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SPATIAL DOMAIN PROCESSING

» Spatial domain = the image plane

® Image processing through direct manipulation of image
pixels

® Generally are more computationally efficient and require less
resources than transtorm methods

®" T'wo categories of spatial processing
» Intensity transformations — operate on single pixels

= Spatial filtering — operations that work in a neighborhood of
each pixel



IMAGE PROCESSING BASICS

= Input an image to a system -  °© Basic spatial filtering

, implementation
get a processed image as Oigin—, .
output .
f(x, y) . r g(x, y) 3 X 3 neighborhood of (x, y)
=gxy) =Tlf(x,y).
[ | f(x, y) S input image Spatial domain
= g(x,y) — output image = Apply operator I' to pixels 1 the
, neighborhood to yield output at
= T — operator defined over a (x,y)
neighborhood around (x,y) = Typically the neighborhood is

rectangular and much smaller size than
image
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INTENSITY TRANSFORMATIONS

= Spatial filtering with smallest = Contrast stretching ..,
1 X 1 neighborhood = Increase dark/light |
= g only depends on f at a single pixels
point (x,y)
" Intensity transformation
function (gray-level mapping) o
= s =T() = Thresholding R —
= 7 — input intensity = Produce binary 3 T)— |

= s — output intensity (two—level) image i
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PIXEL TRANSFORMS

= Gain and bias (Multiplication and addition of constant)

"g(x,y) =a(x,y)f(x,y) + b(x,y)
= g (gain) controls contrast

= h (bias) controls brightness

= Notice parameters can vary spatially (think gradients)

®= Linear blend

sgx)=(1A—-a)fo(x) +afi(x)
= We will see this used later for motion detection in video
processing



IMAGE NEGATIVES

® (Given image with intensity
range [0,L — 1]

® Negative image transformation

" s=L—-1-—7r
= Reverse intensity levels of
image

= Well suited for enhancing white
or gray detail embedded in a dark
image




COMPOSITING AND MATTING

= Techniques to remove an object and

place it in a new scene
= E.g. blue/green screen

= Matting — extracting an object from
an original image

= Compositing — inserting object into
another image (without visible
artifacts)

= A fourth alpha channel is added to
an RGB image

= ¢ describes the opacity (opposite
of transparency) of a pixel

= Over operator — a linear blend < (1 ﬂ) N _
= C=(1-a)B+aF o
B o alF C
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HISTOGRAM PROCESSING

® Digital image histogram is the count of pixels in an
image having a particular value in range [0,L — 1]
" h(re) = ny
" 7. - the kth gray level value

= Set of 13, are known as the bins of the histogram
" .- the numbers of pixels with kth gray level

» Empirical probability of gray level occurrence is
obtained by normalizing the histogram

" p(ry) = ng/n
= n — total number of pixels



HISTOGRAM EXAMPLE

|
(UL l |

Histogram of dark image

Histogram of light image

-

| ‘l | |

Histogram of low-contrast image

Histogram of high-contrast image

N
N

x-axis — intensity value
= Bins [0, 255]
y-axis — count of pixels

Dark image

= Concentration in lower values
Bright image

= (Concentration in higher values

Low-contrast image

= Narrow band of values

High-contrast image

= Intensity values in wide band



HISTOGRAM EQUALIZATION

= Assume continuous functions (rather = Let s by the cumulative distribution

than discrete images) function (CDF)
= Define a transformation of the o« s=T() = ["p.(w)dw
intensity values to “equalize” each - ~ Jo Pr
pixel in the image = Then
= s=T(r) 0<r<i '£=pr(7ﬂ)

= Notice: intensity values are normalized
between 0 and 1

®* The inverse transformation is given

= Which results in a uniform PDF for
the output intensity

as = ps(s) =1
= r=T1(s) 0<s<1
* Viewing the gray level of an image = Hence, using the CDF of a
as a random variable histogram will “equalize” an image
" p.(s)=p,(1) % = Make the resulting histogram flat across

all intensity levels



DISCRETE HISTOGRAM EQUALIZATION

= The probability density is approximated by the normalized
histogram

- p?‘(rk)z% k:O;;L_l

= The discrete CDF transformation is
= s =T () = Xhoopr ()
[ | Sk = ;C=O%

® This transformation does not guarantee a uniform histogram in the
discrete case

= It has the tendency to spread the intensity values to span a larger range



HISTOGRAM EQUALIZATION EXAMPLE

T T T T
Histogram of dark image

= Histograms have wider spread of

' intensity levels
1|| ‘Immmmmm

= Notice the equalized images all have
similar visual appearance

4. ‘ L = Even with different original histograms
I

= (Contrast enhancement

| 1 |‘ | | |
I I I I
Histogram of light image

1 | 1 |
I I I I
Histogram of low-contrast image

255

I

128

FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq.(3.3-8).

|

Histogram of high-contrast image

1 | | L

Original histogram original image equalized image equalized histogram



LOCAL HISTOGRAM ENHANCEMENT

= Global methods (like histogram equalization ~® Original image
as presented) may not always make sense

= What happens when properties of image
regions are different?

= Compute histogram over smaller windows

= Break image into “blocks”

" Process each block separately

= Notice the blocking effects that cause
noticeable boundary effects



LOCAL ENHANCEMENT
H HE

= Compute histogram over a block
(neighborhood) for every pixel in
a moving window

abc

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (¢) Result of local
histogram equalization applied to (a). using a neighborhood of size 3 X 3.

= Adaptive histogram equalization
(AHE) is a computationally
efficient method to combine
block based computations
through interpolation

<o \

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.
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IMAGE PROCESSING MOTIVATION

= Image processing is usetul for
the reduction of noise

* Common types of noise

= Salt and pepper — random
occurrences of black and white
pixels

®* Impulse — random occurrences of
white pixels

= (Gaussian — variations in intensity
drawn from normal distribution

Impulse noise Gaussian noise
Adapted from S. Seitz



IDEAL NOISE REDUCTION

" How can we reduce noise given a single camera and a
still scene?

= Take lots of images and average them

= What about if you only have a single image?

o A
v 5 b

Adapted from S. Seitz
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IMAGE FILTERING

= Filtering is a neighborhood operation

» Use the pixels values in the vicinity of a given pixel to
determine its final output value

= Motivation: noise reduction
= Replace a pixel by the average value in a neighborhood

= Assumptions:
= Expect pixels to be similar to their neighbors (local consistency)

= Expect noise processes to be independent from pixel to pixel (i.i.d.)



LINEAR FILTERING

® Most common type of neighborhood operator

= Qutput pixel is determined as a weighted sum of
input pixel values

"g(,y) =2 fx +k,y+Dw(k, D)
= w — is known as the kernel, mask, filter, template, or window

=" w(k,l) — entry is known as a kernel weight or filter coefficient

® This is also known as the correlation operator
g = f®w




FILTERING OPERATION

" g y) =T fGe+ky + Dwik, 1) A T
= The filter mask is moved from /
point/pixel to point/pixel in an -k
1image nEl
= The response is computed based on the e

sum of products of the mask coefficients
and image

w(-1,-1)] w(-10) | w(-1.1)

w(0,~1) | w00 | wo.1)

= Notice the mask i1s centered at
w(0,0)

= Usually we use odd sized masks so that
the computation is symmetrically defined

w(l,—1) | w0 | wan

Filter coefficients

fx—1Ly+1)

flx+1,y—1) fx+Ly+1)

= Matlab commands
= imfilter.m, filter2.m, conv2.m

Pixels of image

section under filter
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FILTERING RASTER SCAN

m Zig-zag scan through of image

= Process image row-wise




CONNECTION TO SIGNAL PROCESSING

= (General system notation

X —> f —> y
= LTI system
= (Convolution relationship
= Discrete 1D LTI system = Discrete 2D LTI system
x[n] —> h > y[n] fl,y) — w —> g(x,y)
ylal = > xlklhin - k] gy = ) D fowE—sy -0
k=—0o0 S§=—00 t=—00

= Linear filtering is the same as
convolution without flipping
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BORDER EFFECTS

" The filtering process suffers from boundary effects
®* What should happen at the edge of an image?

® No values exist outside of image

» Padding extends image values outside of the image to
“fill” the kernel at the borders

m Zero — set pixels to 0 value
= Will cause a darkening of the edges of the image (very typical)

= Constant — set border pixels to fixed value
» Clamp — repeat edge pixel value
= Mirror — reflect pixels across image edge



COMPUTATIONAL REQUIREMENTS

= Convolution requires K? = Separable kernel
operations per pixel for a K X K

T
size filter " w=vh

. : : = p — vertical kernel
= Total operations on an image is

M X N X K?

= h - horizontal kernel

= Defined by outer product

= This can be computationally

expensive for large K » Can approximate a separable
= Cost can be greatly improved if kernel using singular value
the kernel is separable decomposition (SVD)

= First do 1D horizontal convolution = Truly separable kernels will only

= Follow with 1D vertical convolution have one non-zero singular value
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SMOOTHING FILTERS

® Smoothing filters are used for blurring and noise
reduction

= Blurring is useful for small detail removal (object
detection), bridging small gaps in lines, etc.

® These filters are known as lowpass filters

» Higher frequencies are attenuated
®* What happens to edges?
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LINEAR SMOOTHING FILTER

" The simplest smoothing filter is the INESE

moving average or box filter JEaRiaR

= Computes the average over a
constant neighborhood

':-|

= This is a separable filter
® Horizontal 1D filter
®* Remember your square wave from DSP

1 0<n<M
'h[”]z{o else

® Fourier transform is a sinc function

==
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MORE LINEAR SMOOTHING FILTERS

® More interesting filters can be readily obtained

= Weighted average kernel (bilinear) - places more
emphasis on closer pixels [[2]1

: 1
= More local consistency 5 i ;l ‘i‘

= (Gaussian kernel - an approximation of a Gaussian
function

® Has variance parameter to control the
kernel “width”

" fspecial.m h(u,v) =

Adapted from S. Seitz



SMOOTHING EXAMPLES
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FIGURE 3.33 (a) Original image, of size 500 x 500 pixels (b)-f) Results of smoothing a
with square averaging filter masks of sizes m = 3,5,9.15, and 35, respectively. The black ¢
squares at the top are of sizes 3,5.9,15, 25,35, 45, and 55 pixels, respectively; their borders o
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25
pixels, and their borders are 15 pixels apart: their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy
rectangles are of size 50 * 120 pixels.

- LT

Object detection

abec

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)



MEDIAN FILTERING

= Sometimes linear filtering is not
sufficient

= Non-linear neighborhood operations
are required
= Median filter — replaces the
center pixel in a mask by the
median of its neighbors

= Non-linear operation,
computationally more expensive

abec

. . . FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
[ | PI‘OVldeS excellent noilse- reduct 1011 a3 x3 averzfgi)ng ma?lsl.(. (c% Noise rectluction with :t3 X % m;dian fl;lt];[r). (Originzfl i)mage courtest;' of Mtr.
. . . Joseph E. Pascente, Lixi, Inc.)
with less blurring than smoothing
filters of similar size (edge
preserving)

®» For impulse and salt-and-pepper noise
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BILATERAL FILTERING

» Combine the idea of a weighted filter kernel with a
better version of outlier rejection

" a-trimmed mean calculates average in neighborhood
excluding the a fraction that are smallest or largest

sw(i,j kD) =d(i,j kD) xr@j kD
®"d(i,j, k1) - domain kernel specifies “distance” similarity
between pixels (usually Gaussian)

= r(i,j, k,1) — range kernel specifies “appearance
(intensity)” similarity between pixels



BILATERAL FILTERING EXAMPLE

(d) (e) (H)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) (© 2002 ACM: (a) noisy step
edge input: (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output: (f) 3D distance between pixels.
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SHARPENING FILTERS

® Sharpening filters are used to highlight fine detail or
enhance blurred detail

" Smoothing we saw was averaging

= This is analogous to integration

® Since sharpening is the dual operation to smoothing,
it can be accomplished through differentiation
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DIGITAL DERIVATIVES

" Derivatives of digital functions are defined in terms of
differences

" Various computational approaches
" Discrete approximation of a derivative

L= f+ D - ()

L= f+ D - fx -1

» Center symmetric
® Second-order derivative

L= fr+ D+ fx— 1) - 2f(0)



DIFFERENCE PROPERTIES

u ]. 8t derivat iVG e Intensity transition

= Zero in constant segments gj"cg;;a%\ f,"'}"""'
= Non-zero at intensity transition ooap MY Rmp Step —, /
= Non-zero along ramps E 2_ " i
. . I .\ I
= 2nd derivative L @
= Zero in constant areas 0 .
= Non-zero at intensity transition e [666T6[sT4[3[2[a]a]a]a]1]1]e]6]6 6 6]
1 1st derivative 0 0-1-1-1-1-1 0 O O O O 5 O O O O
= Zero along ramps 2ndderivative 0 0—1 0 0 0 0 1 0 0 0 0 5-5 0 0 0
= 21d order filter is more aggressive at T !@
enhancing sharp edges NE
= Qutputs different at ramps 2 /." '-
1=
= 15¢ order produces thick edges %‘ 0l-8-8—[-O- D-D’i\@—@— Y S T G .
= 27 order produces thin edges ik A ¢ Zemcmssingf :
= Notice: the step gets both a negative and =21
positive response in a double line B o First derivative | |
—4 - O Second derivative |
5L s



THE LAPLACIAN

= 2nd derivatives are generally better for image enhancement because
of sensitivity to fine detail

= The Laplacian is simplest isotropic derivative operator
2p O O
"V f  9x2 t dy?
" [sotropic — rotation invariant

= Discrete implementation using the 2°¢ derivative previously defined
s L= G+ + - 1,y) - 2f (%)
. Z_yz = fx,y+ D+ flx,y—1) —2f(x,y)
= Vf=[fx+1Ly)+fx—1Ly)+fl,y+ D+ flx,y— D] —4f(x,y)



DISCRETE LAPLACIAN

= /Zeros in corners give isotropic

results for rotations of 90°

= Non-zeros corners give isotropic
results for rotations of 45

® Include diagonal derivatives in
Laplacian definition

= Center pixel sign indicates light-

to-dark or dark-to-light
transitions

= Make sure you know which

0 1 0 1 1 1
1 -4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 —1 -1
-1 4 -1 -1 8 -1
0 -1 0 -1 -1 -1

ab
elld

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.



SHARPENING IMAGES

= Sharpened image created by addition
of Laplacian

fO,y) =V f(x,y) w(0,0)<0

- g(xr y) — f(x; y) + sz(x, y) W(0,0) > 0

= Notice: the use of diagonal entries
creates much sharper output image

= How can we compute g(x,y) in one
filter pass without the image addition”?

= Think of a linear system

a
bec
de

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)



UNSHARP MASKING

= Fidges can be obtained by

subtracting a blurred version of
an image DIP-XE
" fUS(x’y) :f(x'y) _f(x;Y) o ,FCI]GURE:3.391-D DlP_XE
= Blurred image , rﬂhpf]f(lg

7 s T

oo oW

L]

FIGURE 3.40
(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp

a
sl

o—
C
h
na
v - T e - A ]
a ’

= f(x,y) = Ay * F (0 Y)

mask. (d) Result
of using unsharp

n
it

gina — 4\
. ashed for refere- =211 7\ = :
® Sharpened image oyt 9 Ui s
mas arp-
ened signal g using highboost
filtering.

= f(x,y) = fO,y) + v us(x,y) f i DIP-XE
Sharpened signal

DIP-XE




THE GRADIENT

= 15t derivatives can be useful for = Sobel operators
enhancement of edges

= Have directional sensitivit
= Useful preprocessing before edge Y

extraction and interest point detection = (Coefficients sum to zero
®» The gradient is a vector indicating = Zero response in constant intensity
edge direction region
oF
Gy ax
< vt=|e|= |37
- _1 _2 —1 ~1 0 1
3y

= The gradient m-agnitude can be

approximated as 0 0 0 2 | o >
= Vf= |Gx| + |Gy| 1 , 1 . ) 1
= This give isotropic results for rotations of

90 . .
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MORPHOLOGICAL IMAGE PROCESSING

= Filtering done on binary images
= Images with two values |0,1], |0, 255]|, |black, white]
» Typically, this image will be obtained by thresholding

_ )1 floy)>T
'g(x'y)‘{o fy) <T

" Morphology is concerned with the structure and shape

= In morphology, a binary image is convolved with a
structuring element s and results in a binary image

® More later in Chapter 9 of Gonzalez and Woods



MATHEMATICAL MORPHOLOGY

" Tool for extracting image components that are useful in
the representation and description of region shape

®* Boundaries, skeletons, convex hull, etc.
®" The language of mathematical morphology is set theory

= A set represents an object in an image

® This is often useful in video processing because of the
simplicity of processing and emphasis on “objects”

» Handy tool for “clean up” of a thresholded image



MORPHOLOGICAL OPERATIONS

= Threshold operation = Dilation
1 f>t = dilate(f,s) = 0(c, 1)

= 0(f,0) = {0 felse = Grows (thickens) 1 locations
= Structuring element " Erosion

" s —e.g 3x 3 Dbox filter (1’s indicate = erode(f,s) = 0(c,S5)

included pixels in the mask) = Shrink (thins) 1 locations

= S — number of “on” pixels in s = (Opening
®* Count of 1s in a structuring element = open(f,s) = dilate(erode(f, s), s)

" c=fQ®s = (Generally smooth the contour of an object,

breaks narrow isthmuses, and eliminates

= Correlation (filter) raster scan procedure thin protrusions

= (Closing
= close(f,s) = erode(dilate(f,s),s)
= Basic morphological operations can = Generally smooth the contour of an object,
be extended to grayscale images fuses narrow breaks/separations, eliminates

small holes, and fills gaps in a contour



MORPHOLOGY EXAMPLE

. a : * = . Note: black for object
(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image: (b) dilation; (c) erosion; (d)
majority; (e) opening: (f) closing. The structuring element for all examples i1s a 5 x 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

Dilation - grows (thickens) 1 locations
Erosion - shrink (thins) 1 locations

Opening - generally smooth the contour of an object, breaks
narrow isthmuses, and eliminates thin protrusions

Closing - generally smooth the contour of an object, fuses narrow
breaks /separations, eliminates small holes, and fills gaps in a
contour
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CONNECTED COMPONENTS

® Semi-global image operation to
provide consistent labels to similar
regions
= Based on adjacency concept

= Most efficient algorithms compute in
two passes

= More computational formulations
(iterative) exist from morphology
" X =X-1BB)NA

1 \

Connected component Structuring element

S—— Set

(a) (b) (c)

Figure 3.23 Connected component computation: (a) original grayscale image; (b) horizontal
runs (nodes) connected by vertical (graph) edges (dashed blue)—runs are pseudocolored with
unique colors inherited from parent nodes; (c¢) re-coloring after merging adjacent segments.
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MORE CONNECTED COMPONENTS

= Typically, only the “white” pixels will be considered objects

= Dark pixels are background and do not get counted

= After labeling connected components, statistics from each
region can be computed

® Statistics describe the region — e.g. area, centroid, perimeter, etc.

= Matlab functions
" bwconncomp.m, labelmatrix.m (bwlabel.m)- label image
®" label2rgb.m — color components for viewing
" regionprops.m - calculate region statistics



CONNECTED COMPONENT EXAMPLE

Opened Image Labeled image — 91 grains of rice



