ECGT782: MULTIDIMENSIONAL

DIGITAL SIGNAL PROCESSING
DEEP COMPUTER VISION USING CNNS

(Géron Chapter 14 http://www.ee.unlv.edu/~blmorris/ecg782

http://www.ee.unlv.edu/~b1morris/ecg782

2

OUTLINE

= Biological Inspiration

= Convolutional Layers
" Pooling Layers

» CNN Architectures

= Object Detection

" Semantic Segmentation

EVOLUTION OF COMPUTER VISION

= (Classical vision

= Hand-crafted features and
algorithm based on expert
knowledge

» (Classical machine learning

= Hand-crafted features (pre-
processing) but ML for
classification

= Deep learning

= Both features and classification
are learned

= End-to-end training (from pixels
to output)

Hand-crafted Hand-crafted
Input features algorithm | Ouput
(a) Traditional vision pipeline
.| Hand-crafted R Machine R
Input features | leaming [| Qutput
(b) Classic machine learning pipeline
Learned] Machine
Input features -] Learning :___’ Output

(c) Deep learning pipeline

DEEP CNN DOMINANCE IN CV

|152 layers| | 152 layers| | 152 layer]

16.4

2010 2011 2012 2013 2014 2014 2015 2016
Linetal Sanchez & Krizhevskyetal Zeiler& Simonyan & Szegedy etal Heetal Shaoetal
Perronnin {AlexNet) Fergus Zisserman (VGG) (GoogleNet) (Reshet)

Li, Johnson, and Yeung, 2019

A
5.1
2.3
2017 Human

Hu et al Russakovsky et al
(SENet)

90%

Object detection accuracy improvements

83.80%
. 83.50%
85% e
76.80%
VOC12 mAP 73.20%
75% —=O=C0CO MAP@L.5, .95] 0% 7 9% 69.70%
70% === COCO MAP@.5 ~f L 70.40% |
| (. o
65% /' 68.40%
58.50% 59-10'V*m..
60% \ RS 62.90%
L 59.20%
o 55%
= * 48.40%
L 53.70% ,
= 50% * [-a650%
45% 42.7:[?/6/;)
o 39.10%
40%)
’ 3593”’/ 41.80%
3% T - 36.20%
30%
21.90%]
25% 20%
19.70%
20%
15%
QQCS\ Q”b‘\()’\'&d"&Q@Q@Q@QQ\QO\G@;\Q@\
O WARVAURURURAURUR U
¢ RO SRR
‘ SO T R 9
\} @ O QN oL L RGN
R N R S
Q Q g ?’f“\q-é\ Q
< @ Al

Zou et al., “Object Detection in 20 Years: A survey, 2019

ARCHITECTURE OF THE VISUAL CORTEX

®» Modern CV is inspired by human
vision (sensory modules)

= Hubel and Wiesel showed that
neurons in the visual cortex had a
small local receptive field
®* Only reacted to stimuli in a limited
region of visual field (blue dashed circles)
= Lower-level neurons with simple
pattern response (e.g. lines of
specific orientation)

= Higher-level neurons with larger
receptive field and combination of
lower-level patterns

= Neurons at higher-levels only connected to
few at lower-level

CONVOLUTIONAL NEURAL NETWORK

® Stacked neuron architecture enables detection of complex

patterns in any area of the visual field = convolutional
neural networks (CNNs)

" Led to LeNet-5 architecture by Yann LeCunn for
handwritten number recognition (MNIST)

" Fully connected layers and sigmoid activations

= Convolutional layers and pooling layers

* Why not fully connected layers for images?

= Even small images have large number of pixels resulting in huge
networks

» CNNs solve this with partial connected layers and weight sharing

CONVOLUTIONAL LAYERS

= Neurons in the first layer are
not connected to every single
pixel in input image

Convolutional

= Connected to receptive field layer 2

= Stacked receptive field approach
® Hierarchical structure

Convolutional

= First layer — small low-level layer 1

features

= Higher-levels — assemble lower-
level features into higher-level
features

Input layer

® Structure is common in real-world
images

CONVOLUTIONAL LAYER CONNECTIONS

= Note: the actual operation
performed is cross-correlation |
(no-flipping) J
= Neuron (row, column) (i,) is
connected to neurons in previous
layer within receptive field
= Row [l,l +fh — 1]
= f, - height of receptive field
= Column [j,j+ f,, — 1]
= f, - width of receptive field
= Note: this is a causal filter though =
shown as symmetric
» Zero padding used to keep PR Zero padding
output/input layers of same size w

9

CONVOLUTIONAL LAYERS STRIDE

= Stride can be used to connect a
large input layer to smaller

[T 7
output layer

= Change the spacing the of the "
receptive field h

= Dramatically reduce model s =2 (7 A -

j - Ay

computational complexity =777
S d
(TS) \ /4\\ /4\\ i
®» Height and width stride can be <’ 7 7

different S, = 2

FILTERS

= Filters = convolutional kernels

= Size of the kernel is the receptive
field for the neuron Feature

map 1

ol *xw (R0 (AR

= Feature map — output of the e
“convolution” operation T

Featurre
map 2

= Highlights areas in an image that
activate the filter most

= For CNNs, the filters are not
defined manually!

= Horizontal filter

i

o e —

® Learn most useful filters for a task

= Higher layers will learn to combine
into more complex patterns

See Szeliski 2e, Ch 5.4.5

P
&
=
—
=
=
5
[
a
Z
<
U
—
T
=
&5
=
<@
Z.
~
—
=
—
-
>

STACKING MULTIPLE FEATURE MAPS 1

= Fach convolution layer has 1 convolutional
multiple filters Feature 0 layer 2
P /ET] “rep]
= Stacked 3D output (1 feature map , -
for each filter) by ™ A
Filters
= Fach neuron in a feature map
shares the same parameters e /)| convolutiona
(weights and bias) — N sy L
= Neurons in different feature maps AT "2 e
use different parameters o A

= Neuron’s receptive field applies to
all feature maps of previous layer

Input layer

Channels

= Note input images often have e
multiple sublayers (channels) Green

Blue

STACKING MULTIPLE FEATURE MAPS II

= Qutput of a neuron in a
convolutional layer

fh_]- f’w_]- fn’_l

Zi jk = by + SJ SJ SJ Tir 0 k! X W k! k

u=0 v=0 k=0

' =i X s, +u
§ =] X 8y +v

= Z; i - output of neuron in row i,
column, j, in feature map k of the
convolutional layer [

= b, - bias term for feature map k (in
layer 1)

= Tweaks overall brightness of feature map

k

Sn, Sy - vertical and horizontal
strides

fn, fw - height and width of receptive
field (kernel)

[+ - number of feature maps in
previous (lower layer)

X; it i - output of neuron located in

layer [— 1, row i’, column j', feature
map k

Wy v k! k - connection weight between
any neuron in feature map k of the
layer [and its input located at row
u, column v (relative to the
neuron’s receptive field), and feature
map k'

14

MEMORY REQUIREMENTS

® Though much smaller the fully connected networks, CNNs
still use significant amount of RAM

* During training, the reverse pass of backpropagation
requires all the intermediate values computed during the
forward pass
= Need to have enough for all layers in the network

» Forward pass can release memory after each layer is computed
(only two consecutive layers required)

® Qut-of-memory error

= Reduce mini-batch size, increase stride, remove layers, change
precision (16-bit vs 32-bit floats or use int), or distribute the CNN
across devices

POOLING LAYERS

= Subsample input in order to
reduce computational load,
memory usage, and number of
parameters (greduce risk of
overfitting)

= Aggregate over the receptive field

= Aggregate functions such as max
(most popular) or mean

= Max tends to work better by Max pooling layers (2x2 kernel, stride=2, no padding)
preserving only the strongest feature max pooling
—> cleaner signal, more invariance, 2030
less compute 112/ 37|
. 1220 30| O
® Stride gives downsampling 8 [12| 2| 0 /

112100f 25| 12 13| 8

79|20

= Pooling kernel size can be even 34|70 37| 4 \avirage pooling

POOLING LAYERS INVARIANCE

® Introduces some level of invariance
to small translations

= Small image shifts result in same
response

= Additionally small invariance to rotation
and scale with max pool
= Max pool every few CNN layers for
invariance at larger scale

m Useful when task should be invariant
(e.g. image classification)

= Drawbacks

= Destructive — 2x2, stride 2 drops 75% of
input values

= Invariance not always desirable (e.g.
semantic segmentation should have
equivariance)

" MaxPool2D

g

MaxPool2D

" MaxPool2D

CNN ARCHITECTURES

= Typical CNN architecture

= Stack a few convolutional layers
(each followed by ReLU layer for

non-linearity)
= Pooling layer D
= Repeat Conv + ReLU + Pool

= Top layers are regular
teedforward neural network which
is usually fully connected layers

(+ReLUs)

®= Final layer outputs the prediction
(e.g. softmax for class -
probabilities)

Pooling Convolution Pooling Fully connected

e Convolution
Input

Input kernel can be larger since generally
only 3 sublayers (RGB channels)

Conv layers use stacked small 3x3 kernels
since it is more computationally efficient
and perform better than larger

Number of filters increases at higher layers

= Few low-level patterns, but more ways to
combine

= Double #filters after pooling (stride 2)

Flatten conv output before fully connected
dense layer

= Add dropout to avoid overfitting

ILSVRC IMAGENET CHALLENGE

= Variants of basic CNN
architecture have been
developed

®* Benchmark with ImageNet
Challenge

= Large scale with 1M images and
1000 classes

® Much more complicated than any
benchmark at the time (72010)

®» Dramatic drop in top-five error
from 26% to 2.3% in 6 years

= Bigger is better

30 282

|152 layers| | 152 layers| [152 ayerd

16.4

11.7 - [19 jayers| |22 layers|

m#l: i

2010 2011 2012 2013 2015 2016 2017 Human

Lin et al Sanchez & Krizhevsky et al hao etal Hu etal Russakovsky et al
Perronnin {AlexNet,) Fergus Zisserman (VGG) (GoogleNet] :| tResNetﬁ (SENet)

LENET-5

= Network of Yann LeCun (1998)
INYU]| designed for handwritten
digit recognition (MNIST)

[| Images normalized at lnput Table 14-1. LeNet-5 architecture

Layer Type Maps Size Kernel size Stride Activation
= No padding = smaller size each Ot Folyconneced - 10 - - R
F6 Fully connected — 84 - - tanh
layer (5 Comolion 120 1x1 5x5 1 tanh
5 Avg pooling 16 S5x5 1x12 2 tanh
- Average pOOl has learnable 3 Comolution 16 10x10 5x5 1 tanh
° o . 52 Avg pooling b 4x14 2x1 2 tanh
COfolClent a’nd blaS term (1 Convolution 6 BX28 5x5 1 tanh
= Limited C3-S2 map connections bt 1 wemc - -
O Output square Fuclidean distance http://yann.lecun.com/exdb/lenet/index.html

= Similar cross-entropy

http://yann.lecun.com/exdb/lenet/index.html

ALEXNET

= 2013 ImageNet winner
= 17% top-5 error rate (26% for 24 place)

s Alex Krizhevsky, Ilya Sutskever, and Table 14-2. AlexNet architecture

Geoffrey Hinton [U TOl“OIltO] Layer Type Maps Size Kernel size Stride Padding Activation
= Similar to LeNet-5 but larger and Out — Fully connected — 1,000 - - Softmax
deeper F10 Fully connected - 4,096 - - - RelU

. . F9 Fully connected — 4,096 - - - RelU
® First to stack convolutional layers . |
directly on top of one another (no 9 Marpoolng 26 6x6 xS 2 valid -
v Convolution 256 Bx13 3x3 1 same RelU

pooling in between)

L (6 Convolution 384 1Bx13 3x3 1 same Rell
= To reduce overtitting 5 Convolution 384 13x13 3x3 1 same Rell
= 50% dropout of layers F9 and F10 S4 Maxpooling 256 13x13 3x3 2 valid -

= Data augmentation (3 Convolution 256 27x27 5x5 1 same RelU
® Local response normalization used to 2 Maxpooling 9% 27x27 3x3 2 valid -

inhibit neighboring feature maps (1 Convolution 96 55%55 1x11 4 valid RelU

= Encourage different feature maps to I Input 3 (RGB) 227'x 227 - - - -

specialize, push neighbors apart, and
improve generalization ZF Net is an AlexNet variant with tweaked hyperparameters

DROPOUT

= Popular technique from Hinton 2012
and Srivastava et al. 2014

= 1-2% accuracy boost (even SOTA)

= At each training step, a neuron has a
probability of being ignored (dropped
out)

= Neuron can be active during next training step

= Dropout rate generally between 10-50%

5 20-30% for recurrent neural networks

= 40-50% for CNNs
= Forces networks to diversify

= Neurons cannot co-adapt with neighbors

Dropped

= (Cannot rely only an a few input neurons

= Less sensitive to slights changes in input

= "~ Average of many networks

DATA AUGMENTATION

= Artificially increase training
dataset size by generating
realistic variants of training
Instances
"]deally, shouldn’t be able to
distinguish real from augmented
example
= Reduces overfitting
(regularization technique)

» Common augmentations
= Small shifts, rotation, resize (scaling)

= Horizontal flip — orientation
iIlV ari ance Figure 14-12. Generating new training instances from existing ones

= Vary contrast — lighting condition
invariance

GOOGLENET (INCEPTION)

2014 ILSVRC Winner
= <7% top-5 error rate
= Christian Szegedy et al. [Google|

= (Current versions Inception-v3 and Inception-v4
(GooglLeNet + ResNet)

Much deeper architecture than previous
CNN (large stack)

= Much fewer parameters (6M vs. 60M AlexNet)
Inception layers for parameter efficiency

Use of 1x1 convolutions as a bottleneck
layers

Local response normalization to learn a
wide variety of features

Classification task with multiple (max) pool
to reduce size (avg. final 7x7 map)

= No need for multiple fully connected (FC) layers
to save parameters

$

Max pool

112 288 64 64

Softmax

Fully connected

192, 3x3 + 2(S) P 144 32 1000 units
Local response 128 256 64 64 Dropout
normalization 128 24 40%
Convolution 160 224 64 64 Global avg pool
192, 3x3 + 1(S) b 112 24 1024
Convolution 192 208 48 64 384 384 128 128
64, 1x1 + 1(S) < 96 16 b 192 48
Local response Max pool 256 320 128 128
normalization 480, 3x3 + 2(S) 160 32
Max pool 128 192 96 64 Max pool
64, 3%x3 + 2(S) 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) 96 16 160 32

Input

}

t

}

Cb = inception module

INCEPTION MODULE

Parallel convolutions

3x3+1(S) = 3x3 kernel, stride 1, “same” padding
All use ReLLU activation

2nd convolution layer

Different kernel size for patterns at different
scale

Stacked conv for more complex patterns than
single linear convolution

Depth concat

All layers have the same outputs size
Stack 2" layer outputs depthwise

1x1 bottleneck layers

Fewer output than input dimension

Fewer parameters, faster training, improved
generalization

Not spatial but depth patterns

Depth
concat

N

Convolution Convolution Convolution Convolution
1x1 + 1(S) 3x3 + 1(S) 5x5 + 1(S) 1x1 + 1(S)
Convolution Convolution Max pool

1x1 + 1(S)

1x1 + 1(S)

3x3+1(S)

VGGNET

= 2014 ILSVRC runner-up

Input
224 x224x3

_[\,

__[\.\

= Simonyan and Zisserman |Oxford| D) oo LR e LR
2 times 2 times 3 times

m (Classical architecture

\\ |
= Stacked 2-3 conv + pool layers D | I\ R R R
1 512 x (3x3) 2X2, 1 512 x (3x3) 2x2 4096 0.5 1 (U
. Re stride 2x2 e stride 2x: Hel U | lU
= Variants of 16 or 19 conv layers FRI6S BmgS:
= 3 FC classification layers @

| | |
® Used many 3x3 filters & |» L -

I
‘ ’ Recurrent

Dense Convolution Recurrent Sequences Flatten Reshape

s %% £ L8N

Dropout Batchnorm Noise Pad Pool Pool Upsample

RESNET

= 2015 ILSVRC winner

= <3.6% top-5 error rate
= Kaiming He et. Al [Microsoft]

= Deeper with fewer parameters i
. Soft / Convolution
= 152 layer winner oftmax 11 128, 3x3+ 1(5)
= Variants of 34, 50, and 101 layers Fully connected / Convolution A
. . 1000 units 128, 3x3 + 1(S)
. Sklp (ShOI‘tCU.t) connections Global avg pool | /4 Convolution ReLU
= Signal passed into up one layer and a further 1024 ;oo A1) Skip
g p b y ! Convolution Batch
layers ahead —— Deepl — Y 128, 3x3 +2(S) . Norm
= Build network on residual units (RUs) 620;‘(’3?'2“10(';) 64,3x3+1(S) | BN+
: : Max pool \ , - Convolution RelLU
u \ Convolution
Batch normalization (pg 338) 64,353+ 2(8) |\ oy aoluton, 64 3% 1 118)
= Better gradient conditioning (vanishing Convolution Convolution _ _
gradient) 64, 7x7 + 2(S) \ 64, 3x3 + 1(S) Residual unit
.] \ Convolution |
= Standardize inputs then rescales and offsets Input "\l 64, 3x3 + 1(S)

= Acts as a regularizer (e.g. no need for dropout) 4

27

RESIDUAL LEARNING I

= Signal feeding layer is also
added to the output of a layer

higher in the stack h(x)
® Instead of modeling function h(x) I

h(x), it models f(x) = h(x) — - _ b -

Layer 2 % Layer 2

X A h(x) = 4 f(x) = h(x) - x
= Faster weight update (0 Cayer 4 r—

initialization) 1 -

= Regular networks output 0 Input Input

= Skip connection copies input
(identity function)

RESIDUAL LEARNING II

= Skip connection bypass layer 4 b
. T
blocking
® Input signal can propagate to %
higher levels ,',:: 7
= Can train layers even if lower ' X — Residua
. 00 e nits
layers have not started learning -
yet | T - /
: _ Layer blocking
= Feature map size and depth X = o roronagaton .
Chaﬂge = Layer not learning —
= Skip connection prevents direct
addition after resize ’, et
1 1 /” onvolution BN
= 1x1 convolution, stride 2., and BN e | Someen T
output matched kernel size 128.1:0+268) | [Convouion, [Rel

“ﬁ
—

XCEPTION

» GoogLeNet variant

= Combines GoogLeNet + ResNet

= Inception modules replaced with
depthwise separable convolution
layer

= Chollet 2016 (Keras author)
= Separable convolution layer
= Separate spatial and depth
= 1 spatial filter per input channel

= Use on layers with many feature
channels (not on input/early layers)

= Fewer parameters, less memory,
fewer computations, and generally
perform better

Feature
map 1 _

map 2 |

Regular convolutional
~ layer with depthwise-
only filters (1x1)

Spatial-only filters
(1 per input channel)

SENET

= 2018 ILSVRC winner
= Squeeze-and-Excitation Network
= 2.25% top-5 error rate
= Built on Inception (SE-Inception) and

ResNets (SE-ResNet)

= SE block

Global average pool: mean of each
feature map

“Squeeze” (bottleneck)

= Dramatically reduce number of maps for low
dimensional embedding of feature
distribution

= Force SE block to learn general
representations of feature combinations

Output: recalibration vector (boost
normally co-occurring features)

x|
SE block SE block
Inception module Residual unit
4 * - -

Sigmoid

Dense
RelLU

Dense

Global avg pool

A

31

S BLOCK

= Analyze output of attached
unit to learn features that are

usually most active together
(depth search)

» Recognizes features that | \ | |
respond together (mouth, nose, | /;D" >

eyes) and boosts features that | ‘ SE block " (00)
. . Feature maps 1.0 Recalibrated
are missing/low response (e.g. 19| feature maps
eyes) i

® Recalibration steps solves
ambiguity when feature is
confused with something else

PRETRAINED MODELS AND TRANSFER LEARNING

®* Don’t implement models from ® Transfer learning

scratch by hand, use existing = Utilize strong backbone and
implementations adjust last layers for a specific
task

= Known as backbone network
® Useful when not working with

ImageNet classes (all the time)
and with limited training data

® Models pretrained on ImageNet
» (Good general features

= Models expect specific size and
pre-processing (e.g. normalization) ® Initialize network with

ImageNet weights and only
train higher layers (e.g.
classification or minimal conv)

® Only requires a few lines of
code

CLASSIFICATION AND LOCALIZATION

» (Classification — identify the image
class

= Localization — provide a bounding
box for the image class
= Expressed as a regression task [x, y,
w, h]
= Assumption of a single object per
image

® Much of the work is in labeling the
data with bounding boxes
= Many tools exist (e.g. VGG Image
Annotator, Labellmg, OpenLabeler,
ImgLab, LabelBox, Suervisely)
= Evaluated with intersection over
union (IoU) the overlap

OBJECT DETECTION

= Task of classifying and
localizing multiple objects in
an lmage

= Farly attempts used a sliding
window

= Run classification CNN over each
window in the image

= Need search at scale (multiple
passes)

= Get multiple responses to same
object 2> NMS

= Objectness score to remove responses

® Merge responses with high IoU

FULLY CONVOLUTIONAL NETWORKS
" Introduced by Long CVPR

2015 for semantic segmentation g e % oo
= Replace dense classification maps mape
with convolutional layers Convolution Convolution
. 10, 7x7 + 1(V) 10, 7x7 + 1(V)
= Same number of operations but I * s
with different output tensor shape £—7 feature g sty
= Allows processing input of any [mees ‘ maps
size (unlike dense layer with fixed E= cnw — — ONN —

input size)

® For larger image, equivalent to

sliding CNN across image in
blocks

224 x 224
image

OBJECT DETECTION ARCHITECTURES

= Fast(er) R-CNN
= Apply FCN approach with region proposals
= Fast R-CNN uses Selective Search
= Faster R-CNN uses a small region proposal network to predict bounding boxes

= YOLO (you only look once) — major shift in approach with a single CNN
pass

= Divide image into cells and predict 5 bounding boxes per cell
= Predicts bbox offset rather than absolute location (smaller range)
= Use of anchor boxes (bounding box priors) as prototypical object dimensions
= Trained with images of different scale = detect different scale
= SSD (single shot detector)
= Better accuracy than YOLO
= Use of MultiBox with decreasing convolutional layers for detection scales
= More bounding box predictions than YOLO

SEMANTIC SEGMENTATION

= Each pixel is classified according to
the class of the object it belongs

= Different objects of same class are not
distinguished (panoptic segmentation)

» Traditional CNNs lose spatial
resolution due to layer stride

= Need to “upsample” coarse feature map

Skip connection

= Use transposed convolutional layer Feature map \ -
= Add skip connections for better u
. Y L - + — -
resolution + x2 x16 0

A [N R
1 Ay L

® Instance segmentation — each object
is distinguished from each other
= Mask R-CNN, Kaiming He 2017 as

extension of Faster R-CNN to produce
pixel mask for each bounding box @' »

(c) Semantic segmentation (d) Instance segmentation

Downsampling Upsampling” T T T T

bottle bottle

