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MOTIVATION

= Complicated signals (functions) VNV
can be constructed as a linear N\/\/\/\/\/\/\/\/\/\/\
combination of sinusoids VAVAVAVAVAVAN

= Mathematically compact
representation with complex
exponentials e/®t
= Introduced as Fourier series by
Jean Baptiste Joseph Fourier

= Initially considered periodic signals
= Later extended to aperiodic signals

= Powertul mathematical tool

= Can go between “time” and
“frequency” domain proceSSing FIGURE 4.1 The function at the bottom is the sum of the four functions above it.

Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



PRELIMINARY CONCEPTS

= Complex numbers ® Fourier Transform
" C=RAjI = F(w) = F{f(O)} =] fFeT?™dt
= ("=R—]jI = 4 : continuous frequency variable
" C=Cle” " f(O) = FHF(W) =
= Using Euler’s formula f F(ﬂ)eﬁﬂﬂtd‘u

= /% =cosO +jsinb

= Fourier Series = Notice for real f(t) this generally

= Express a periodic signal as a sum of results in a complex transform
sines and cosines

= f(t) = Xpc,e/om

1 o
f o= feTn

B Wy = 27T/T



RECTANGLE WAVE EXAMPLE

sin TuW
O =
F(u) = AW —
= Rectangle in time gives sinc in

frequency
= See book for derivation

= Frequency spectrum

" |Fl = Aaw =

= (Consider only real portion
= Note zeros are inversely
proportional to width of box

®* Wider in time, narrow in
frequency

sin Ttuw

(1) F(p) [F(wl

AW

-W/2 0 W/2

foN .

41| | @

FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.
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CONVOLUTION PROPERTIES

" Very important input-output relationship between a
input signal f(t) and an LTI system h(t)

=f(t) *h(t) = | f(Dh(t — 1)dr

® Dual time-frequency relationship
" f(t) *h(t) © F(uwH(u)
= f()h(t) & F(u) » H(u)

» Convolution-multiplication relationship
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SAMPLING

. . o
= Convert continuous signal to a x :

discrete sequence ”\/\/\\/\/\

(a) A continuous
tunction. (b) Train

= Use impulse train sampling 0 “C olimpecsed

to model the

sar(t) sampling process.

= f() = f(©)sar(t) = | it

(d) Sample values

2 f(03(t ~ naT) NN,
C -1 roperty of the

= §(t — nAT) - impulse response at oy A i (e

time t = nAT

+ S vl A1 gren
N fk — f(kAT) ‘.._ZAT;kAj?(kaT)MT

t




FOURIER TRANSFORM OF SAMPLED SIGNAL

a
b
g
d

= F(u) =F{f©} = F(u) S
S =236 (u-2) /N

0 band-limited

-~ function.

(b)~(d)
Transforms of the
corresponding

F(p)
train
. . . sampled function
m See section 4.2.3 in the book for details .. underthe
1 I | } = over-sampling,

= F'T of impulse train is an impulse

= Note spacing between impulses are AT CUAT 0 AT 2/AT critically-
inversely related F(u) iﬁﬂffﬁ?ng.
respectively.
~ 1 n
P = 3 F (k) /WW
= Sampling creates copies of the AT 1aT 0 1aT 2jar o

F(p)

original spectrum
= Must be careful with sampling period
to avoid aliasing (overlap of

Spectrum) _3/AT —2/AT —1/AT 0  1/AT 2/AT  3/AT




SAMPLING THEOREM

= Conditions to be able to recover f(t) completely = Sampling theorem
after sampling:

= Requires bandlimited f(t)

= F(u) =0 for |u| > pUmax
= (Can isolate center spectrum copy from its

1
- AT > 2Umax
= Nyquist rate 2umax

= Recovery with lowpass filter
= H(u) = AT for |u| < pumax

neighbors
g F(p)
Flu) FIGURE 4.7
(a) Transform of a
band-limited — Mmax M max
function. S e
(b) Transform l l
resulting from i i f Y f f M
critically sampling —2/AT -1/AT | 0 I 1/AT 2/AT
the same function. l I
I I
I H(u) |
I I
| |
— M max 0 M max H l AT l
I':"' a
() b
Cc
1 I I
FIGURE 4.8 I 0 I
Extracting one [ i
period of the F(u) = H(u)F(p)
—i " transform of a | |
max max band-limited I I
l l function using an : :
‘ ideal lowpass | |
' ‘ ! K filter. | I
-1 0 1 l — i
2AT 2AT AT l'-'{max 0 JLL max



ALTASING

| | | N
T T T f
—3/AT —2/AT —1/AT1 0

|
|
HQ
|
|

= (Corruption of recovered signal if not
sampled at rate less than Nyquist .
rate i

= Spectrum copies overlap

= High frequency components corrupt

lower frequencies .
b
c

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
. . . (Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
| In re allty th]_S 1S a]_ W ays present lowpass filter used in Fig. 4}.8(b).. ((;) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(u) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.

= Most signals are not bandlimited
= Bandlimited signals require infinite time

duration ,
= Windowing to limit size naturally causes
distortion
. . . . . —| AT |+
= Use anti-aliasing filter before sampling
. . FIGURE 4.10 Illustrati f aliasing. Th der- led functi black dots) look:
= Filter reduces hlgh frequency CompODeﬂtS like a sine waveulslff\?irllcg:nacf)re?pﬁig% mu:h].llgwgii?f tTle fFe[l]CuglI::y(ofa fhe czrft)ingguz

signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis
occur every second. AT is the separation between samples.



DISCRETE FOURIER TRANSFORM

= Discussion has considered continuous signals (functions)
= Need to operate on discrete signals

= DFT is a sampled version of the sampled signal F'T in one period

= F(u) = X, fe/2mneT

= Sample in frequency evenly (M) over a period
m

© K= ar
= By = anne—jann/M
= m=012,.. M—1
= M samples of f(t), {f,}, results in M DFT values
= Note: implicitly assumes samples come from one period of periodic signal

= [nverse DFT

_ 1 2mmn/M
= Fy _MZmFme] /



SAMPLING/FREQUENCY RELATIONSHIP

= M samples of signal with sample period AT
= Total time - T = MAT

® Spacing in discrete frequency

1 1
lAu:—:—
MAT T

= Note the switch to u for discrete frequency

1

= Total frequency range =2 ) = MAu = o

® Resolution of DFT is dependent on the duration T of the
sampled function

® (Generally the number of samples

m See fft.m in Matlab to test this
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EXTENSIONS TO 2D

= All discussions can be extended
to two variables easily

= Add second integral or
summation for extra variable

= 2D rectangle

. F (,Ll, V) — ATY [sin (muT) [sin (mvZ)

tul vz

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the f-axis, so the spectrum is more “contracted” along the u-axis.
Compare with Fig. 4.4.



IMAGE ALIASING

® Temporal aliasing appears in video

" Wheel etfect — looks like it is spinning opposite direction

= Spatial aliasing is the same as the previous discussion—=>
now in two dimensions

ab

Footprint of an
~ " FIGURE 4.15
Two-dimensional el DD S e

ideal lowpass
/(box) filter
-
Fourier transforms

i
lu"ll']ﬂ..‘( ;;lllﬂ.‘( ' ’
sampled, and d 3
C
i g

of (a) an over-

(b) under-sampled
band-limited FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
® K function. are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d). the

sides of the squares are 0.9174 and 04798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.



IMAGE INTERPOLATION AND RESAMPLING

= Used for image resizing

= Zooming — oversample an image
= Shrinking — undersample an
image
= Must be careful of aliasing

= Generally smooth before downsample

abc

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)



FOURIER SPECTRUM AND PHASE ANGLE

= F(u,v) = |F(u,v)|e/P@v)
= Magnitude, spectrum
= |F(u,v)| = [R?(u,v) + I*(u, v)]*/?
= Phase angle

= /oY) = arctan [I(u’v)]

R(u,v)

" Spectrum is component we
naturally specify while phase is
a bit harder to visualize

= Spectrum

._’y .—’v
. '
X u
._’v ._’v
: :
u u

ab
o f el

FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners

the top left.



SPECTRUM

= Translation does not affect &

FIGURE 4.25

C Tl o ¥ l
spectrum e
translated,
and (b) the

3 3 3 corresponding
= Wide in space =2 narrow in o
(c) Rotated
rectangle,
frequency e
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig.4.24(a).

= Orientation clearly visible in
spectrum




PHASE

® Difficult to describe phase given image content

alblic

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig.4.25(c).

= a) centered rectangle, b) translated rectangle, c) rotated rectangle



SPECTRUM PHASE MANIPULATION

®* Both spectrum and phase are important
for image content

= Despite specifying filters by specturm

= a) woman image, b) phase
= ¢) reconstruction using only phase
= Able to “see” woman

= d) reconstruction using only magnitude
spectrum

® [Lose “woman”

= ¢) reconstruction with spectrum of
rectangle and phase of woman

. abc

= Still “see” a woman A
[ f) I'eCOIlStI'U_CtiOﬂ Wlth phase Of FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
I'eCt angle and SpeCt rum Of woIlnan using the phase angle corresponding to the woman and the spectrum corresponding to

the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
u LOOkS more rectangle spectrum of the woman.
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FREQUENCY DOMAIN FILTERING BASICS

» Generally complicated relationship between image and transtorm

* Frequency is associated with patterns of intensity variations in image

» Filtering modifies the image spectrum based on a specific objective

= Magnitude (spectrum) — most useful for visualization (e.g. match visual
characteristics)

= Phase — generally not useful for visualization

45 degree lines < TS

Off center line

ab

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)



FUNDAMENTALS

» Modify FT of image and
inverse for result

= g(x,y) = FH(u,v)F(u,v)]
= g(x,y) : output image [M X N]

= F(u,v) : FT of input image f(x,y)
[M X N|

= H(u,v) : filter transfer function [M X
N]

= F~1:inverse FT (iFT)
®* Product from element-wise array
multiplication

= Fixample of simple filter to
remove average intensity

FIGURE 4.30

Result of filtering

the image in Remove DC (0,0)
Fig. 4.29(a) by

setting to O the term from F(u, U)

term F(M/2, N/2)
in the Fourier
transform.



EXAMPLE FILTERS

Addition of small
offset to retain DC
component after HP

////,l?"‘.“" “\\

AN

allblle
de £

FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using
Eq.(4.7-1).We used a = 0.85 in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).



DFT SUBTLETIES

= Multiplication in frequency is
convolution in time

= Must pad image since output
is larger
= Will pad f(x,y) image but not h(x,y)
= H(u,v) designed and sized for padded
F(u,v)
= DFT implicitly assumes a periodic
function

= Image (dotted) copied vertically and
horizontally

ab

FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without
image padding. (b) Periodicity after padding with Os (black). The dashed areas in the
center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are
superimposed for clarity; they are not part of the data.)



PHASE ANGLE

= Generally, a filter can affect the phase of a signal

» Zero-phase-shift filters have no etfect on phase
= Focus of this chapter

® Phase is very important to image

= Small changes can lead to unexpected results

ab

FIGURE 4.35

(a) Image resulting
from multiplying by
0.5 the phase angle
in Eq. (4.6-15) and

. then computing the
IDFT. (b) The
result of
multiplying the
phase by 0.25. The
spectrum was not
changed in either of
the two cases.




FREQUENCY DOMAIN FILTERING STEPS

1. Given image f(x,y) of size M X N, get padding (P, Q)
= Typically use P =2M and Q = 2N

2. Form zero-padded image f,(x,y) of size P X Q

3. Multiply f,(x,y) by (=1)**Y to center the transform

= Needed when H(u,v) is provided (center-defined)

4. Compute DFT F(u,v)
5. Compute G(u,v) = H(u,v)F(u,v)
= Get real, symmetric filter function H(u, v) of size P X Q with center at
coordinates (g,%)

6. Obtain (padded) output image from iF'T
= g,(x,y) = {real [F'G(u, v)]}(—1)**
7. Obtain g(x,y) by extracting M X N region from top left quadrant of
Ip(x,Y)



EXAMPLE: FREQUENCY PROCESSING STEPS

b
e

abec
de f
g h

FIGURE 4.36
(a)An M X N
image, f.

(b) Padded image,
fpofsize P X Q.
(c) Result of
multiplying f, by
(_ 1)I+}f‘

(d) Spectrum of
F,. (¢) Centered
Gaussian lowpass
filter, H, of size

P x Q.

(f) Spectrum of
the product HF,.
(2) &p. the product
of (—=1)*"Y and
the real part of
the IDFT of HF,.
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of g,,.




RELATIONSHIP TO SPATIAL FILTERING

® Frequency domain multiplication = convolution in
spatial domain

" h(x,y) © H(u,v)
» Use of a finite impulse response
® GGenerally use small filter kernels which are more etficient
to implement in spatial domain
®" Frequency domain can be better for the design of filters
= More natural space for definition
» Use iFT to determine the “shape” of the spatial filter



31

OUTLINE

» Background Concepts

= Sampling and Discrete Fourier Transform

= Extension to Two Variables / 2D DFT Properties
" Frequency Domain Filtering Basics

® Smoothing

® Sharpening

= Selective Filtering

®" Implementation



I 32

SMOOTHING

» High frequency image content comes from edges and
Nnolise

= Smoothing/blurring is a lowpass operation that
attenuates (removes) high frequency content

» Consider three smoothing filters
» [deal lowpass — sharp filter

» Butterworth — filter order controls shape

» (Gaussian — very smooth filter
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IDEAL LOWPASS FILTER

(1 Dwwv) <D
“ H(u,v) = {O D(u,v) > Dg

= DG,v) = | (u- )+ (v- 9)2]

2
= Pass all frequencies D, distance from DC
= D, is the cuttoff frequency

H(u, v) , Hw )
\
1

> D (u, v)

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.




IDEAL LOWPASS EXAMPLE

aaaaaaadd

ab

FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.

ringing

ab

FIGURE 4.43

(a) Representation
in the spatial
domain of an
ILPF of radius 5

and size

1000 < 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.

blurring

od
I

saaaaaadd
ienmn oummB |
i34 I

T P saaannaa

% Y
T e AT

aaaaaaad aaaaaaadd

ab
cd
& i

FIGURE 4.42 (a) Original image. (b)~(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13,6.9,4.3,2.2, and 0.8% of the total, respectively.




LP SPECTRUM VIEW

(c)

Figure 5.25: Low-pass frequency-domain filtering—for the original image and its spectrum
see Figure 3.7. (a) Spectrum of a low-pass filtered image, all higher frequencies filtered out.
(b) Image resulting from the inverse Fourier transform applied to spectrum (a). (c) Spectrum of
a low-pass filtered image, only very high frequencies filtered out. (d) Inverse Fourier transform
applied to spectrum (c). @ Cengage Learning 2015.
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BUTTERWORTH LP FILTER

1
u H(u; v) T 1+[D(u,v)/DO]2n

= n — order of the filter (controls sharpness of transition)
= Cutoff generally specified as the 50% of max (Dy = 0.5)

H(u, v) H(f;:» v)
v 1.0

0.5

=D(u, v)

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.



BUTTERWORTH LP EXAMPLE

= No ringing is visible because of the
gradual transition from high to low
frequency in filter

= May be visible in higher-order filters
(n > 2)

= Trade-off frequency narrow main lobe
with sidelobe height

- | - CNO)
| /\ |

abcd
FIGURE 4.46 (a)-(d) Spatial representation of BLPFs fo d 1,2,5,and 20, a esponding intensity
profiles throu gl 1 the center of tl fll (th size in all ¢ l(ﬂ] 1000 'md ll l ff frequency is 5)

Observe how ringing incr a function of filter der.

.;’. a
1]

aaaaaaaa

wd
I

el
LI

saabBl23 | .22aaaaad
.......- ........
oo v XX} St
aaaaaaad aaaaaaad

ab

cd

ef

FIGURE445( )0 nal i (b)—(f)R ults of filte ¢ BLPFs of order 2,

with cutoff freque ntller n Fig 441(‘ p lFig.4.42.
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GAUSSIAN LOWPASS FILTER

" H(u,v) = e—DZ(u,v)/ZG2

" g — measure of spread; o = D, is the cutotf frequency

m T 1s also a (Gaussian

= No ringing because of smooth function

= A favorite filter for smoothing

H(u, v) H(u, v)
—? 1.0

0.667

}

FIGURE447 (a )P p ctiv pl t f GLPF transfer function. (b) Filter displayed a image. (c) Filter
radial ¢ ections for vario of D,.



GAUSSIAN LP EXAMPLE

= No ringing

= Not as much smoothing as
Butterworth 2

= Best for use when ringing is
unacceptable

= Butterworth better when tight
control of transition between
high and low frequency is
required

o
XY

aaaaaaadd

k d

»d
I

.oll&laaa \

e
[T

saaaaaaad

@
LE X J .
0 NN G
AR

aaaaaaad

ab
cd

L S
o000 =
At W

Srgesvie

aaaaaaad

FIGURE 4.48 (a) Original image. (b)—~(f) Results of filtering using GLPFs with cutoff
quencies at the radii shown in Fig. 4.41. Compare with Figs 4.42 and 4.45
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SHARPENING

= Use a highpass filter o ~of
" Hyp(w,v) =1—Hpp(u,v) O
m Jdeal b
0 D(uv)<D B
= H(u,v) = (w,v) 0
1 D(u,v) > D, -
= Butterworth A
) W ; D(u, v)
" H(u,v) = 1+[Dg /D (u,v)]2™ B
= (Gaussian
= H(u,v) = e"P*@)/20°
Qe * e

ghi

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



HIGHPASS EXAMPLES

aliblic
. . . FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.
E VAN

V1 I

\ \ “'

\ Y

i I/

abc

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain

highpass filters, and corresponding intensity profiles through their centers. abc
FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an IHPE.

abc

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

® Same ringing artifacts as ideal
lowpass




HP SPECTRUM VIEW

Figure 5.26: High-pass frequency domain filtering. (a) Spectrum of a high-pass filtered image,
only very low frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). (c) Spectrum of a high-pass filtered image, all lower frequencies filtered
out. (d) Inverse Fourier transform applied to spectrum (c). © Cengage Learning 2015.
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SELECTIVE FILTERING

= Bandpass/reject — operate on a ring in the frequency
spectrum

m See Table 4.6 for definitions

ab

FIGURE 4.63

(a) Bandreject
Gaussian filter.

(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity; it
is not part of the
data.

= Notch filters — operate on specific regions in the frequency
spectrum

= Move center of HP filter appropriately



NOTCH EXAMPLES

o "\.:.:.‘A:--- )
-
: FIGURE 4.64
(a) Sampled

newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.




NOTCH EXAMPLES II

ab
cd

FIGURE 4.65

(a) 674 X 674
image of the
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
interference
pattern. (¢) A
vertical notch
reject filter.

(d) Result of
filtering. The thin
black border in
(c) was added for
clarity; it is not
part of the data.
(Original image
courtesy

of Dr. Robert

A. West,
NASA/JPL.)

07

ab

FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of

Fig. 4.65(a).

(b) Spatial
pattern obtained
by computing the
IDFT of (a).



BP SPECTRUM VIEW

Figure 5.27: Band-pass frequency domain filtering. (a) Spectrum of a band-pass-filtered image,
low and high frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). © Cengage Learning 2015.

- b 8

- 4
RS
|! i ‘7

Figure 5.28: Periodic noise removal. (a) Noisy image. (b) Image spectrum used for image
reconstruction—note that the areas of frequencies corresponding with periodic vertical lines are
filtered out. (¢) Filtered image. © Cengage Learning 2015.
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IMPLEMENTATION ISSUES

" DF'T is separable

= Can compute first a 1D DFT over rows followed by the
1D DFT over columns

» Simplifies computations in 1D
= Practically use Fast Fourier Transform (FFT) to
computer all DET

= Computationally efficient algorithm that simplifies
problem by halving sequence repeatedly

= Efficiency requires M and N (size of image) to be
multiples of 2



