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Abstract
A common method for real-time segmentation of

moving regions in image sequences involves “back-
ground subtraction,” or thresholding the error between
an estimate of the image without moving objects and
the current image. The numerous approaches to this
problem differ in the type of background model used
and the procedure used to update the model. This paper
discusses modeling each pixel as a mixture of Gaus-
sians and using an on-line approximation to update
the model. The Gaussian distributions of the adaptive
mixture model are then evaluated to determine which
are most likely to result from a background process.
Each pixel is classified based on whether the Gaussian
distribution which represents it most effectively is con-
sidered part of the background model.

This results in a stable, real-time outdoor tracker
which reliably deals with lighting changes, repetitive
motions from clutter, and long-term scene changes.
This system has been run almost continuously for 16
months, 24 hours a day, through rain and snow.

1 Introduction
In the past, computational barriers have limited the

complexity of real-time video processing applications.
As a consequence, most systems were either too slow
to be practical, or succeeded by restricting themselves
to very controlled situations. Recently, faster comput-
ers have enabled researchers to consider more complex,
robust models for real-time analysis of streaming data.
These new methods allow researchers to begin model-
ing real world processes under varying conditions.

Consider the problem of video surveillance and
monitoring. A robust system should not depend on
careful placement of cameras. It should also be robust
to whatever is in its visual field or whatever lighting
effects occur. It should be capable of dealing with
movement through cluttered areas, objects overlap-
ping in the visual field, shadows, lighting changes, ef-
fects of moving elements of the scene (e.g. swaying

trees), slow-moving objects, and objects being intro-
duced or removed from the scene. Traditional ap-
proaches based on backgrounding methods typically
fail in these general situations. Our goal is to cre-
ate a robust, adaptive tracking system that is flexible
enough to handle variations in lighting, moving scene
clutter, multiple moving objects and other arbitrary
changes to the observed scene. The resulting tracker
is primarily geared towards scene-level video surveil-
lance applications.
1.1 Previous work and current shortcom-

ings
Most researchers have abandoned non-adaptive

methods of backgrounding because of the need for
manual initialization. Without re-initialization, errors
in the background accumulate over time, making this
method useful only in highly-supervised, short-term
tracking applications without significant changes in
the scene.

A standard method of adaptive backgrounding is
averaging the images over time, creating a background
approximation which is similar to the current static
scene except where motion occurs. While this is ef-
fective in situations where objects move continuously
and the background is visible a significant portion of
the time, it is not robust to scenes with many mov-
ing objects particularly if they move slowly. It also
cannot handle bimodal backgrounds, recovers slowly
when the background is uncovered, and has a single,
predetermined threshold for the entire scene.

Changes in scene lighting can cause problems for
many backgrounding methods. Ridder et al.[5] mod-
eled each pixel with a Kalman Filter which made their
system more robust to lighting changes in the scene.
While this method does have a pixel-wise automatic
threshold, it still recovers slowly and does not han-
dle bimodal backgrounds well. Koller et al.[4] have
successfully integrated this method in an automatic
traffic monitoring application.

Pfinder[7] uses a multi-class statistical model for



the tracked objects, but the background model is a
single Gaussian per pixel. After an initialization pe-
riod where the room is empty, the system reports good
results. There have been no reports on the success of
this tracker in outdoor scenes.

Friedman and Russell[2] have recently implemented
a pixel-wise EM framework for detection of vehicles
that bears the most similarity to our work. Their
method attempts to explicitly classify the pixel values
into three separate, predetermined distributions corre-
sponding to the road color, the shadow color, and col-
ors corresponding to vehicles. Their attempt to medi-
ate the effect of shadows appears to be somewhat suc-
cessful, but it is not clear what behavior their system
would exhibit for pixels which did not contain these
three distributions. For example, pixels may present
a single background color or multiple background col-
ors resulting from repetitive motions, shadows, or re-
flectances.
1.2 Our approach

Rather than explicitly modeling the values of all
the pixels as one particular type of distribution, we
simply model the values of a particular pixel as a mix-
ture of Gaussians. Based on the persistence and the
variance of each of the Gaussians of the mixture, we
determine which Gaussians may correspond to back-
ground colors. Pixel values that do not fit the back-
ground distributions are considered foreground until
there is a Gaussian that includes them with sufficient,
consistent evidence supporting it.

Our system adapts to deal robustly with lighting
changes, repetitive motions of scene elements, track-
ing through cluttered regions, slow-moving objects,
and introducing or removing objects from the scene.
Slowly moving objects take longer to be incorporated
into the background, because their color has a larger
variance than the background. Also, repetitive vari-
ations are learned, and a model for the background
distribution is generally maintained even if it is tem-
porarily replaced by another distribution which leads
to faster recovery when objects are removed.

Our backgrounding method contains two significant
parameters – α, the learning constant and T, the pro-
portion of the data that should be accounted for by the
background. Without needing to alter parameters, our
system has been used in an indoors, human-computer
interface application and, for the past 16 months, has
been continuously monitoring outdoor scenes.

2 The method
If each pixel resulted from a particular surface un-

der particular lighting, a single Gaussian would be suf-
ficient to model the pixel value while accounting for

(a) (b)

(c) (d)

Figure 1: The execution of the program. (a) the cur-
rent image, (b) an image composed of the means of
the most probable Gaussians in the background model,
(c) the foreground pixels, (d) the current image with
tracking information superimposed. Note: while the
shadows are foreground in this case,if the surface was
covered by shadows a significant amount of the time,
a Gaussian representing those pixel values may be sig-
nificant enough to be considered background.

acquisition noise. If only lighting changed over time, a
single, adaptive Gaussian per pixel would be sufficient.
In practice, multiple surfaces often appear in the view
frustum of a particular pixel and the lighting condi-
tions change. Thus, multiple, adaptive Gaussians are
necessary. We use a mixture of adaptive Gaussians to
approximate this process.

Each time the parameters of the Gaussians are up-
dated, the Gaussians are evaluated using a simple
heuristic to hypothesize which are most likely to be
part of the “background process.” Pixel values that do
not match one of the pixel’s “background” Gaussians
are grouped using connected components. Finally,
the connected components are tracked from frame to
frame using a multiple hypothesis tracker. The pro-
cess is illustrated in Figure 1.
2.1 Online mixture model

We consider the values of a particular pixel over
time as a “pixel process”. The “pixel process” is a
time series of pixel values, e.g. scalars for grayvalues
or vectors for color images. At any time, t, what is
known about a particular pixel, {x0, y0}, is its history

{X1, ..., Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t} (1)

where I is the image sequence. Some “pixel processes”
are shown by the (R,G) scatter plots in Figure 2(a)-(c)
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Figure 2: This figure contains images and scatter plots
of the red and green values of a single pixel from the
image over time. It illustrates some of the difficulties
involved in real environments. (a) shows two scatter
plots from the same pixel taken 2 minutes apart. This
would require two thresholds. (b) shows a bi-model dis-
tribution of a pixel values resulting from specularities
on the surface of water. (c) shows another bi-modality
resulting from monitor flicker.

which illustrate the need for adaptive systems with au-
tomatic thresholds. Figure 2(b) and (c) also highlight
a need for a multi-modal representation.

The value of each pixel represents a measurement of
the radiance in the direction of the sensor of the first
object intersected by the pixel’s optical ray. With a
static background and static lighting, that value would
be relatively constant. If we assume that independent,
Gaussian noise is incurred in the sampling process, its
density could be described by a single Gaussian dis-
tribution centered at the mean pixel value. Unfortu-
nately, the most interesting video sequences involve
lighting changes, scene changes, and moving objects.

If lighting changes occurred in a static scene, it
would be necessary for the Gaussian to track those
changes. If a static object was added to the scene
and was not incorporated into the background until it
had been there longer than the previous object, the
corresponding pixels could be considered foreground
for arbitrarily long periods. This would lead to accu-
mulated errors in the foreground estimation, resulting
in poor tracking behavior. These factors suggest that
more recent observations may be more important in
determining the Gaussian parameter estimates.

An additional aspect of variation occurs if moving
objects are present in the scene. Even a relatively con-
sistently colored moving object is generally expected
to produce more variance than a “static” object. Also,
in general, there should be more data supporting the
background distributions because they are repeated,
whereas pixel values for different objects are often not
the same color.

These are the guiding factors in our choice of model
and update procedure. The recent history of each
pixel, {X1, ..., Xt}, is modeled by a mixture of K Gaus-
sian distributions. The probability of observing the
current pixel value is

P (Xt) =
K∑

i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (2)

where K is the number of distributions, ωi,t is an es-
timate of the weight (what portion of the data is ac-
counted for by this Gaussian) of the ith Gaussian in
the mixture at time t, µi,t is the mean value of the
ith Gaussian in the mixture at time t, Σi,t is the co-
variance matrix of the ith Gaussian in the mixture at
time t, and where η is a Gaussian probability density
function

η(Xt, µ,Σ) =
1

(2π)
n
2 |Σ|

1
2
e−

1
2 (Xt−µt)

T Σ−1(Xt−µt) (3)

K is determined by the available memory and compu-
tational power. Currently, from 3 to 5 are used. Also,
for computational reasons, the covariance matrix is
assumed to be of the form:

Σk,t = σ2
kI (4)

This assumes that the red, green, and blue pixel values
are independent and have the same variances. While
this is certainly not the case, the assumption allows
us to avoid a costly matrix inversion at the expense of
some accuracy.

Thus, the distribution of recently observed values
of each pixel in the scene is characterized by a mixture
of Gaussians. A new pixel value will, in general, be
represented by one of the major components of the
mixture model and used to update the model.

If the pixel process could be considered a sta-
tionary process, a standard method for maximizing
the likelihood of the observed data is expectation
maximization[1]. Unfortunately, each pixel process
varies over time as the state of the world changes,
so we use an approximate method which essentially
treats each new observation as a sample set of size 1



and uses standard learning rules to integrate the new
data.

Because there is a mixture model for every pixel in
the image, implementing an exact EM algorithm on
a window of recent data would be costly. Instead, we
implement an on-line K-means approximation. Every
new pixel value, Xt, is checked against the existing
K Gaussian distributions, until a match is found. A
match is defined as a pixel value within 2.5 standard
deviations of a distribution1. This threshold can be
perturbed with little effect on performance. This is
effectively a per pixel/per distribution threshold. This
is extremely useful when different regions have differ-
ent lighting (see Figure 2(a)), because objects which
appear in shaded regions do not generally exhibit as
much noise as objects in lighted regions. A uniform
threshold often results in objects disappearing when
they enter shaded regions.

If none of the K distributions match the current
pixel value, the least probable distribution is replaced
with a distribution with the current value as its mean
value, an initially high variance, and low prior weight.

The prior weights of the K distributions at time t,
ωk, t, are adjusted as follows

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (5)

where α is the learning rate2 and Mk,t is 1 for the
model which matched and 0 for the remaining mod-
els. After this approximation, the weights are re-
normalized. 1/α defines the time constant which de-
termines the speed at which the distribution’s param-
eters change. ωk,t is effectively a causal low-pass fil-
tered average of the (thresholded) posterior probabil-
ity that pixel values have matched model k given ob-
servations from time 1 through t. This is equivalent
to the expectation of this value with an exponential
window on the past values.

The µ and σ parameters for unmatched distribu-
tions remain the same. The parameters of the dis-
tribution which matches the new observation are up-
dated as follows

µt = (1− ρ)µt−1 + ρXt (6)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (7)

where
ρ = αη(Xt|µk, σk) (8)

1Depending on the curtosis of the noise, some percentage of
the data points “generated” by a Gaussian will not “match”.
The resulting random noise is easily ignored by neglecting con-
nected components containing only 1 or 2 pixels.

2While this rule is easily interpreted an an interpolation
between two points, it is often shown in the equivalent form:
ωk,t = ωk,t−1 + α(Mk,t − ωk,t−1)

which is effectively the same type of causal low-pass
filter as mentioned above, except that only the data
which matches the model is included in the estimation.

One of the significant advantages of this method
is that when something is allowed to become part of
the background, it doesn’t destroy the existing model
of the background. The original background color re-
mains in the mixture until it becomes the Kth most
probable and a new color is observed. Therefore, if an
object is stationary just long enough to become part
of the background and then it moves, the distribution
describing the previous background still exists with
the same µ and σ2, but a lower ω and will be quickly
re-incorporated into the background.
2.2 Background Model Estimation

As the parameters of the mixture model of each
pixel change, we would like to determine which of the
Gaussians of the mixture are most likely produced by
background processes. Heuristically, we are interested
in the Gaussian distributions which have the most sup-
porting evidence and the least variance.

To understand this choice, consider the accumu-
lation of supporting evidence and the relatively low
variance for the “background” distributions when a
static, persistent object is visible. In contrast, when
a new object occludes the background object, it will
not, in general, match one of the existing distributions
which will result in either the creation of a new dis-
tribution or the increase in the variance of an existing
distribution. Also, the variance of the moving object
is expected to remain larger than a background pixel
until the moving object stops. To model this, we need
a method for deciding what portion of the mixture
model best represents background processes.

First, the Gaussians are ordered by the value of
ω/σ. This value increases both as a distribution gains
more evidence and as the variance decreases. Af-
ter re-estimating the parameters of the mixture, it is
sufficient to sort from the matched distribution to-
wards the most probable background distribution, be-
cause only the matched models relative value will have
changed. This ordering of the model is effectively an
ordered, open-ended list, where the most likely back-
ground distributions remain on top and the less prob-
able transient background distributions gravitate to-
wards the bottom and are eventually replaced by new
distributions.

Then the first B distributions are chosen as the
background model, where

B = argminb

(
b∑

k=1

ωk > T

)
(9)



where T is a measure of the minimum portion of the
data that should be accounted for by the background.
This takes the “best” distributions until a certain por-
tion, T, of the recent data has been accounted for. If
a small value for T is chosen, the background model
is usually unimodal. If this is the case, using only the
most probable distribution will save processing.

If T is higher, a multi-modal distribution caused
by a repetitive background motion (e.g. leaves on a
tree, a flag in the wind, a construction flasher, etc.)
could result in more than one color being included in
the background model. This results in a transparency
effect which allows the background to accept two or
more separate colors.
2.3 Connected components

The method described above allows us to identify
foreground pixels in each new frame while updating
the description of each pixel’s process. These labeled
foreground pixels can then be segmented into regions
by a two-pass, connected components algorithm [3].

Because this procedure is effective in determining
the whole moving object, moving regions can be char-
acterized not only by their position, but size, mo-
ments, and other shape information. Not only can
these characteristics be useful for later processing and
classification, but they can aid in the tracking process.
2.4 Multiple Hypothesis Tracking

While this section is not essential in the under-
standing of the background subtraction method, it
will allow one to better understand and evaluate the
results in the following sections.

Establishing correspondence of connected compo-
nents between frames is accomplished using a lin-
early predictive multiple hypotheses tracking algo-
rithm which incorporates both position and size. We
have implemented an online method for seeding and
maintaining sets of Kalman filters.

At each frame, we have an available pool of Kalman
models and a new available pool of connected com-
ponents that they could explain. First, the models
are probabilistically matched to the connected regions
that they could explain. Second, the connected re-
gions which could not be sufficiently explained are
checked to find new Kalman models. Finally, mod-
els whose fitness (as determined by the inverse of the
variance of its prediction error) falls below a threshold
are removed.

Matching the models to the connected compo-
nents involves checking each existing model against
the available pool of connected components which are
larger than a pixel or two. All matches are used to up-
date the corresponding model. If the updated model

has sufficient fitness, it will be used in the following
frame. If no match is found a “null” match can be
hypothesized which propogates the model as expected
and decreases its fitness by a constant factor.

The unmatched models from the current frame and
the previous two frames are then used to hypothe-
size new models. Using pairs of unmatched connected
components from the previous two frames, a model is
hypothesized. If the current frame contains a match
with sufficient fitness, the updated model is added
to the existing models. To avoid possible combina-
torial explosions in noisy situations, it may be desir-
able to limit the maximum number of existing models
by removing the least probable models when excessive
models exist. In noisy situations (e.g. ccd cameras in
low-light conditions), it is often useful to remove the
short tracks that may result from random correspon-
dances. Further details of this method can be found
at http://www.ai.mit.edu/projects/vsam/.

3 Results
On an SGI O2 with a R10000 processor, this

method can process 11 to 13 frames a second (frame
size 160x120pixels). The variation in the frame rate is
due to variation in the amount of foreground present.
Our tracking system has been effectively storing track-
ing information for five scenes for over 16 months[6].
Figure 3 shows accumulated tracks in one scene over
the period of a day.

While quick changes in cloud cover (relative to α,
the learning rate) can sometimes necessitate a new set
of background distributions, it will stabilize within 10-
20 seconds and tracking will continue unhindered.

Because of the stability and completeness of the
representation it is possible to do some simple classi-
fication. Figure 4 shows the classification of objects
which appeared in a scene over a 10 minute period
using a simple binary threshold on the time-averaged
aspect ratio of the object. Tracks lasting less than a
second were removed.

Every object which entered this scene – in total, 33
cars and 34 people – was tracked. It successfully clas-
sified every car except in one case, where it classified
two cars as the same object because one car entered
the scene simultaneously with another car leaving at
the same point. It found only one person in two cases
where two people where walking in physical contact.
It also double counted 2 objects because their tracks
were not matched properly.

4 Applicability
When deciding on a tracker to implement, the most

important information to a researcher is where the



(a) (b)

Figure 3: This figure shows consecutive hours of track-
ing from 6am to 9am and 3pm to 7pm. (a) shows
the image at the time the template was stored and (b)
show the accumulated tracks of the objects over that
time. Color encodes direction and intensity encodes
size. The consistency of the colors within particular
regions reflects the consistency of the speed, direction,
and size parameters which have been acquired.

(a)

(b)

Figure 4: This figure shows which objects in the scene
were classified as people or cars using simple heuristics
on the aspect ratio of the observed object. Its accuracy
reflects the consistency of the connected regions which
are being tracked.

tracker is applicable. This section will endeavor to
pass on some of the knowledge we have gained through
our experiences with this tracker.

The tracking system has the most difficulty with
scenes containing high occurrences of objects that vi-
sually overlap. The multiple hypothesis tracker is not
extremely sophisticated about reliably dissambiguat-
ing objects which cross. This problem can be com-
pounded by long shadows, but for our applications it
was much more desirable to track an object and its
shadow and avoid cropping or missing dark objects
than it was to attempt to remove shadows. In our ex-
perience, on bright days when the shadows are the
most significant, both shadowed regions and shady
sides of dark objects are black (not dark green, not
dark red, etc.).

The good news is that the tracker was relatively
robust to all but relatively fast lighting changes (e.g.
flood lights turning on and partly cloudy, windy days).
It successfully tracked outdoor scenes in rain, snow,
sleet, hail, overcast, and sunny days. It has also been
used to track birds at a feeder, mice at night us-
ing Sony NightShot, fish in a tank, people entering
a lab, and objects in outdoor scenes. In these en-
vironments, it reduces the impact of repetative mo-
tions from swaying branches, rippling water, spec-
ularities, slow moving objects, and camera and ac-
quisition noise. The system has proven robust to
day/night cycles and long-term scene changes. More
recent results and project updates are available at
http://www.ai.mit.edu/projects/vsam/.

5 Future work
As computers improve and parallel architectures

are investigated, this algorithm can be run faster, on



larger images, and using a larger number of Gaussians
in the mixture model. All of these factors will in-
crease performance. A full covariance matrix would
further improve performance. Adding prediction to
each Gaussian(e.g. the Kalman filter approach), may
also lead to more robust tracking of lighting changes.

Beyond these obvious improvements, we are inves-
tigating modeling some of the inter-dependencies of
the pixel processes. Relative values of neighboring
pixels and correlations with neighboring pixel’s dis-
tributions may be useful in this regard. This would
allow the system to model changes in occluded pixels
by observations of some of its neighbors.

Our method has been used on grayscale, RGB,
HSV, and local linear filter responses. But this
method should be capable of modeling any streamed
input source in which our assumptions and heuristics
are generally valid. We are investigating use of this
method with frame-rate stereo, IR cameras, and in-
cluding depth as a fourth channel(R,G,B,D). Depth is
an example where multi-modal distributions are use-
ful, because while disparity estimates are noisy due
to false correspondences, those noisy values are often
relatively predictable when they result from false cor-
respondences in the background.

In the past, we were often forced to deal with rela-
tively small amounts of data, but with this system we
can collect images of moving objects and tracking data
robustly on real-time streaming video for weeks at a
time. This ability is allowing us to investigate future
directions that were not available to us in the past.
We are working on activity classification and object
classification using literally millions of examples[6].

6 Conclusions
This paper has shown a novel, probabilistic method

for background subtraction. It involves modeling each
pixel as a separate mixture model. We implemented
a real-time approximate method which is stable and
robust. The method requires only two parameters, α
and T. These two parameters are robust to different
cameras and different scenes.

This method deals with slow lighting changes by
slowly adapting the values of the Gaussians. It also
deals with multi-modal distributions caused by shad-
ows, specularities, swaying branches, computer moni-
tors, and other troublesome features of the real world
which are not often mentioned in computer vision. It
recovers quickly when background reappears and has a
automatic pixel-wise threshold. All these factors have
made this tracker an essential part of our activity and
object classification research.

This system has been successfully used to track peo-

ple in indoor environments, people and cars in outdoor
environments, fish in a tank, ants on a floor, and re-
mote control vehicles in a lab setting. All these situa-
tions involved different cameras, different lighting, and
different objects being tracked. This system achieves
our goals of real-time performance over extended pe-
riods of time without human intervention.
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