ECGT782: MULTIDIMENSIONAL

DIGITAL SIGNAL PROCESSING
INTRO TO ARTIFICIAL NEURAL NETWORKS

(Géron Chapter 10 http://www.ee.unlv.edu/~blmorris/ecg782

http://www.ee.unlv.edu/~b1morris/ecg782

2

OUTLINE

= Biological Inspiration

® Logic Computation with Neurons

" T'he Perceptron

= The Multilayer Perceptron and Backpropagation
= Regression MLPs

» Classification MLPs

FROM BIOLOGICAL TO ARTIFICIAL NEURONS

= Artificial neural networks (ANNs) first introduced in 1943
= Fixcitement with ANNs waned in the 1960s

= 1980s had renewed interest but was overtaken in the 1990s
with ML techniques such as SVM

= Since 2010s major renewed interest
» Huge quantities of data are available to train networks

= Major computing power increases for reduced training times (GPU
and cloud)

®* Improved training algorithms
® Local optima issue rare

= Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

BIOLOGICAL NEURONS

® Cell mostly found in animal brains
® Produce short electrical impulses \ (/[

Cell body

Telodendria

(action potentials, APs, or signals)
to make synapses release chemical
signals (neurotransmitters)

®* When a neuron receives enough
neurotransmitters it fires its own i e
electrical pulses

® Individual neurons are simple but / %oendrmcbranches
arranged into vast networks of
billions

= Fach neuron connected to thousands of
other neurons

Axon hilm Synaptic terminals

-~ ~

Golgi apparatus

= Neurons seem to be organized in
consecutive layers

LOGICAL COMPUTATIONS WITH NEURONS

= Artificial neuron proposed by
McCulloch and Pitts

= Simple binary inputs and one
binary output

= Activates output when certain
number of inputs on/active
®* Fiven with the simple model,
any logical proposition can be
computed
» Basic building block networks

can be combined for more
complex logical expressions

= Building block networks

THE PERCEPTRON I (TLU)

* Invented by Frank Rosenblatt in
1957

= Inputs/outputs are numbers
(instead of binary)

= Based on threshold logic unit (TLU)
or linear threshold unit

® Inputs associated with a weight

* TLU computes weighted sum of
input

" 2= wyxy + WoXy + Waks (W) (w,) (w;) Weights

= Qutput after a step (threshold)
function X, X, Xy Inputs
= Heavyside of sign function

» TLU can be used as a simple linear
binary classifier

Output: h_(x) = step(x’ w)

g Step function: step(z)
Weighted sum: z=x"w

THE PERCEPTRON II

= Perceptron is a layer for TLU

= Fully connected (dense) layer —
all inputs connected to all

Outputs
Nneurons ;
\
® Input neuron — pass value TLU - -) g;teﬁ“t
through unchanged -
m Bj _ -
Bias neuron — always outputs 1 ie newron \) :nput
| tputs 1 ayer
(always outputs 1) B v
= Example: Multilabel classifier Input neuron o
. (passthrough) 1 2
= 2 mputs 3 outputs Inputs

= (Can classify into three binary
classes based on two input values

THE PERCEPTRON III

= Qutput of fully connected layer = Perceptron training — reinforce

hy »(X) = ¢(XW + b) connections that reduce
= X — matrix of input features prediction error
= W — weight matrix (all weights Wl.(,}th step) _ w;j+ n(yj — yj)xi

between input and neurons , ,
) " w; ; - connection weight between

" One row per input neuron ith input and jth output neuron

®* One column per neuron layer

= b — bias (weights) vector - fi - ith input value
= y; - perceptron output of jth

" ¢ — activation function (e.g- step) neuron

, " y; - target (ground truth) output
= Produces linear (non-complex) of jth neuron

decision boundary = 17 — learning rate

MULTILAYER PERCEPTRON (MLP)

= Stack TLU layers for more
complicated functions

= Input layer - passthrough

®* Hidden layer — intermediate TLU
layer

= Qutput layer — final fully
connected TLU layer

= Lower layers — closer to input
= Upper layers — closer to output

= Deep neural network (DNN)
has many hidden layers

10

BACKPROPAGATION I

= FEffective method to train a MLP developed in 1986

» Gradient Descent method with efficient gradient
computation technique

® Single forward-backward pass through network to
compute gradient of network error for all model
parameters

= Can update all connection weights and bias terms
® Backpropagation uses reverse-mode autodiff to
automatically compute gradients (Appendix D)

BACKPROPAGATION II

®= Process full dataset each epoch

= Use mini-batch at each iteration — larger more efficient and more stable gradient
but requires more memory

= Mini-batch of input is sent through the MLP in a forward pass (from input
to output prediction)

= All intermediate results (from hidden layers) are saved for backward pass
= Measure current network prediction error

= Use of loss function to define error metric
= Compute contribution of each connection to the total error

» Performed backward from output through hidden layers back to input using the
chain rule

» Perform Gradient Descent step to adjust all connection weights
= Using the error gradients from the backward pass

ACTIVATION FUNCTIONS

= Cannot use step for activation
since it has no gradient
information

= Sigmoid (logistic) function
= 0(z) =1/(1 + exp(—2))
= S-shaped between [0, 1]

= Hyperbolic tangent function
= tanh(z) = 20(22) — 1

= Qutput between [-1,1] helps speed
convergence

= Rectified Linear Unit function
= ReLU(z) = max(0,z)

= Not differentiable, but works well
and fast so popular

1.2

1.04

0.8

0.6

0.4 1

0.2 1

0.0

-0.2

Activation functions
add non-linearity!

REGRESSION MLPs

= Single output neuron = [,oss function

= Mulivariate regression requires an

= Mean squared error (L2 norm)
output neuron for each output

dimension = Mean absolute error (L1 norm)

= 2: (x,y) for center of object when there are a lot of outliers

m 4]:O .(x,y,h,w) for a bounding box around s Huber loss is a combination
object

= Qutput activation
= No activation — no limits on output ® Regression MLP summary

I‘ange Of Value Table 10-1. Typical regression MLP architecture
Hyperparameter Typical value
u _ ypeparameter ___Typialaee |
ReLU or SOftplus (SmOOth ReLU) # input neurons One per input feature (e.g., 28 x 28 = 784 for MNIST)
posit ive Out put Only # hidden layers Depends on the problem, but typically 1to 5
neurons per hidden layer Depends on the problem, but typically 10 to 100
n Scaled SlngId/tanh — flxed Out put # output neurons 1 per prediction dimension
Hidden activation ReLU (or SELU, see Chapter 11)
ra’nge Output activation None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)

Loss function MSE or MAE/Huber (if outliers)

14

CLASSIFICATION MLPs I

= Single class (binary) — single output neuron

= Qutput between |0,1] using sigmoid

= Estimate probability of positive class (confidence)
® Multilabel binary — output neuron for every binary
classification
= Qutput between |0,1] using sigmoid
= Qutput probabilities do not sum to one
= Combinational output space

CLASSIFICATION MLPs II

= Multiclass classification — multiple
possible classes (e.g. number 0-9)

A
= Fach input instance can only belong to a o
single class (>2) |

= One output neuron per class

= Softmax activation on the full output
layer (Chapter 4 pg 148)

"\ Softmax
, output layer

%, Hidden layer
," (e.g., ReLU)

_exp(su)
Zj exp(s;(x))

n s(x) = (H(k))Tx

" B =o(s(),

= FEstimated probabilities between [0,1] and X4 X5

» (Classification summary

Table 10-2. Typical classification MLP architecture

sum to 1

= Cross entropy loss

-] (0) _ l Z Z (l) l A (l) Hyperparameter Binary dassification Multilabel binary dassification Multiclass dlassification
_ m [k yk Og pk Input and hidden layers Same as regression ~ Same as regression Same as regression
output neurons 1 1 per label 1 per dass

" Pel:lallzes mOdelS Wlth IOW prObablllty Output layer activation Logistic Logistic Softmax
eStlmate fOI' the ground trUth ClaSS Loss function (ross entropy (ross entropy (ross entropy

IMPLEMENTATION

= Follow Chapter 2 for machine setup (Get the Data
section)

» Highly recommend use of Anaconda Python for setting
up your sandbox

m Google Colab is convenient and free with GPU access
m Additional notes from Stanford

® Read and follow Implementing MLPs with Keras
section =2 installation of Keras and TensorFlow?2

https://www.anaconda.com/download/
https://colab.research.google.com/
https://cs231n.github.io/setup-instructions/

FINE-TUNING HYPERPARAMETERS

Many hyperparameters must be tweaked for good model performance

Grid search can evaluate different hyperparameter combinations =2 slow
= Book gives other libraries for hyperparam optimization

= These typically explore more in good hyperparameter space

Number of hidden layers = deeper is better

= Transfer learning — reuse lower layers from network trained on large dataset (good
initialization and avoid cost of learning from scratch)

Number of neurons per hidden layers = use fixed size

Activation function = ReLU works well

Learning rate — very important parameter, need learning schedule
Optimizer — more than just mini-batch gradient descent (e.g. Adam)
Batch size — significant impact on model performance and training time

= Large batch — efficiently process for reduced training time - maximize for GPU with
learning rate warm-up (schedule)

= Small batch — more stable early in learning and good generalization

