
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL 
DIGITAL SIGNAL PROCESSING
INTRO TO ARTIFICIAL NEURAL NETWORKS

1

Géron Chapter 10

http://www.ee.unlv.edu/~b1morris/ecg782


Biological Inspiration

Logic Computation with Neurons

The Perceptron

The Multilayer Perceptron and Backpropagation

Regression MLPs

Classification MLPs

2

OUTLINE



 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s 
with ML techniques such as SVM

 Since 2010s major renewed interest 
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU 
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

3

FROM BIOLOGICAL TO ARTIFICIAL NEURONS



 Cell mostly found in animal brains
 Produce short electrical impulses 

(action potentials, APs, or signals) 
to make synapses release chemical 
signals (neurotransmitters)

 When a neuron receives enough 
neurotransmitters it fires its own 
electrical pulses

 Individual neurons are simple but 
arranged into vast networks of 
billions
 Each neuron connected to thousands of 

other neurons

 Neurons seem to be organized in 
consecutive layers

4

BIOLOGICAL NEURONS



 Artificial neuron proposed by 
McCulloch and Pitts
 Simple binary inputs and one 

binary output

 Activates output when certain 
number of inputs on/active

 Even with the simple model, 
any logical proposition can be 
computed

 Basic building block networks 
can be combined for more 
complex logical expressions

5

LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions



 Invented by Frank Rosenblatt in 
1957

 Inputs/outputs are numbers 
(instead of binary)

 Based on threshold logic unit (TLU) 
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of 

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3
 Output after a step (threshold) 

function
 Heavyside of sign function

 TLU can be used as a simple linear 
binary classifier

6

THE PERCEPTRON I (TLU)



 Perceptron is a layer for TLU 
 Fully connected (dense) layer –

all inputs connected to all 
neurons

 Input neuron – pass value 
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary 
classes based on two input values

7

THE PERCEPTRON II



 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights 
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector 

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex) 
decision boundary

 Perceptron training – reinforce 
connections that reduce 
prediction error 

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 − ො𝑦𝑗 𝑥𝑖
 𝑤𝑖,𝑗 - connection weight between 

ith input and jth output neuron

 𝑥𝑖 - ith input value

 ො𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output 
of jth neuron

 𝜂 – learning rate

8

THE PERCEPTRON III



 Stack TLU layers for more 
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU 
layer

 Output layer – final fully 
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN) 
has many hidden layers

9

MULTILAYER PERCEPTRON (MLP)



Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient 
computation technique

 Single forward-backward pass through network to 
compute gradient of network error for all model 
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to 
automatically compute gradients (Appendix D)

10

BACKPROPAGATION I



 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient 

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input 
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the 

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass

11

BACKPROPAGATION II



 Cannot use step for activation 
since it has no gradient 
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧 )

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed 
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well 
and fast so popular

12

ACTIVATION FUNCTIONS

Activation functions 
add non-linearity!



 Single output neuron
 Mulivariate regression requires an 

output neuron for each output 
dimension 

 2: (x,y) for center of object 

 4: (x,y,h,w) for a bounding box around 
object

 Output activation 
 No activation – no limits on output 

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output 
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm) 
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary

13

REGRESSION MLPs



Single class (binary) – single output neuron

 Output between [0,1] using sigmoid 

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary 
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space

14

CLASSIFICATION MLPs I



 Multiclass classification – multiple 
possible classes (e.g. number 0-9)
 Each input instance can only belong to a 

single class (>2)

 One output neuron per class

 Softmax activation on the full output 
layer (Chapter 4 pg 148)

 ො𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

σ𝑗 exp(𝑠𝑗 𝑥 )

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and 
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
σ𝑖σ𝑘 𝑦𝑘

(𝑖)
log Ƹ𝑝𝑘

𝑖

 Penalizes models with low probability 
estimate for the ground truth class

 Classification summary

15

CLASSIFICATION MLPs II



Follow Chapter 2 for machine setup (Get the Data 
section)

 Highly recommend use of Anaconda Python for setting 
up your sandbox

 Google Colab is convenient and free with GPU access

 Additional notes from Stanford

Read and follow Implementing MLPs with Keras
section  installation of Keras and TensorFlow2

16

IMPLEMENTATION

https://www.anaconda.com/download/
https://colab.research.google.com/
https://cs231n.github.io/setup-instructions/


 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations  slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers  deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good 

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers  use fixed size 
 Activation function  ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time  maximize for GPU with 
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization

17

FINE-TUNING HYPERPARAMETERS


