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OUTLINE

= Biological Inspiration

= Convolutional Layers
" Pooling Layers

» CNN Architectures

= Object Detection

" Semantic Segmentation



EVOLUTION OF COMPUTER VISION

= (Classical vision

= Hand-crafted features and
algorithm based on expert
knowledge

» (Classical machine learning

= Hand-crafted features (pre-
processing) but ML for
classification

= Deep learning

= Both features and classification
are learned

= End-to-end training (from pixels
to output)

Hand-crafted Hand-crafted
Input features algorithm | Ouput
(a) Traditional vision pipeline
.| Hand-crafted R Machine R
Input features | leaming [ | Qutput
(b) Classic machine learning pipeline
Learned ] Machine
Input features -] Learning :___’ Output

(c) Deep learning pipeline




DEEP CNN DOMINANCE IN CV
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ARCHITECTURE OF THE VISUAL CORTEX

®» Modern CV is inspired by human
vision (sensory modules)

= Hubel and Wiesel showed that
neurons in the visual cortex had a
small local receptive field
®* Only reacted to stimuli in a limited
region of visual field (blue dashed circles)
= Lower-level neurons with simple
pattern response (e.g. lines of
specific orientation)

= Higher-level neurons with larger
receptive field and combination of
lower-level patterns

= Neurons at higher-levels only connected to
few at lower-level




CONVOLUTIONAL NEURAL NETWORK

® Stacked neuron architecture enables detection of complex

patterns in any area of the visual field = convolutional
neural networks (CNNs)

" Led to LeNet-5 architecture by Yann LeCunn for
handwritten number recognition (MNIST)

" Fully connected layers and sigmoid activations

= Convolutional layers and pooling layers

* Why not fully connected layers for images?

= Even small images have large number of pixels resulting in huge
networks

» CNNs solve this with partial connected layers and weight sharing



CONVOLUTIONAL LAYERS

= Neurons in the first layer are
not connected to every single
pixel in input image

Convolutional

= Connected to receptive field layer 2

= Stacked receptive field approach
® Hierarchical structure

Convolutional

= First layer — small low-level layer 1

features

= Higher-levels — assemble lower-
level features into higher-level
features

Input layer

® Structure is common in real-world
images



CONVOLUTIONAL LAYER CONNECTIONS

= Note: the actual operation
performed is cross-correlation |
(no-flipping) J
= Neuron (row, column) (i, ) is
connected to neurons in previous
layer within receptive field
= Row [l,l +fh — 1]
= f, - height of receptive field
= Column [j,j+ f,, — 1]
= f, - width of receptive field
= Note: this is a causal filter though =
shown as symmetric
» Zero padding used to keep PR Zero padding
output/input layers of same size w
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CONVOLUTIONAL LAYERS STRIDE

= Stride can be used to connect a
large input layer to smaller

[T 7
output layer

= Change the spacing the of the "
receptive field h

= Dramatically reduce model s =2 (7 A -

j - Ay

computational complexity =777
S d
( TS ) \ /4\\ /4\\ i
®» Height and width stride can be <’ 7 7

different S, = 2



FILTERS

= Filters = convolutional kernels

= Size of the kernel is the receptive
field for the neuron Feature

map 1

ol *xw (R0 (AR

= Feature map — output of the e
“convolution” operation T

Featurre
map 2

= Highlights areas in an image that
activate the filter most

= For CNNs, the filters are not
defined manually!

= Horizontal filter

i

o e —

® Learn most useful filters for a task

= Higher layers will learn to combine
into more complex patterns



See Szeliski 2e, Ch 5.4.5
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STACKING MULTIPLE FEATURE MAPS 1

= Fach convolution layer has 1 convolutional
multiple filters Feature 0 layer 2
P /ET] “rep ]
= Stacked 3D output (1 feature map , -
for each filter) by ™ A
Filters
= Fach neuron in a feature map
shares the same parameters e /)| convolutiona
(weights and bias) — N sy L
= Neurons in different feature maps AT "2 e
use different parameters o A

= Neuron’s receptive field applies to
all feature maps of previous layer

Input layer

Channels

= Note input images often have e
multiple sublayers (channels) Green

Blue



STACKING MULTIPLE FEATURE MAPS II

= Qutput of a neuron in a
convolutional layer

fh_]- f’w_]- fn’_l

Zi jk = by + SJ SJ SJ Tir 0 k! X W k! k

u=0 v=0 k=0

' =i X s, +u
§ =] X 8y +v

= Z; i - output of neuron in row i,
column, j, in feature map k of the
convolutional layer [

= b, - bias term for feature map k (in
layer 1)

= Tweaks overall brightness of feature map

k

Sn, Sy - vertical and horizontal
strides

fn, fw - height and width of receptive
field (kernel)

[+ - number of feature maps in
previous (lower layer)

X; it i - output of neuron located in

layer [ — 1, row i’, column j', feature
map k

Wy v k! k - connection weight between
any neuron in feature map k of the
layer [ and its input located at row
u, column v (relative to the
neuron’s receptive field), and feature
map k'
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MEMORY REQUIREMENTS

® Though much smaller the fully connected networks, CNNs
still use significant amount of RAM

* During training, the reverse pass of backpropagation
requires all the intermediate values computed during the
forward pass
= Need to have enough for all layers in the network

» Forward pass can release memory after each layer is computed
(only two consecutive layers required)

® Qut-of-memory error

= Reduce mini-batch size, increase stride, remove layers, change
precision (16-bit vs 32-bit floats or use int), or distribute the CNN
across devices




POOLING LAYERS

= Subsample input in order to
reduce computational load,
memory usage, and number of
parameters (greduce risk of
overfitting)

= Aggregate over the receptive field

= Aggregate functions such as max
(most popular) or mean

= Max tends to work better by Max pooling layers (2x2 kernel, stride=2, no padding)
preserving only the strongest feature max pooling
—> cleaner signal, more invariance, 2030
less compute 112/ 37|
. 1220 30| O
® Stride gives downsampling 8 [12| 2| 0 /

112100f 25| 12 13| 8

79|20

= Pooling kernel size can be even 34|70 37| 4 \avirage pooling




POOLING LAYERS INVARIANCE

® Introduces some level of invariance
to small translations

= Small image shifts result in same
response

= Additionally small invariance to rotation
and scale with max pool
= Max pool every few CNN layers for
invariance at larger scale

m Useful when task should be invariant
(e.g. image classification)

= Drawbacks

= Destructive — 2x2, stride 2 drops 75% of
input values

= Invariance not always desirable (e.g.
semantic segmentation should have
equivariance)

" MaxPool2D

g

MaxPool2D

" MaxPool2D






