements.

σ(i, j), m(i, j) are the standard deviation and the mean of the
15 × 15 local neighborhood of pixel (i, j), respectively.

In [59], the authors propose an improved local binarization
method that determines a threshold for each character region.
Therefore, the positions and sizes of rectangles that possibly
contain characters in an LP were determined first using projec-
tions. Based on the assumption that brightness changes mainly
occur in a vertical direction, Lee et al. recommend a horizontal
pixel accumulation histogram for every character region to find
out if a character is split or missing. In this case, the region is
divided into two, and thresholds are redetermined for the new
regions. The authors report an improvement of 5% compared to
local binarization methods, and an example is shown in Fig. 9.

The character segmentation phase in [6] removes the noise
and enhances the image, and moreover, it detects, centers, and
normalizes the LP image. The output of this module is still an
image that represents the whole LP and not the discrete charac-
ters. Comelli et al. describe that iterative methods founded on
homomorphic filtering [60], [61] provided satisfactory results
for a good amount of their testing images.

An adaptive binarization method based on a previous
study [62] is also adopted in [20] to avoid the problem that
nonuniform illumination creates. Chang et al. combine the
research in [62] with HT and CCA. Specifically, they proceed to
the calculation of the AR in each binary object, deleting those
with an AR outside the prescribed range. Then, an alignment
of the remaining objects is derived by applying the HT to their
centers of gravity. The objects that disagree with the alignment
are removed. In addition, an adaptive binarization method is
described in [39] and [40], implementing the SCW technique
using the standard deviation measurement in conjunction with
CCA measurements (see Fig. 10).

C. Classifiers

The method proposed in [24] is different from many existing
single-frame approaches, because it simultaneously utilizes
spatial and temporal information. First, it models the extraction
of characters as a Markov random field (MRF), where the
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randomness is used to describe the uncertainty in pixel label
assignment. MRF models can be used to incorporate prior
contextual information or constraints in a quantitative way.
Local spatial/contextual dependences can be utilized to perform
binarization [56]. Therefore, Cui and Huang prove that by using
the MRF modeling, the extraction of characters can be modeled
as the problem of maximizing a posteriori probability based on
given prior knowledge and observations. After that, a GA with
a local greedy mutation operator is employed to optimize the
objective function and speed up the convergence based on [57].
The method was developed for LP character segmentation in
video sequences.

Hidden Markov chains are used to model a stochastic rela-
tion between an input image and the corresponding character
segmentation. Franc and Hlavac [91] proposed a character seg-
mentation method for noisy low-resolution LP images, where
the segmentation problem was expressed as the maximum
a posteriori estimation from a set of admissible segmentations.
The method was based on [92], exploiting a priori knowledge
such as the predetermined number of characters in the plate
and their equal (but unknown) segmented width. The statis-
tical model was created from a training set of ground-truth
segmentation examples of Czech plates provided by a user. The
algorithm was executed on the basis of dynamic programming
and tested on 1000 examples captured from a real-life LPR
system with an error rate of 3.3%.

D. Discussion

Character segmentation is needed to perform character
recognition, which fully relies on isolated characters. Incor-
rectly segmented characters are not likely to be successfully
recognized. In fact, most of the recognition errors in the
LPR systems are not due to missing recognition power but
to segmentation errors. As already discussed at the end of
Section II, LP height should be at least 20–25 pixels if character
segmentation and processing is required. However, sometimes,
this resolution is not enough as dirt, physical damage, and
unpredictable shadows degrade the segmentation performance.

IV. CHARACTER RECOGNITION

For the recognition of segmented characters, numerous al-
gorithms use statistical classifiers, computational intelligence
architectures, and common pattern-matching techniques.

A. Classifiers

1) Statistical/Hybrid Classifiers: When hidden Markov
models (HMMs) are employed, the recognition begins with
preprocessing and parameterization of the ROIs detected in the
previous phase (character segmentation). Based on [66], the
recognition result in [65] was reported to be 95.7% after a
complex procedure of preprocessing and parameterization for
the HMMs: one for every character. The authors also reported
that the width of the plate in the image after rescaling lies be-
tween 25% and 75% of the original image width (between 200
and 600 pixels). This reveals the necessity for good character

Fig. 11. Statistical classification stage in [86] combining four sub-classifiers
using the Bayes method [83].

analysis when implementing HMMs, which poses a restriction
on the effective distance of the plate recognition system. This
prerequisite is also featured in [25], where the recognition
results reached 92.5%.

Furthermore, the authors in [32] designed a system that
implements SVMs and reports an impressive average character
recognition rate of 97.2% for Korean plates. Four SVM-based
character recognizers were applied to recognize upper charac-
ters, upper numerals, lower characters, and lower numerals on
the plate.

Many researchers integrate two kinds of classification
schemes [80], [81], multistage classification schemes [82],
or a “parallel” combination of multiple classifiers [83]–[85].
Pan et al. [86] proposed a two-stage hybrid recognition system
that combines statistical and structural recognition methods
to achieve robust and high recognition performance. Initially,
skew images of car plates were corrected and normalized. In the
first recognition stage, four statistical subclassifiers (SC1, SC2,
SC3, and SC4) independently recognize the input character, and
the recognition results are combined using the Bayes method
[83]. Subclassifier SC1 uses the zoning density [119], SC2 uses
the vertical projections, SC3 calculates the contour profile, and
SC4 counts line segments in each row and column (see Fig. 11).
Finally, if the output of the first (statistical) stage contains
characters that belong to prescribed sets of similar characters,
the second (structural) stage is initiated as a complement to
the first. Structure features are obtained and are then fed into
a decision tree classifier. The success ratio reached 95.41% in a
huge testing data set of more than 10 000 plates.

Alternatively, coarse-to-fine classification is an efficient way
to organize object recognition to accommodate a large number
of possible hypotheses and to systematically exploit shared
attributes and the hierarchical nature of the visual world.
The basic structure is a nested representation of the space of
hypotheses and a corresponding hierarchy of (binary) classi-
fiers [114]. A scene is processed by visiting nonoverlapping
5 × 5 blocks, processing the surrounding image data to ex-
tract “spread” edge features based on the research conducted
in [115], and classifying this subimage according to the coarse-
to-fine search strategy described in [116]. There are 37 classes
defined by the prototypes (bit maps), shown at the top of
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Fig. 12. Root of the tree (up) is the 37 prototypes for characters in
Massachusetts LPs. The leaves are pure classes [114]. The figure is not
complete as only one branch of the class hierarchy is shown.

TABLE II
MULTILAYERED FEEDFORWARD NEURAL NETWORKS

FOR CHARACTER RECOGNITION DETAILS

Fig. 12, which correspond to the 36 alphanumerical characters
plus the special character “|.” Special emphasis was given to
“pairwise” competition between any two similar interpretations
of a character (e.g., S/5 and J/U). The algorithm was evaluated
on 520 plates. The correct character string was found on all but
17 plates. However, the classification rate per symbol was much
higher: more than 99%.
2) ANNs: Multilayered feedforward neural networks are

also used for LP character identification in many works [15],
[19], [29], [79], [125]–[127], [132], [135], usually following
a common methodology. The classical training method for
feedforward neural networks is error backpropagation [118].
The network has to be trained for many training cycles to attain
good performance. Moreover, the number of hidden layers, as
well as the number of respective neurons, has to be defined after
a trial-and-error procedure [67].

Table II indicates the various multilayered neural network
topologies for plate character recognition along with specific
details as reported in the literature. In [19] and [29], a multi-
layered perceptron (MLP) architecture that contains 24 input,
15 hidden, and 36 output neurons was trained to recognize
36 characters of the Latin alphabet. Contrary to [15], where
the classification was done on the basis of binary image input,
the input neurons in [19] were fed with 24 features previously
generated from a DTCNN. Moreover, a character was con-

Fig. 13. Distinguishing parts of ambiguous characters [20].

fidently recognized only if the corresponding output neuron
exceeded 0.85 and all other output neurons had an output
level below 0.25, where 1 denotes a 100% confident level for
the output. The network was applied to segmented LPs for
character recognition, achieving excellent results (98.5%) in a
large set of 10 000 images.

Similar approaches are reported in [79] and [125]. In [133],
special attention was given to the training of a three-layered
MLP for the correct identification of problematic pairs (e.g.,
I/l, B/8, and O/0) or for the classification of border parts
and legislation stamps that appear in LPs. During the training
procedure, the problematic samples were trained more often,
and special characters for borders and legislation stamps were
added to the training sets. After the special training, the rate of
correct classification was reported to be 98.2%.

In addition, a nonstandard feedforward neural network
based on the adaptive resonance theory (ART) introduced by
Grossberg [136] is studied in [64], as an improvement of
classical multilayered feedforward networks. The basic differ-
ence between backpropagation and ART is that the latter is
an unsupervised learning technique, which dynamically creates
the number of nodes in the hidden layer and guarantees the
convergence to learning. The results reported in [64] reveal a
slight improvement in the recognition performance of the ART
model (95%) in a relatively small data set.

In [20], self-organized neural networks based on Kohonen’s
self-organized feature maps were implemented to handle noisy,
deformed, broken, or incomplete characters acquired from LPs
that were bent and/or tilted with respect to the camera. The
method focuses on accuracy at the cost of increased complexity
and execution speed. The success rate for character identifica-
tion, in a large set of 1061 LPs in various viewpoints (com-
binations of angle and distance), was a remarkable 95.6%. To
overcome misclassification of the similar character pairs (8,B),
(0/D), and (O/D), the authors in [20] predefined an ambiguity
set that contains the pairs of the misclassified characters. During
character recognition, once an unknown character is classified
as one of the characters in the ambiguity set, an additional
minor comparison between the unknown character and the
classified character is performed. The comparison then focuses
only on the nonambiguous parts (see Fig. 13).

Probabilistic neural networks (PNNs) were introduced in the
neural network literature by Specht [70]. These types of neural
networks can be designed and trained faster, as the hidden-layer
neurons are defined by the number of the training patterns and
are only trained once [71]. PNNs for LPR were first introduced
in an early version of an LPR system [69], where two PNNs,
i.e., one for alphabet recognition and the other for number
recognition, were trained and tested. The recognition rates
reported in the literature are very encouraging when PNNs were
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trained and tested in noisy, tilted, and degraded patterns (over
90%) [39], [72]. Additionally, in [73], the authors reported
an impressive recognition rate that reaches 99.5%. Kohonen’s
algorithm and the learning vector quantizer for training neural
networks are mentioned in [68] and [59], respectively, without
further details.

B. Pattern/Template Matching

The pattern matching technique is a suitable technique for
the recognition of single-font, not-rotated, and fixed-size char-
acters. Although this method is preferably used in binary
images, properly built templates also obtained very good re-
sults for gray-level images. A template matching application
is described in [6], where the recognition process was based
on the computation of the normalized cross-correlation values
for all the shifts of each character template over the subimage
that contains the LP. It was reported that more than 90% of
central processing unit time was consumed for the compu-
tation of the cross-correlation measures between the various
templates and the relative subimage. However, as the subimage
is a small image, the problem of computational time can be
overcome. Template matching is successfully implemented in
[76], where the whole recognition process is based on the com-
putation of the root-mean-square error, for all the shifts of the
template g over a subimage f with size M × N . Template
matching for character recognition is also incorporated in [77],
[78], and [137].

Finally, the Hausdorff distance is a method of comparing
two binary images (or two sets of “active” pixels). The method
possesses all the mathematical properties of a metric, and its
recognition rate is very similar to that obtained with neural
network classifiers but slightly slower. On the basis of the
research conducted in [74] and [75], Martin et al. concluded
that the Hausdorff distance may constitute a complementary
recognition method if real-time requirements are not very strict.

C. Discussion

Since incorrectly segmented characters from the character
segmentation step may be forwarded to the recognizer, the
last module in the LPR process should be able to successfully
handle any ambiguity that may arise. Very good results have
been reported using neural networks and statistical classifiers,
but a huge amount of learning samples is needed to train such
algorithms. Given also that optical character recognition (OCR)
technologies are already mature and that they are continuously
enhanced over time, future LPR developers shift their attention
to OCR improvement in sets of ambiguous characters (1/I, 0/O,
0/D, 2/Z, 8/B, and 5/S) rather than redesigning or retraining a
character recognition system from scratch.

V. DISCUSSION AND CONCLUSION

A. Current Trends

LPR, as a means of vehicle identification, may be further
exploited in various ways such as vehicle model identification,
under-vehicle surveillance, speed estimation, and intelligent

traffic management. For the vehicle model identification task,
the position of the LP could play an important role in seg-
menting a distinctive reference area of the frontal view of the
vehicle [141]–[143]. Moreover, for under-vehicle inspection,
it is assumed that a template under-vehicle image for each
inspected vehicle has been archived into a database in advance.
Based on the incoming vehicle LP, the respective template
image is retrieved from the database and then compared to the
one acquired during real-time under-vehicle inspection [40].
With a binocular arrangement of the image capturing system,
the spatial and temporal range of plate image between con-
secutive views could provide an improved accuracy in speed
computation of the vehicle [145].

LPR may also support intelligent vehicle management [146],
[147] or vehicle behavior monitoring and warning [144]. Ve-
hicle reidentification in an integrated highway management
system is also proposed [149] with numerous practical traffic
applications. The derivation of section travel times (time taken
by a vehicle to go from one point to another) could be useful
to transportation engineers for traffic operations, planning, and
control.

B. Outlook for the Future

Although significant progress has been made in the last
decade, there is still work to be done, as a robust LP detection
system should effectively work for a variety of environmen-
tal illumination, plate types/conditions, as well as acquisition
parameters.

Increased mobility and internationalization set the challenge
of developing an effective LPR system that could handle plates
from various countries with different character sets and syntax.
So far, this issue has not been significantly addressed in the
literature, as the recognition systems were country specific.
As already described in this survey, many algorithms utilize
fixed plate geometry, color, and character fonts for LP location,
segmentation, and character recognition. Little early research
[39], [153], and [154] addressed this issue, still with several
restrictions.

Moreover, most LPR systems focus on the processing of im-
ages with one vehicle. Nevertheless, input images may contain
more than one vehicle or motorcycles. As far as the first case
is concerned, the algorithms proposed in [5], [8], [17], [26],
[32] [39], [87], [89], [109], and [110] were tested in samples
containing more than one vehicle in the image, but only in the
research conducted in [5] were motorcycle plates successfully
handled.

In addition, assuming that LP regions are detectable even
in very low resolution, an open topic for future research is
the readability improvement of LP text using image processing
techniques. Research for improving degraded plates has lately
been directed to superresolution methods for video sequences
[151] or to blurred plate images [155] with promising results.

C. Summary

This paper has attempted to provide a comprehensive survey
of research on LPR and also to offer some structural categories
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for the methods described in more than 100 papers. The major
contribution of this paper has been to provide a brief source of
reference for researchers involved in LP detection and recogni-
tion. It should be noted that there are several commercial LPR
systems, whose evaluation is beyond the scope of this paper.
This is due to the fact that their operation is strictly confidential,
and their performance rates are often overestimated for promo-
tional reasons.

In addition, it is evident that the number and quality of
testing examples have a direct effect on the overall LPR per-
formance. However, this factor is often ignored in performance
evaluation or comparison, which is the appropriate criterion for
an algorithmic assessment. Therefore, providing the Medialab
LPR database (as discussed in the introduction), we anticipate
researchers engaged in LPR or in related projects to report
their results on this publicly available set or, alternatively, to
contribute to the enrichment of this test database with plates
of various national types and formats. This would support the
systematic performance evaluation in the scientific community
worldwide and allow system developers to know which meth-
ods are competitive in which application.
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