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ECG782: MULTIDIMENSIONAL 
DIGITAL SIGNAL PROCESSING
FILTERING IN THE FREQUENCY DOMAIN
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 Complicated signals (functions) 
can be constructed as a linear 
combination of sinusoids
 Mathematically compact 

representation with complex 
exponentials 𝑒 𝑗𝜔𝑡

 Introduced as Fourier series by 
Jean Baptiste Joseph Fourier
 Initially considered periodic signals 

 Later extended to aperiodic signals

 Powerful mathematical tool
 Can go between “time” and 

“frequency” domain processing
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MOTIVATION



 Complex numbers

 𝐶 = 𝑅 + 𝑗𝐼

 𝐶∗ = 𝑅 − 𝑗𝐼

 𝐶 = 𝐶 𝑒 𝑗𝜃

 Using Euler’s formula 

 𝑒 𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

 Fourier Series

 Express a periodic signal as a sum of 
sines and cosines

 𝑓 𝑡 = σ𝑛 𝑐𝑛𝑒
𝑗𝜔0𝑛𝑡

 𝑐𝑛 =
1

𝑇
𝑇׬ 𝑓 𝑡 𝑒−𝑗𝜔0𝑛𝑡

 𝜔0 = 2𝜋/𝑇

 Fourier Transform

 𝐹 𝜇 = ℱ 𝑓 𝑡 = ׬ 𝑓 𝑡 𝑒−𝑗2𝜋𝜇𝑡𝑑𝑡

 𝜇 : continuous frequency variable

 𝑓 𝑡 = ℱ−1 𝐹 𝜇 =
׬ 𝐹 𝜇 𝑒 𝑗2𝜋𝜇𝑡𝑑𝜇

 Notice for real 𝑓 𝑡 this generally 
results in a complex transform
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PRELIMINARY CONCEPTS



 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊

 Rectangle in time gives sinc in 
frequency

 See book for derivation

 Frequency spectrum

 𝐹 𝜇 = 𝐴𝑊
sin 𝜋𝜇𝑊

𝜋𝜇𝑊

 Consider only real portion

 Note zeros are inversely 
proportional to width of box 
 Wider in time, narrow in 

frequency
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RECTANGLE WAVE EXAMPLE



CONVOLUTION PROPERTIES

Very important input-output relationship between a 
input signal 𝑓 𝑡 and an LTI system ℎ(𝑡)

𝑓 𝑡 ∗ ℎ 𝑡 = ׬ 𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

Dual time-frequency relationship

 𝑓 𝑡 ∗ ℎ 𝑡 ↔ 𝐹 𝜇 𝐻 𝜇

 𝑓 𝑡 ℎ 𝑡 ↔ 𝐹 𝜇 ∗ 𝐻 𝜇

 Convolution-multiplication relationship
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 Convert continuous signal to a 
discrete sequence

 Use impulse train sampling

 ሚ𝑓 𝑡 = 𝑓 𝑡 𝑠Δ𝑇 𝑡 =
σ𝑛 𝑓 𝑡 𝛿(𝑡 − 𝑛Δ𝑇)

 𝛿 𝑡 − 𝑛Δ𝑇 - impulse response at 
time 𝑡 = 𝑛Δ𝑇

 Sample value

 𝑓𝑘 = 𝑓(𝑘Δ𝑇)
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SAMPLING



 ෨𝐹 𝜇 = ℱ ሚ𝑓 𝑡 = 𝐹 𝜇 ∗ 𝑆(𝜇)

 𝑆 𝜇 =
1

Δ𝑇
σ𝑛 𝛿 𝜇 −

𝑛

Δ𝑇

 FT of impulse train is an impulse 
train

 See section 4.2.3 in the book for details

 Note spacing between impulses are 
inversely related

 ෨𝐹 𝜇 =
1

ΔT
σ𝑛𝐹 𝜇 −

𝑛

Δ𝑇

 Sampling creates copies of the 
original spectrum

 Must be careful with sampling period 
to avoid aliasing (overlap of 
spectrum)
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FOURIER TRANSFORM OF SAMPLED SIGNAL



SAMPLING THEOREM

 Conditions to be able to recover 𝑓 𝑡 completely 
after sampling:

 Requires bandlimited 𝑓(𝑡)

 𝐹 𝜇 = 0 for |𝜇| > 𝜇max

 Can isolate center spectrum copy from its 
neighbors

 Sampling theorem


1

Δ𝑇
> 2𝜇max

 Nyquist rate 2𝜇max

 Recovery with lowpass filter

 𝐻 𝜇 = Δ𝑇 for 𝜇 ≤ 𝜇max
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 Corruption of recovered signal if not 
sampled at rate less than Nyquist 
rate
 Spectrum copies overlap

 High frequency components corrupt 
lower frequencies

 In reality this is always present
 Most signals are not bandlimited

 Bandlimited signals require infinite time 
duration

 Windowing to limit size naturally causes 
distortion

 Use anti-aliasing filter before sampling

 Filter reduces high frequency components
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ALIASING



 Discussion has considered continuous signals (functions)
 Need to operate on discrete signals

 DFT is a sampled version of the sampled signal FT in one period

 ෨𝐹 𝜇 = σ𝑛 𝑓𝑛𝑒
−𝑗2𝜋𝜇𝑛Δ𝑇

 Sample in frequency evenly (𝑀) over a period

 𝜇 =
𝑚

𝑀Δ𝑇

 𝐹𝑚 = σ𝑛 𝑓𝑛𝑒
−𝑗2𝜋𝑚𝑛/𝑀

 𝑚 = 0,1,2, … ,𝑀 − 1

 𝑀 samples of 𝑓 𝑡 , 𝑓𝑛 , results in 𝑀 DFT values
 Note: implicitly assumes samples come from one period of periodic signal

 Inverse DFT

 𝐹𝑛 =
1

𝑀
σ𝑚𝐹𝑚𝑒

𝑗2𝜋𝑚𝑛/𝑀
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DISCRETE FOURIER TRANSFORM



SAMPLING/FREQUENCY RELATIONSHIP

 𝑀 samples of signal with sample period Δ𝑇
 Total time  𝑇 = 𝑀Δ𝑇

 Spacing in discrete frequency

 Δ𝑢 =
1

𝑀Δ𝑇
=

1

𝑇
 Note the switch to 𝑢 for discrete frequency 

 Total frequency range  Ω = 𝑀Δ𝑢 =
1

Δ𝑇

 Resolution of DFT is dependent on the duration 𝑇 of the 
sampled function
 Generally the number of samples

 See fft.m in Matlab to test this
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 All discussions can be extended 
to two variables easily

 Add second integral or 
summation for extra variable

 2D rectangle

 𝐹 𝜇, 𝜈 = ATZ
sin 𝜋𝜇𝑇

𝜋𝜇𝑇

sin 𝜋𝜈𝑍

𝜋𝜈𝑍
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EXTENSIONS TO 2D



IMAGE ALIASING

 Temporal aliasing appears in video

 Wheel effect – looks like it is spinning opposite direction

 Spatial aliasing is the same as the previous discussion
now in two dimensions
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 Used for image resizing

 Zooming – oversample an image

 Shrinking – undersample an 
image

 Must be careful of aliasing

 Generally smooth before downsample
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IMAGE INTERPOLATION AND RESAMPLING



FOURIER SPECTRUM AND PHASE ANGLE

 𝐹 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 𝑒𝑗𝜙 𝑢,𝑣

 Magnitude, spectrum

 𝐹 𝑢, 𝑣 = 𝑅2 𝑢, 𝑣 + 𝐼2 𝑢, 𝑣 1/2

 Phase angle 

 𝑒𝑗𝜙 𝑢,𝑣 = arctan
𝐼 𝑢,𝑣

𝑅 𝑢,𝑣

 Spectrum is component we 
naturally specify while phase is 
a bit harder to visualize

 Spectrum
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 Translation does not affect 
spectrum

 Wide in space  narrow in 
frequency

 Orientation clearly visible in 
spectrum
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SPECTRUM



PHASE

Difficult to describe phase given image content

 a) centered rectangle, b) translated rectangle, c) rotated rectangle

20



 Both spectrum and phase are important 
for image content
 Despite specifying filters by specturm

 a) woman image, b) phase
 c) reconstruction using only phase

 Able to “see” woman

 d) reconstruction using only magnitude 
spectrum
 Lose “woman”

 e) reconstruction with spectrum of 
rectangle and phase of woman
 Still “see” a woman

 f) reconstruction with phase of 
rectangle and spectrum of woman
 Looks more rectangle
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SPECTRUM PHASE MANIPULATION
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 Generally complicated relationship between image and transform

 Frequency is associated with patterns of intensity variations in image

 Filtering modifies the image spectrum based on a specific objective

 Magnitude (spectrum) – most useful for visualization (e.g. match visual 
characteristics)

 Phase – generally not useful for visualization
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FREQUENCY DOMAIN FILTERING BASICS

45 degree lines

Off center line



 Modify FT of image and 
inverse for result

 𝑔 𝑥, 𝑦 = ℱ−1[𝐻 𝑢, 𝑣 𝐹 𝑢, 𝑣 ]

 𝑔(𝑥, 𝑦) : output image [𝑀 × 𝑁]

 𝐹(𝑢, 𝑣) : FT of input image 𝑓 𝑥, 𝑦
[𝑀 × 𝑁]

 𝐻(𝑢, 𝑣) : filter transfer function [𝑀 ×
𝑁]

 ℱ−1 : inverse FT (iFT)

 Product from element-wise array 
multiplication
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FUNDAMENTALS

Remove DC (0,0)
term from 𝐹(𝑢, 𝑣)

 Example of simple filter to 
remove average intensity



EXAMPLE FILTERS

Addition of small 
offset to retain DC 
component after HP 
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 Multiplication in frequency is 
convolution in time

 Must pad image since output 
is larger
 Will pad 𝑓(𝑥, 𝑦) image but not ℎ(𝑥, 𝑦)

 𝐻(𝑢, 𝑣) designed and sized for padded 
𝐹(𝑢, 𝑣)

 DFT implicitly assumes a periodic 
function

 Image (dotted) copied vertically and 
horizontally
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DFT SUBTLETIES



PHASE ANGLE

Generally, a filter can affect the phase of a signal

Zero-phase-shift filters have no effect on phase

 Focus of this chapter

Phase is very important to image

 Small changes can lead to unexpected results
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FREQUENCY DOMAIN FILTERING STEPS

1. Given image 𝑓(𝑥, 𝑦) of size 𝑀 × 𝑁, get padding (𝑃, 𝑄)
 Typically use 𝑃 = 2𝑀 and 𝑄 = 2𝑁

2. Form zero-padded image 𝑓𝑝(𝑥, 𝑦) of size 𝑃 × 𝑄

3. Multiply 𝑓𝑝(𝑥, 𝑦) by −1 𝑥+𝑦 to center the transform 
 Needed when 𝐻(𝑢, 𝑣) is provided (center-defined)

4. Compute DFT 𝐹(𝑢, 𝑣)
5. Compute 𝐺 𝑢, 𝑣 = 𝐻 𝑢, 𝑣 𝐹(𝑢, 𝑣)

 Get real, symmetric filter function 𝐻(𝑢, 𝑣) of size 𝑃 × 𝑄 with center at 
coordinates 

𝑃

2
,
𝑄

2

6. Obtain (padded) output image from iFT

 𝑔𝑝 𝑥, 𝑦 = {real ℱ−1 𝐺 𝑢, 𝑣 −1 𝑥+𝑦

7. Obtain 𝑔(𝑥, 𝑦) by extracting 𝑀 × 𝑁 region from top left quadrant of 
𝑔𝑝(𝑥, 𝑦)
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EXAMPLE: FREQUENCY PROCESSING STEPS
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RELATIONSHIP TO SPATIAL FILTERING

 Frequency domain multiplication  convolution in 
spatial domain

 ℎ(𝑥, 𝑦) ↔ 𝐻(𝑢, 𝑣)

 Use of a finite impulse response

 Generally use small filter kernels which are more efficient 
to implement in spatial domain

 Frequency domain can be better for the design of filters

 More natural space for definition

 Use iFT to determine the “shape” of the spatial filter

30



OUTLINE

Background Concepts

Sampling and Discrete Fourier Transform

Extension to Two Variables / 2D DFT Properties

Frequency Domain Filtering Basics

Smoothing

Sharpening

Selective Filtering

 Implementation

31



SMOOTHING

High frequency image content comes from edges and 
noise

Smoothing/blurring is a lowpass operation that 
attenuates (removes) high frequency content

Consider three smoothing filters

 Ideal lowpass – sharp filter

 Butterworth – filter order controls shape

 Gaussian – very smooth filter
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IDEAL LOWPASS FILTER

 𝐻 𝑢, 𝑣 = ቊ
1 𝐷 𝑢, 𝑣 ≤ 𝐷0
0 𝐷 𝑢, 𝑣 > 𝐷0

 𝐷 𝑢, 𝑣 = 𝑢 −
𝑃

2

2
+ 𝑣 −

𝑄

2

2

 Pass all frequencies 𝐷0 distance from DC
 𝐷0 is the cuttoff frequency
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IDEAL LOWPASS EXAMPLE

blurring

ringing 



LP SPECTRUM VIEW
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BUTTERWORTH LP FILTER

𝐻 𝑢, 𝑣 =
1

1+ 𝐷 𝑢,𝑣 /𝐷0
2𝑛

 𝑛 – order of the filter (controls sharpness of transition)

 Cutoff generally specified as the 50% of max (D0 = 0.5) 
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 No ringing is visible because of the 
gradual transition from high to low 
frequency in filter

 May be visible in higher-order filters 
(𝑛 > 2)

 Trade-off frequency narrow main lobe 
with sidelobe height
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BUTTERWORTH LP EXAMPLE



GAUSSIAN LOWPASS FILTER

𝐻 𝑢, 𝑣 = 𝑒−𝐷
2 𝑢,𝑣 /2𝜎2

 𝜎 – measure of spread; 𝜎 = 𝐷0 is the cutoff frequency

 iFT is also a Gaussian

 No ringing because of smooth function

 A favorite filter for smoothing
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GAUSSIAN LP EXAMPLE

 No ringing

 Not as much smoothing as 
Butterworth 2

 Best for use when ringing is 
unacceptable

 Butterworth better when tight 
control of transition between 
high and low frequency is 
required
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SHARPENING 

 Use a highpass filter

 𝐻𝐻𝑃 𝑢, 𝑣 = 1 − 𝐻𝐿𝑃(𝑢, 𝑣)

 Ideal 

 𝐻 𝑢, 𝑣 = ቊ
0 𝐷 𝑢, 𝑣 ≤ 𝐷0
1 𝐷 𝑢, 𝑣 > 𝐷0

 Butterworth

 𝐻 𝑢, 𝑣 =
1

1+ 𝐷0/𝐷 𝑢,𝑣 2𝑛

 Gaussian 

 𝐻 𝑢, 𝑣 = 𝑒−𝐷
2 𝑢,𝑣 /2𝜎2
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 Same ringing artifacts as ideal 
lowpass
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HIGHPASS EXAMPLES



HP SPECTRUM VIEW
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SELECTIVE FILTERING

 Bandpass/reject – operate on a ring in the frequency 
spectrum
 See Table 4.6 for definitions

 Notch filters – operate on specific regions in the frequency 
spectrum
 Move center of HP filter appropriately
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NOTCH EXAMPLES
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NOTCH EXAMPLES II
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BP SPECTRUM VIEW
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IMPLEMENTATION ISSUES

DFT is separable
 Can compute first a 1D DFT over rows followed by the 

1D DFT over columns

 Simplifies computations in 1D

Practically use Fast Fourier Transform (FFT) to 
computer all DFT
 Computationally efficient algorithm that simplifies 

problem by halving sequence repeatedly

 Efficiency requires 𝑀 and 𝑁 (size of image) to be 
multiples of 2
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