
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL 
DIGITAL SIGNAL PROCESSING
DEEP COMPUTER VISION USING CNNS

1

Géron Chapter 14

http://www.ee.unlv.edu/~b1morris/ecg782


Biological Inspiration

Convolutional Layers

Pooling Layers

CNN Architectures

Object Detection

Semantic Segmentation

2

OUTLINE



 Classical vision
 Hand-crafted features and 

algorithm based on expert 
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for 
classification

 Deep learning
 Both features and classification 

are learned

 End-to-end training (from pixels 
to output)

3

EVOLUTION OF COMPUTER VISION



4

DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019



 Modern CV is inspired by human 
vision (sensory modules)

 Hubel and Wiesel showed that 
neurons in the visual cortex had a 
small local receptive field
 Only reacted to stimuli in a limited 

region of visual field (blue dashed circles)

 Lower-level neurons with simple 
pattern response (e.g. lines of 
specific orientation)

 Higher-level neurons with larger 
receptive field and combination of 
lower-level patterns

 Neurons at higher-levels only connected to 
few at lower-level 

5

ARCHITECTURE OF THE VISUAL CORTEX



 Stacked neuron architecture enables detection of complex 
patterns in any area of the visual field  convolutional 
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for 
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge 

networks

 CNNs solve this with partial connected layers and weight sharing

6

CONVOLUTIONAL NEURAL NETWORK



 Neurons in the first layer are 
not connected to every single 
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level 

features

 Higher-levels – assemble lower-
level features into higher-level 
features

 Structure is common in real-world 
images

7

CONVOLUTIONAL LAYERS



 Note: the actual operation 
performed is cross-correlation 
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is 
connected to neurons in previous 
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though 
shown as symmetric

 Zero padding used to keep 
output/input layers of same size

8

CONVOLUTIONAL LAYER CONNECTIONS



 Stride can be used to connect a 
large input layer to smaller 
output layer

 Change the spacing the of the 
receptive field

 Dramatically reduce model 
computational complexity 
(squared)

 Height and width stride can be 
different

9

CONVOLUTIONAL LAYERS STRIDE



 Filters = convolutional kernels

 Size of the kernel is the receptive 
field for the neuron

 Feature map – output of the 
“convolution” operation

 Highlights areas in an image that 
activate the filter most

 For CNNs, the filters are not 
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine 
into more complex patterns

10

FILTERS



11

VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5



 Each convolution layer has 
multiple filters
 Stacked 3D output (1 feature map 

for each filter)

 Each neuron in a feature map 
shares the same parameters 
(weights and bias)

 Neurons in different feature maps 
use different parameters

 Neuron’s receptive field applies to 
all feature maps of previous layer

 Note input images often have 
multiple sublayers (channels)

12

STACKING MULTIPLE FEATURE MAPS I



 Output of a neuron in a 
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖, 
column, 𝑗, in feature map 𝑘 of the 
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in 
layer 𝑙)
 Tweaks overall brightness of feature map 

𝑘

13

STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ, 𝑠𝑤 - vertical and horizontal 
strides

 𝑓ℎ, 𝑓𝑤 - height and width of receptive 
field (kernel)

 𝑓𝑛′ - number of feature maps in 
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in 
layer 𝑙 − 1, row 𝑖′, column 𝑗′, feature 
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between 
any neuron in feature map 𝑘 of the 
layer 𝑙 and its input located at row 
𝑢, column 𝑣 (relative to the 
neuron’s receptive field), and feature 
map 𝑘′



 Though much smaller the fully connected networks, CNNs 
still use significant amount of RAM

 During training, the reverse pass of backpropagation 
requires all the intermediate values computed during the 
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed 

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change 

precision (16-bit vs 32-bit floats or use int), or distribute the CNN 
across devices

14

MEMORY REQUIREMENTS



 Subsample input in order to 
reduce computational load, 
memory usage, and number of 
parameters (reduce risk of 
overfitting)

 Aggregate over the receptive field 
 Aggregate functions such as max 

(most popular) or mean
 Max tends to work better by 

preserving only the strongest feature 
 cleaner signal, more invariance, 
less compute

 Stride gives downsampling
 Pooling kernel size can be even

15

POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)



 Introduces some level of invariance 
to small translations
 Small image shifts result in same 

response

 Additionally small invariance to rotation 
and scale with max pool

 Max pool every few CNN layers for 
invariance at larger scale
 Useful when task should be invariant 

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of 

input values

 Invariance not always desirable (e.g. 
semantic segmentation should have 
equivariance)

16

POOLING LAYERS INVARIANCE



 Typical CNN architecture
 Stack a few convolutional layers 

(each followed by ReLU layer for 
non-linearity)

 Pooling layer

 Repeat Conv + ReLU + Pool

 Top layers are regular 
feedforward neural network which 
is usually fully connected layers 
(+ReLUs)

 Final layer outputs the prediction 
(e.g. softmax for class 
probabilities)

 Input kernel can be larger since generally 
only 3 sublayers (RGB channels)

 Conv layers use stacked small 3x3 kernels 
since it is more computationally efficient 
and perform better than larger

 Number of filters increases at higher layers
 Few low-level patterns, but more ways to 

combine

 Double #filters after pooling (stride 2)

 Flatten conv output before fully connected 
dense layer
 Add dropout to avoid overfitting

17

CNN ARCHITECTURES



 Variants of basic CNN 
architecture have been 
developed

 Benchmark with ImageNet 
Challenge
 Large scale with 1M images and 

1000 classes

 Much more complicated than any 
benchmark at the time (~2010)

 Dramatic drop in top-five error 
from 26% to 2.3% in 6 years
 Bigger is better

18

ILSVRC IMAGENET CHALLENGE



 Network of Yann LeCun (1998) 
[NYU] designed for handwritten 
digit recognition (MNIST)

 Images normalized at input

 No padding  smaller size each 
layer

 Average pool has learnable 
coefficient and bias term

 Limited C3-S2 map connections

 Output square Euclidean distance

 Similar cross-entropy

19

LENET-5

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


 2013 ImageNet winner
 17% top-5 error rate (26% for 2nd place)

 Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton [U Toronto]

 Similar to LeNet-5 but larger and 
deeper

 First to stack convolutional layers 
directly on top of one another (no 
pooling in between)

 To reduce overfitting
 50% dropout of layers F9 and F10

 Data augmentation

 Local response normalization used to 
inhibit neighboring feature maps
 Encourage different feature maps to 

specialize, push neighbors apart, and 
improve generalization

20

ALEXNET

ZF Net is an AlexNet variant with tweaked hyperparameters



 Popular technique from Hinton 2012 
and Srivastava et al. 2014
 1-2% accuracy boost (even SOTA)

 At each training step, a neuron has a 
probability of being ignored (dropped 
out)
 Neuron can be active during next training step

 Dropout rate generally between 10-50%
 20-30% for recurrent neural networks

 40-50% for CNNs

 Forces networks to diversify
 Neurons cannot co-adapt with neighbors

 Cannot rely only an a few input neurons

 Less sensitive to slights changes in input

 ~Average of many networks

21

DROPOUT



 Artificially increase training 
dataset size by generating 
realistic variants of training 
instances
 Ideally, shouldn’t be able to 

distinguish real from augmented 
example

 Reduces overfitting 
(regularization technique)

 Common augmentations
 Small shifts, rotation, resize (scaling)
 Horizontal flip – orientation 

invariance
 Vary contrast – lighting condition 

invariance

22

DATA AUGMENTATION



 2014 ILSVRC Winner
 <7% top-5 error rate

 Christian Szegedy et al. [Google]

 Current versions Inception-v3 and Inception-v4 
(GoogLeNet + ResNet)

 Much deeper architecture than previous 
CNN (large stack)
 Much fewer parameters (6M vs. 60M AlexNet)

 Inception layers for parameter efficiency

 Use of 1x1 convolutions as a bottleneck 
layers

 Local response normalization to learn a 
wide variety of features

 Classification task with multiple (max) pool 
to reduce size (avg. final 7x7 map)
 No need for multiple fully connected (FC) layers 

to save parameters

23

GOOGLENET (INCEPTION)



 Parallel convolutions
 3x3+1(S) = 3x3 kernel, stride 1, “same” padding

 All use ReLU activation

 2nd convolution layer
 Different kernel size for patterns at different 

scale

 Stacked conv for more complex patterns than 
single linear convolution

 Depth concat
 All layers have the same outputs size

 Stack 2nd layer outputs depthwise

 1x1 bottleneck layers
 Fewer output than input dimension

 Fewer parameters, faster training, improved 
generalization 

 Not spatial but depth patterns

24

INCEPTION MODULE



 2014 ILSVRC runner-up

 Simonyan and Zisserman [Oxford]

 Classical architecture

 Stacked 2-3 conv + pool layers

 Variants of 16 or 19 conv layers

 3 FC classification layers

 Used many 3x3 filters

25

VGGNET



 2015 ILSVRC winner
 <3.6% top-5 error rate

 Kaiming He et. Al [Microsoft]

 Deeper with fewer parameters
 152 layer winner

 Variants of 34, 50, and 101 layers

 Skip (shortcut) connections
 Signal passed into up one layer and a further 

layers ahead

 Build network on residual units (RUs)

 Batch normalization (pg 338)
 Better gradient conditioning (vanishing 

gradient)

 Standardize inputs then rescales and offsets 

 Acts as a regularizer (e.g. no need for dropout)

26

RESNET



 Signal feeding layer is also 
added to the output of a layer 
higher in the stack

 Instead of modeling function 
ℎ(𝑥), it models 𝑓 𝑥 = ℎ 𝑥 −
𝑥

 Faster weight update (0 
initialization)

 Regular networks output 0

 Skip connection copies input 
(identity function)

27

RESIDUAL LEARNING I



 Skip connection bypass layer 
blocking
 Input signal can propagate to 

higher levels

 Can train layers even if lower 
layers have not started learning 
yet

 Feature map size and depth 
change
 Skip connection prevents direct 

addition after resize

 1x1 convolution, stride 2, and 
output matched kernel size

28

RESIDUAL LEARNING II



 GoogLeNet variant
 Combines GoogLeNet + ResNet

 Inception modules replaced with 
depthwise separable convolution 
layer

 Chollet 2016 (Keras author)

 Separable convolution layer
 Separate spatial and depth 

 1 spatial filter per input channel

 Use on layers with many feature 
channels (not on input/early layers)

 Fewer parameters, less memory, 
fewer computations, and generally 
perform better

29

XCEPTION



 2018 ILSVRC winner
 Squeeze-and-Excitation Network

 2.25% top-5 error rate

 Built on Inception (SE-Inception) and 
ResNets (SE-ResNet)

 SE block
 Global average pool: mean of each 

feature map

 “Squeeze” (bottleneck)
 Dramatically reduce number of maps for low 

dimensional embedding of feature 
distribution

 Force SE block to learn general 
representations of feature combinations

 Output: recalibration vector (boost 
normally co-occurring features)

30

SENET



 Analyze output of attached 
unit to learn features that are 
usually most active together 
(depth search)

 Recognizes features that 
respond together (mouth, nose, 
eyes) and boosts features that 
are missing/low response (e.g. 
eyes)

 Recalibration steps solves 
ambiguity when feature is 
confused with something else 

31

SE BLOCK



 Don’t implement models from 
scratch by hand, use existing 
implementations

 Known as backbone network

 Models pretrained on ImageNet

 Good general features

 Models expect specific size and 
pre-processing (e.g. normalization)

 Only requires a few lines of 
code

 Transfer learning

 Utilize strong backbone and 
adjust last layers for a specific 
task

 Useful when not working with 
ImageNet classes (all the time) 
and with limited training data

 Initialize network with 
ImageNet weights and only 
train higher layers (e.g. 
classification or minimal conv)

32

PRETRAINED MODELS AND TRANSFER LEARNING



 Classification – identify the image 
class

 Localization – provide a bounding 
box for the image class
 Expressed as a regression task [x, y, 

w, h]
 Assumption of a single object per 

image
 Much of the work is in labeling the 

data with bounding boxes
 Many tools exist (e.g. VGG Image 

Annotator, LabelImg, OpenLabeler, 
ImgLab, LabelBox, Suervisely)

 Evaluated with intersection over 
union (IoU) the overlap

33

CLASSIFICATION AND LOCALIZATION



 Task of classifying and 
localizing multiple objects in 
an image

 Early attempts used a sliding 
window
 Run classification CNN over each 

window in the image

 Need search at scale (multiple 
passes)

 Get multiple responses to same 
object  NMS
 Objectness score to remove responses

 Merge responses with high IoU

34

OBJECT DETECTION



 Introduced by Long CVPR 
2015 for semantic segmentation

 Replace dense classification 
with convolutional layers
 Same number of operations but 

with different output tensor shape

 Allows processing input of any 
size (unlike dense layer with fixed 
input size)

 For larger image, equivalent to 
sliding CNN across image in 
blocks

35

FULLY CONVOLUTIONAL NETWORKS



 Fast(er) R-CNN
 Apply FCN approach with region proposals 
 Fast R-CNN uses Selective Search
 Faster R-CNN uses a small region proposal network to predict bounding boxes

 YOLO (you only look once) – major shift in approach with a single CNN 
pass
 Divide image into cells and predict 5 bounding boxes per cell
 Predicts bbox offset rather than absolute location (smaller range)
 Use of anchor boxes (bounding box priors) as prototypical object dimensions

 Trained with images of different scale  detect different scale

 SSD (single shot detector) 
 Better accuracy than YOLO
 Use of MultiBox with decreasing convolutional layers for detection scales
 More bounding box predictions than YOLO

36

OBJECT DETECTION ARCHITECTURES



 Each pixel is classified according to 
the class of the object it belongs
 Different objects of same class are not 

distinguished (panoptic segmentation)

 Traditional CNNs lose spatial 
resolution due to layer stride
 Need to “upsample” coarse feature map

 Use transposed convolutional layer

 Add skip connections for better 
resolution

 Instance segmentation – each object 
is distinguished from each other
 Mask R-CNN, Kaiming He 2017 as 

extension of Faster R-CNN to produce 
pixel mask for each bounding box

37

SEMANTIC SEGMENTATION


