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Abstract—Over the past few decades, obesity has become a 
serious problem. Obesity is associated with many of the leading 
causes of death, such as chronic diseases including diabetes, 
heart disease, stroke, and cancer. The most effective way to 
prevent obesity is through food intake control, which involves 
understanding food ingestion, including the nutrients and 
calories of each meal. To assist with this issue, this study 
develops a food calorie and nutrition system that can analyze 
the composition of a food based on a provided image. Further, 
we introduce a newly collected dataset, Ville Cafe, for food 
recognition. This dataset contains 16 categories with 35,842 
images, including salad, fruit, toast, egg, sausage, chicken 
cutlet, bacon, French toast, omelet, hash browns, pancake, ham, 
patty, sandwich, French fries, and hamburger. The system is 
based on a Mask Region-based Convolutional Neural Network 
(R-CNN) with a union postprocessing, which modifies the 
extracted bounding boxes and masks, without the non-
maximum suppression (NMS), to provide a better result in 
both analytics and visualization. The recognition accuracy for 
the combination of Ville Cafe and the Food-256 Datasets was 
99.86%, and the intersection over union (IoU) was 97.17%. 
The food weight estimation experiment included eight classes: 
salad, fruit, toast, sausage, bacon, ham, patty, and French fries. 
These classes respectively had 40, 40, 44, 40, 41, 49, 26, and 40 
data points, adding up to 320 data points for the linear 
regression model. In the experimental results, the average 
absolute error was 8.22, and the average relative error was 
0.13.

Keywords-food image recognition; food nutrition 
analysis;food calorie analysis; Mask R-CNN; instance 
segmentation

I. INTRODUCTION

Lifestyle has a significant impact on physical health, with 
eating habits playing a major role. Harris et al. [2] grouped 
lifestyles into five categories, two of which relate to diet 
(health habits, avoiding harmful substances), indicating that 
eating habits have an impact on health. In clinical studies, 
Livingstone et al. [12] suggested that a typical approach to 
understanding eating habits is to record the type and amount 
of food in meals and to analyze calorie and nutrient intake. 
However, Lichtman et al. [15] pointed out that 
approximately 33% of subjects underestimate the amount of 
food intake, according to self-reports of their obese subjects’ 
diets. The John Tung Foundation [8] investigated the 
understanding of nutritional labelling of available food in the 

Taipei area. Up to 73.1% of respondents did not understand 
the nutrition label, and 68.4% of those who thought they 
understood it actually did not. Therefore, an effective way to 
keep healthy is to monitor your own calorie and nutrition 
intake. This study proposes a system for analyzing and 
estimating calories and nutrients using food images, allowing 
users to conveniently and quickly understand the calorie and 
nutrient intake of each meal, with the aim of controlling diet 
and balancing nutrition.

The Taiwan Health Promotion Administration surveyed 
nutritional health changes in 2013–2016 [5]. The results 
showed that Taiwanese people aged 19–64 ate too little 
protein and starch, and did not reach a balanced diet. 
Regarding breakfast choice [6], Taiwanese people have a 
25% fat intake for breakfast, which is 21% higher than other 
Asia-Pacific countries, making Taiwan one of the “most 
greasy” countries in terms of breakfast. According to 
KEYPO’s Big Data Engine survey [3], Taiwan’s most 
popular top 10 breakfasts are (1) fruit salad with yogurt, (2) 
toast, (3) sandwich, (4) quiche, (5) burger, (6) muffin, (7) 
taro, (8) rice ball, (9) fried noodles, and (10) radish cake. The 
results show that Taiwanese people prefer Western-style 
breakfasts. Therefore, this study limits the scope of food 
calorie and nutrient analysis to Western breakfasts.

Many studies have proposed food calorie and nutrient 
measurement systems. Villalobos et al. [4] presented an 
approach for calorie intake measurement to help understand 
dietary intake with respect to weight-loss and chronic 
diseases. Anthimopoulos et al. [10] proposed a food 
carbohydrate counting system. The system captures food 
images via a mobile phone and uses a bag-of-features model 
to obtain the color and texture features of various foods in 
the image.

Current food detection and recognition techniques can be 
divided into two types: the first type captures the dish in the 
image and then analyzes and recognizes the food class; the 
second type identifies the food directly in the image. 
Although the first approach can improve the accuracy rate of 
food recognition, the colors, sizes, and shapes of the dishes 
vary greatly, making it difficult to capture and detect the 
features of the dish object. Most researchers use the second 
approach.

According to the first approach, Dehais et al. [7] 
proposed a dish detection and segmentation system for 
dietary assessment. This system first detected the dish in the 
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image and then segmented the food block in the dish. The
system assumed that dish is circular, and the edge detection 
of the dish was mainly a multi-layered RANdom SAmple
Consensus (RANSAC), which approximates the curve 
closest to the edge of the dish.

In line with the second approach, Anthimopoulos et al. 
[13] developed a food recognition system for diabetic 
patients that captured color, size, shape, and texture features 
based on histograms using a Support Vector Machine (SVM). 
The recognition accuracy was between 58% and 95%. The 
shortcoming of this study was that bag-of-features does not 
consider the positional relationship between features.

Pouladzadeh et al. [14] proposed a system of measuring 
calorie and nutrition from a food image, and it can be used 
on mobile phones to help dieters and patients understand 
each meal and its associated nutrient intake. After the user 
takes two differently angled images of the food on the 
mobile phone, the system can identify the type of food and 
calculate the area and volume of the food. The study 
identified 15 foods with an average accuracy of 86%. The 
limitation of this study was that the food dishes in the image 
could not overlap, and the food had to be placed separately in 
the dish.

Bolaños and Radeva [11] presented an approach of 
Simultaneous Food Localization and Recognition for the 
consumer’s perspective. First, a deep learning neural 
network, GoogleNet-GAP, was used as a classifier to 
distinguish between food and non-food blocks in the image. 
The experimental results showed that the method had a 
recognition rate of 90.90% on the EgocentricFood dataset 
and 79.20% on the Food101 dataset. Thus, there is still room 
for improvement regarding food recognition.

Mask R-CNN [9] is an instance segmentation approach 
that improves on faster R-CNN. Its structure has four parts: 
the convolutional backbone, the RPN, the RoIAlign layer, 
and the head. Since Mask R-CNN uses RoIAlign to unify the 
RoI size, it improves the positional deviation of the frame 
selection object compared with faster R-CNN. Therefore, 
when an RoI enters the mask branch prediction mask, the 
accuracy rate is increased by at least 10%.

Regarding the above, in the image processing method, 
specific features of the food image are used as the basis for 
classification, and there is room for improvement regarding 
accuracy. In the deep learning based approach, color and 
texture are low-level specific features. A deep neural 
network can learn more abstract features, which can help 
detect and recognize food. Therefore, this study recognizes 
food images by using Mask R-CNN, estimates the food 
weight by a linear regression calculation, and uses the 
nutrient table to estimate the food calories and nutrients.

II. SYSTEM FLOWCHART

Fig. 1 shows the flow chart of the calorie and nutrition 
analysis system. It has four main steps: image resizing, food 
detection and classification, food weight prediction, and food 
calorie and nutrition analysis [1]. Once the food image is
input into the system, the system scales the image to 
appropriate size. The resized image is then fed into Mask R-
CNN to capture the food features and perform food detection 

and classification. At this step, Mask R-CNN detects and 
recognizes the food class and the box regression of the food 
based on the captured features. The system then estimates the 
weight of the object through the image of the recognized 
food. After obtaining the weight of the food, the food calorie 
and nutrition analysis system is estimated according to the 
Ministry of Health and Welfare [16] and the US Department 
of Agriculture’s Food Nutrition Database [17].

Figure 1. Flowchart of calorie and nutrition analysis system.

A. Image Resizing
Mask R-CNN requires an input image of 1024×1024 

pixels, so the input image is resized to a specific length and 
width to form . To avoid reducing the proportion of food in 
the image when adjusting the image length and width, if the 
original input image scale is not 1:1, we adjust the long edge 
of the original image to 1024, and the short edge size is 
calculated according to the proportion of the original input 
image. For example, if the original input image size is 
2788×2204 pixels, the long edge (2788) is adjusted to 1024 
pixels, and the short edge (2204) is adjusted to 809 pixels 
according to the scale ratio.

B. Food Detection and Classification

Figure 2. The architecture of mask R-CNN.
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The food image is input into Mask R-CNN to obtain 
the following prediction results: the food class, the food 
bounding box, and the food mask. Fig. 2 shows the 
architecture of Mask R-CNN. This architecture can be 
divided three main parts: Backbone, RoIAlign, and Head. 
The gray block is the Backbone part, the orange block is the 
RoIAlign part, and the green block is the Head part. The 
Backbone includes ResNet101-FPN and RPN components. 
Its main purpose is to extract RoIs. RoIAlign is used to 
adjust the size of the Backbone-output RoIs. The Head 
outputs three kinds of prediction results: class, box, and 
mask.

1) Mask R-CNN Backbone
The Backbone of Mask R-CNN contains ResNet101-

FPN and RPN. ResNet101-FPN is a feature extraction 
method combining ResNet101 and FPN, including a bottom-
up pathway (yellow block in Fig. 3), lateral connections 
(orange dotted line in Fig. 3), a top-down pathway (purple 
block in Fig. 3), and an aliasing effect reduction (blue block 
in Fig. 3).

Figure 3. The architecture of the mask R-CNN backbone.

The bottom-up pathway extracts food features from low 
to high levels in the neural network layers (ResNet-101). The 
lateral connections output the feature maps of the bottom-up 
pathway to the number of channels. The top-down pathway 
involves the process of transferring high-order food features 
from the neural network to the lower order. The aliasing 
effect reduction adjusts the feature maps of the output of the 
top-down pathway by the convolution operation. This step is 
used to avoid the aliasing effect caused by the up-sampling 
operation in the top-down pathway. RPN uses the feature 
maps of the ResNet101-FPN output to determine the 
foreground block in the image.

2) Mask R-CNN RoI Align
RoIAlign is a technique for adjusting the size of RoIs, 

and its input is RoIs of different sizes. When the food image 
is input to the Mask R-CNN Backbone, the feature map of 

the food block RoI in the image can be obtained.
In this step, RoIs can be obtained by dividing the image 

into grids, and then taking four sampling points (bin) 
for each grid at a fixed interval width and height. The values 
of the four sampling points are calculated by bilinear 
interpolation according to the four elements’ values adjacent 
to the coordinates converted to the feature map. After the 

values of the four sampling points are obtained, maxpooling 
is performed on the four sampling points in the cell, and the 
outputs are RoIs .

3) Mask R-CNN Head
The Mask R-CNN Head is a neural network architecture 

used to predict food class, bounding box, and food masks, as 
shown in Fig. 4. There are two major branches in the Mask 
R-CNN Head: the food class and food bounding box 
prediction branch and the food mask branch. The food mask 
branch is used to predict the pixels of the food class in the 
input RoIs. In the first branch, the system performs a 
convolution operation using 1024 kernels for RoIs. The 
kernel size is , and the output is , which has a size 
of . is the input of . Using to 
perform a convolution operation using 1024 kernels, the 
kernel size is , its output size is , and it is 
the input of . To predict the food class, the output of 
is passed through a fully connected layer ( ) , and the food 
class of the RoIs ( ) and the probability of belonging to 
the class ( ) can be obtained. Then, the output of 

is passed through a different fully connected layer ), 
and the food bounding prediction is obtained.

The second food mask branch output is , as 
shown in Fig. 4 (red-outlined block). Since a corresponding 
mask is predicted for each food class in this branch, the 
output of this branch is , where is the number 
of food classes. In this study, . This branch is 
constructed by a Fully Convolutional Network (FCN). The 
FCN network architecture consists of a convolution 
operation and a deconvolution operation, which can be 
divided into two parts: food feature extraction (yellow block 
in Fig. 4) and food feature upsampling (green block in Fig. 
4). The food feature extraction refers to the input of RoIs to 
obtain food feature maps after several convolution operations. 
The food feature upsampling is performed by the 
deconvolution calculation. The purpose of the upsampling is 
to capture the pixels in the input image that belong to the 
class of the food.

Figure 4. The architecture of the mask R-CNN head.

gggg
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4) Union Postprocessing
When the food class, bounding box, and mask prediction 

are completed, the results are then integrated. In this step, the 
inputs are , , , , and . The 
output result, , , and are 
marked in the image .

In Mask R-CNN, the output stage can be divided into 
three steps: filter out low confidence, non-maximum 
suppression, and apply mask. Filtering the low confidence 
level involves pointing to the . If the value is too 
low, the prediction box and the food mask are deleted. Non-
maximum suppression points to a food bounding box that 
overlaps in the same class, keeping the result with the 
highest degree of confidence according to . The 
food mask is based on the , and the food prediction box 
is selected from .

(a)                            (b)                             (c)

Figure 5. Example food recognition images. (a) The input image. (b) The 
result of Mask R-CNN with NMS. (c) The result of Mark R-CNN with 

union postprocessing.

Figure 6. An example of union postprocessing.

After experimental observation, if the food is placed too 
close on the dish, once the image is input into the Mask R-
CNN with non-maximum suppression, only the box with 
highest will be retained, and the others boxes will 
be filtered out. Since the overlapping area of the prediction 
box is too large, the recall rate of Mark R-CNN is lower in 
this study. Fig. 5 shows an example of food recognition 
images. Here, the two pieces of toast were not individually 
detected, shown in Fig. 5(b).

Therefore, this system modifies the non-maximum 
suppression step. First, the boxes of the same class of food 
and the ratio of the overlap are obtained. If the ratio of 
overlap is higher than the threshold, the box is retained with 
its corresponding , , and . In the 
apply mask step, is the result of the union of 

of the same class. Fig. 6 is an example result of the 
union postprocessing, where 1, 2, and 3 are pancake, ham, 
and hamburger food masks, respectively. The union of all 
food masks of the same class (six pancake images, four ham 
images, and two hamburger images) are marked on the 
original image. Fig. 5(c) shows the food recognition result of 
Mark R-CNN with union postprocessing.

C. Food Weight Estimation
This system uses Mask R-CNN to obtain food 

recognition and mask prediction, and then to capture the 
number of pixels in the image through the food mask. In this 
study, a fixed angle photographing dish was used, and the 
same food was placed on the dish. Photographs of different 
portions of the food were taken, and the weight and the 
amount of food in the image were recorded.

To prevent the estimation error being too large, the 
number of pixels was uniformly divided by 10,000, and the 
weight of the fruit was uniformly divided by 100. Here, the 
number of pixels in the image is , the food weight is , the 
linear regression to calculate all known actual values is , 
and the estimated error values are ( ). Let ( ) be the 
food weight estimate obtained from the linear regression 
equation, be the actual food weight, be the number of 
data points, and be the index of data, where . 
The least squares method (LSM) for calculating the error is

�

� �� ����

LSM is the error between the estimated value and the 
predicted value, which is obtained by calculating the 
regression equation for each data point. The error value is 
squared, and the average value is calculated. To avoid the 
problem that positive and negative offsets occur for various 
error values, the error value is squared. In addition, in (1), 
the error value is divided by .

Let the linear equation be ( ), where the slope is 
and the intercept is , that is, . After 
substituting ( ) into (1), and obtaining the minimum 
value of (1), the slope and the intercept are taken. The 
result is shown in (2).

.              (2)

To find the values of and in (2), subdivide (2) with 
and for partial differential operations:

� ������������

� ��������������

�

1

2

3
3
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Then, let (4) equal zero to obtain , and substitute the 
value of into (3) to obtain the value of . Substituting the 
values of and into gives a linear equation for 
weight estimation.

According to of the Mask R-CNN output, 
the number of pixels in each image of the food, , 
can be obtained occupied for each class of food in the image. 
Substituting into , the food weight estimate 
value is . Using the food nutrition and calorie 
tables, the calories and nutrients of the food in the image can 
be estimated.

D. Food Calorie and Nutrition Analysis
This study uses the Ministry of Health and Welfare 

Nutrition Database [16]. Since some typical Western 
breakfast foods are not listed in this database, this study uses
the US Department of Agriculture's Food Nutrition Database 
[17] as a reference for nutrients. The food calorie and 
nutrition analysis step recognizes the food class and food 
weight, and estimates the calories and nutrients of the food in 
the image. The nutritional components include crude protein, 
crude fat, saturated fat, trans fat, carbohydrate, dietary fiber, 
sugar, and sodium. As the calories and nutrients are listed in 
the databases for every 100 grams of food, the totals for the 
food in the image are calculated based on the estimated 
weight.

III. EXPERIMENTAL RESULTS

The experimental environment of the system is set to 
shoot a depression angle when the table is photographed. 
The phone is held directly above the dish, and the phone is 
parallel to the dish when the image is taken. A variety of 
foods are placed on the dish, some of which will cover each 
other, or the food will be placed beyond the dish. The 
resolutions are 4000 3000, 4000 3,000, and 4608 3456. In 
addition, when estimating the weight of the food, this study 
takes a variety of different servings of the same food and 
records the weight of each serving. Linear regression is used 
to analyze the relationship between the image ratio in food 
and the food weight based on the proportion of food in the 
image and the actual weight of the previous record.

A. Ville Cafe Dataset
This study created 16 classes in the Ville Cafe dataset: 

salad, fruit, toast, egg, sausage, chicken cutlet, bacon, French 
toast, omelet, hash browns, pancake, ham, patty, sandwich, 
French fries, and hamburger. The Ville Cafe dataset contains 
five different food items from five restaurants, giving a total 
of 35,842 images and 9,776 food items. The length and 
width ratio of food images is 1:1 and non-1:1, and its length 
and width are 3024×302 and 962×1094 to 4385×2988 pixels, 
respectively. To increase the amount of data when collecting 
food images, in addition to the original background (table), 
the food images are taken using different sets of discs.

B. Breakfast Food Detection and Recognition
This section analyzes and explains the correct detection 

rate of the 16 classes of breakfast food in the Ville Cafe 

dataset. Table 1 shows the 16 classes of food, the number of 
images, and the numbers of food in each class. There are 
35,842 images and 9,776 foods. In the 16 classes experiment, 
the Food-256 Dataset was used in combination with Ville 
Cafe for training and testing. This experiment used 850 
training images and 428 validation images. The number of 
food items tested and validated were 4118 and 1974, 
respectively.

TABLE I. NUMBERS OF FOOD IMAGE OF 16 CLASSES FOR TRAINING 
AND VALIDATION DATA.

No. Class
# of 

Training 
Images

# of 
Training 

Food 
Items

# of 
Validation 

Images

# of 
Validation 

Food 
Items

1 Salad 267 286 107 107
2 Fruit 236 516 104 266
3 Toast 274 561 142 265
4 Egg 196 196 64 64
5 Sausage 119 222 57 120

6 Chicken 
Cutlet 51 153 15 45

7 Bacon 240 618 51 124
8 French Toast 67 179 23 62
9 Omelet 64 67 21 21

10 Hash Browns 90 142 50 68
11 Pancake 130 253 43 86
12 Ham 126 219 134 363
13 Patty 261 405 146 255
14 Sandwich 81 107 36 47
15 French Fries 105 131 33 37
16 Hamburger 80 81 48 48
- Total 850 4,118 428 1,978

Three parameters discussed in this experiment are step 
per epoch, RPN train anchors per image, and train RoI per 
image. Epoch refers to training all images in the training set 
once during training. Step per epoch refers to training batch 
size, or how many images are trained each epoch. RPN train 
anchors per image refers to the number of RoIs output by the 
RPN. Train RoI per image refers to the number of anchors 
used in RPN training. For the above three parameters, one 
parameter is adjusted at a time with the remaining two 
parameters fixed to calculate the optimal rate for each 
parameter.

First, we consider the parameter adjustment of step per 
epoch. The highest correct rate is selected as the subsequent 
experiment of RPN train anchor per image. Then, the result 
with the optimal rate after adjusting the second parameter is 
selected for experimental use to adjust the train RoI per
image. Precision, Recall, F1 Measure, and IoU are used to 
evaluate the experimental results.

After experimenting, a pre-trained weights of the COCO 
dataset were used, the three parameters of step per epoch, 
RPN train anchors per image, and train RoI per image were 
set to 1000, 256, and 512, respectively. After 18 epochs 
training, the average precision rate was 98.48%, the average 
recall rate was 96.31%, and the average IoU was 97.17%. 
The average accuracy rate of food recognition for the 16 
classes was 99%. Of the 3,680 testing foods, 3,568 foods 
were predicted, of which five were misrecognized and 112 
foods were unsuccessfully detected.
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C. Food Detection and Recognition Model Improvement
As the first experiment had a high precision rate and a 

relatively low recall rate, we aimed to improve on these 
results. In the first experiment, it was found that the food 
images were placed too close to each other, resulting in some 
food, such as pancake, ham, and toast, not being detected 
successfully, as shown in Fig. 7. Figs. 7(a) and 7(c) are the 
original input food images, and Figs. 7(b) and 7(d) are the 
corresponding results of detection and recognition. The toast 
detection failed in Fig. 7(b), and the pancake and ham 
detection failed in Fig. 7(d).

(a) (b) (c) (d)

Figure 7. Example of food placement too close to recognize failure. (a) 
The original input image. (b) Toast detection failed. (c) The original input 

image. (d) Pancake and ham detection failed.

In this experiment, the accuracy rate was calculated after 
the union operation, and compared with the method before 
the improvement. Table 2 shows the precision rate, recall 
rate, and F1 measure before and after improvements. The 
results indicate that the three classes of toast, pancake, and 
ham had improved accuracy; toast, sausage, chicken cutlet, 
French toast, pancake, and ham improved their recall and F1 
measure. After improvement, the average precision rate, 
recall rate, and F1 measure were 99.09%, 97.91%, and 
98.50%, respectively.

TABLE II. THE ACCURACY RATES OF 16 CLASSES WITH NMS AND 
UNION.

Regarding the precision rate, the toast class increased 
from 95.92% to 100.00%, the pancake class increased from 
97.63% to 100.00%, the ham class increased from 93.38% to 

94.08%, and the average accuracy increased from 98.48% to 
99.09%.

Regarding the recall rate, the toast class increased from 
92.17% to 100.00%, the sausage class increased from 96.93% 
to 100.00%, the chicken cutlet class increased from 94.65% 
to 95.88%, the French toast class increased from 97.03% to 
99.26%, the pancake class increased from 95.38% to 
100.00%, and the ham class increased from 87.58% to 
88.82%. The average accuracy increased from 96.31% to 
97.91%.

Regarding the F1 measure, the toast class increased from 
94.01% to 100.00%, the sausage class increased from 98.44% 
to 100.00%, the chicken cutlet class increased from 97.25% 
to 97.90%, the French toast class increased from 98.49% to 
99.63%, the pancake class increased from 96.49% to 
100.00%, and the ham class increased from 90.38% to 
91.37%. The average accuracy increased from 97.38% to 
98.50%.

Figure 8. An example of the original input image and improvement 
results.

Fig. 8 shows an example of the improved experimental
results. The first row (top) is the original input image, the 
second row (middle) is the pre-improved output, and the 
third row (bottom) is the improved output. No sausage is 
detected in the first (pre-improved output) image of the 
second row. After the improvement, the results are as shown 
in the first image of the third row, and all the sausages are 
successfully detected. Two French toasts are not detected in 
the second image of the second row. The improved results 
show that all French toasts are successfully detected as 
shown in the second image of the third row. No chicken 
cutlet is detected in the third image of the second row. The 
improved output is shown in the third image of the third row,
with all chicken cutlets successfully detected.

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on April 05,2021 at 22:56:31 UTC from IEEE Xplore.  Restrictions apply. 



 

 
 

  

 

  
 

 
 

 

  

 

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

����

D. Food Weight Estimation
In the food weight estimation experiment, linear 

regression was performed for eight foods: salad, fruit, French 
toast, sausage, bacon, ham, patty, and French fries. Different 
food images were taken for each of the eight foods, and the 
weight of the food and the number of pixels in the images 
were recorded. The results of the food weight estimation 
experiment were evaluated by absolute and relative error. In 
the classes of salad, fruit, toast, sausage, bacon, ham, patty, 
and French fries, the absolute errors were, respectively, 2.71, 
8.45, 15.98, 8.00, 2.50, 1.79, 6.53, and 9.83. The relative 
errors were 0.34, 0.11, 0.19, 0.11, 0.08, 0.07, 0.06, and 0.04, 
respectively. In the food weight estimation experiment, the 
final average absolute error was 8.22, and the average 
relative error was 0.13. Fig. 9 shows the estimated result for 
the patty weight estimation experiments.

Figure 9. The weight estimation results of patty. The x-axis is the number 
of pixels in the food image and the y-axis is the estimated weight of the 

food.

IV. CONCLUSION AND FUTURE WORK

The proposed system aims to help users manage their diet 
through food recognition and calorie nutrient analysis. This 
study uses food images as input to the system, based on 
Mask R-CNN to detect and recognize food class and food 
masks. The proportion of food in the image is obtained 
through the food mask, and the weight of the food is 
estimated by linear regression. The combination of food 
calories and estimated weights allows the system to 
ultimately label food calories and nutrients.

This study proposes the Ville Cafe dataset, which is 
divided into 16 food classes with 35,842 images and 9,776 
food items. The Ville Cafe dataset collected five Western-
style brunch restaurants with different food items, and most 
food images contain a variety of food. The accuracy of the 
combination of the Ville Cafe dataset and the Food-256 
Dataset is 99.86% and IoU is 97.17%. In the weight 
estimation, the eight classes of salad, fruit, toast, sausage, 
bacon, ham, patty, and French fries had 40, 40, 44, 40, 41, 49, 
26, and 40 data points, respectively, summing to 320 data 
points for the linear regression model. In the experimental 
results, the average absolute error was 8.22, and the average 
relative error was 0.13. In future, we hope to enhance the 
system to allow users to record each meal, not limited to 

breakfast food, and to provide dietary advice for patients 
with different conditions.
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