
http://www.ee.unlv.edu/~b1morris/ecg795/

EE795: Computer Vision and

Intelligent Systems

Spring 2012
TTh 17:30-18:45 FDH 204

Lecture 13
Object Recognition
140327

Outline

• Knowledge Representation

• Statistical Pattern Recognition

• Neural Networks

• Boosting

2

Object Recognition

• Pattern recognition is a fundamental component of
machine vision

• Recognition is high-level image analysis

▫ From the bottom-up perspective (pixels objects)

▫ Many software packages exist to easily implement
recognition algorithms (E.g. Weka Project, R package)

• Goal of object recognition is to “learn”
characteristics that help distinguish object of
interest

▫ Most are binary problems

3

Knowledge Representation

• Syntax – specifies the symbols that may be used
and ways they may be arranged

• Semantics – specifies how meaning is embodied
in syntax

• Representation – set of syntactic and semantic
conventions used to describe things

• Book focuses on artificial intelligence (AI)
representations
▫ More closely related to human cognition modeling

(e.g. how humans represent things)
▫ Not as popular in vision community

4

Descriptors/Features

• Most common representation in vision

• Descriptors (features) usually represent some
scalar property of an object

▫ These are often combined into feature vectors

• Numerical feature vectors are inputs for
statistical pattern recognition techniques

▫ Descriptor represents a point in feature space

5

Statistical Pattern Recognition
• Object recognition = pattern recognition

▫ Pattern – measureable properties of object

• Pattern recognition steps:

▫ Description – determine right features for task
▫ Classification – technique to separate different object

“classes”

• Separable classes – hyper-surface exists perfectly
distinguish objects
▫ Hyper-planes used for linearly separable classes
▫ This is unlikely in real-world scenarios

6

General Classification Principles
• A statistical classifiers takes in a
𝑛-dimensional feature of an
object and has a single output
▫ The output is one of the 𝑅

available class symbols
(identifiers)

• Decision rule – describes
relations between classifier
inputs and output

▫ 𝑑 𝒙 = 𝜔𝑟
▫ Divides feature space into 𝑅

disjoint subsets 𝐾𝑟
• Discrimination hyper-surface is

the border between subsets
• Discrimination function

▫ 𝑔𝑟 𝒙 ≥ 𝑔𝑠 𝒙 , 𝑠 ≠ 𝑟

 𝒙 ∈ 𝐾𝑟

• Discrimination hyper-surface
between class regions

▫ 𝑔𝑟 𝒙 − 𝑔𝑠 𝒙 = 0

• Decision rule

▫ 𝑑 𝒙 = 𝜔𝑟 ⇔ 𝑔𝑟 𝒙 =
max

𝑠=1,…,𝑅
𝑔𝑠(𝒙)

▫ Which subset (region) provides
maximum discrimination

• Linear discriminant functions
are simple and often used in
linear classifier

▫ 𝑔𝑟 𝒙 = 𝑞𝑟0 + 𝑞𝑟1𝑥1 +⋯+
𝑞𝑟𝑛𝑥𝑛

• Must use non-linear for more
complex problems
▫ Trick is to transform the

original feature space into a
higher dimensional space
 Can use a linear classifier in

the higher dim space

▫ 𝑔𝑟 𝒙 = 𝒒𝒓 ⋅ Φ 𝒙
 Φ(𝒙) – non-linear mapping to

higher dimensional space

7

Nearest Neighbors
• Classifier based on minimum

distance principle

• Minimum distance classifier
labels pattern 𝒙 into the class
with closest exemplar

▫ 𝑑 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠|𝒗𝑠 − 𝒙|
▫ 𝒗𝑠 - exemplars (sample

pattern) for class 𝜔𝑠

• With a single exemplar per
class, results in linear classifier

• Nearest neighbor (NN) classifier
▫ Very simple classifier uses

multiple exemplars per class

▫ Take same label as closest
exemplar

• k-NN classifier
▫ More robust version by

examining 𝑘 closest points and
taking most often occurring
label

• Advantage: easy “training”

• Problems: computational
complexity
▫ Scales with number of

exemplars and dimensions

▫ Must do many comparisons

▫ Can improve performance with
K-D trees

8

Classifier Optimization
• Discriminative classifiers are deterministic

▫ Pattern 𝒙 always mapped to same class

• Would like to have an optimal classifier
▫ Classifier the minimizes the errors in

classification

• Define loss function to optimize based on
classifier parameters 𝑞

▫ 𝐽 𝑞∗ = min
𝑞

𝐽 𝑞

▫ 𝑑 𝑥, 𝑞 = 𝜔

• Minimum error criterion (Bayes criterion,
maximum likelihood) loss function
▫ 𝜆 𝜔𝑟 𝜔𝑠 - loss incurred if classifier

incorrectly labels object 𝜔𝑟
 𝜆 𝜔𝑟 𝜔𝑠 = 1 for 𝑟 ≠ 𝑠

• Mean loss

▫ 𝐽 𝑞 =

 𝜆 𝑑 𝑥, 𝑞 𝜔𝑠 𝑝 𝑥 𝜔𝑠 𝑝 𝜔𝑠 𝑑𝑥
𝑅
𝑠=1𝑋

 𝑝 𝜔𝑠 - prior probability of class
 𝑝 𝑥 𝜔𝑠 - conditional probability density

• Discriminative function

▫ 𝑔𝑟 𝑥 = 𝑝 𝑥 𝜔𝑟 𝑝 𝜔𝑟

▫ Corresponds to posteriori probability
𝑝(𝜔𝑟|𝑥)

• Posteriori probability describes how often

pattern x is from class 𝜔𝑟
• Optimal decision is to classify 𝑥 to class 𝜔𝑟 if

posteriori 𝑃(𝜔𝑟|𝑥) is highest
▫ However, we do not know the posteriori

• Bayes theorem

▫ 𝑝 𝜔𝑠 𝑥 =
𝑝 𝑥 𝜔𝑠 𝑝 𝜔𝑠

𝑝 𝑥

• Since 𝑝(𝑥) is a constant and prior 𝑝 𝜔𝑠 is
known,
▫ Just need to maximize likelihood 𝑝 𝑥 𝜔𝑠

• This is desirable because the likelihood is
something we can learn using training data

9

Classifier Training
• Supervised approach

• Training set is given with
feature and associated class
label

▫ 𝑇 = { 𝒙𝑖 , 𝑦𝑖 }

▫ Used to set the classifier
parameters 𝒒

• Learning methods should be
inductive to generalize well

▫ Represent entire feature
space

▫ E.g. work even on unseen
examples

• Usually, larger datasets result
in better generalization

▫ Some state-of-the-art
classifiers use millions of
examples

▫ Try to have enough samples
to statistical cover space

• N Cross-fold validation/testing

▫ Divide training data into a
train and validation set

▫ Only train using training data
and check results on
validation set

▫ Can be used for
“bootstrapping” or to select
best parameters after
partitioning data N times

10

Classifier Learning

• Probability density estimation
▫ Estimate the probability densities 𝑝(𝒙|𝜔𝑟) and

priors 𝑝(𝜔𝑟)

• Parametric learning
▫ Typically, the distribution 𝑝 𝒙 𝜔𝑟 shape is known

but the parameters must be learned
 E.g. Gaussian mixture model

▫ Like to select a distribution family that can be
efficiently estimated such as Gaussians

▫ Prior estimation by relative frequency

 𝑝 𝜔𝑟 = 𝐾𝑟/𝐾
 Number of objects in class 𝑟 over total objects in

training database

11

Support Vector Machines (SVM)
• Maybe the most popular classifier in CV today
• SVM is an optimal classification for separable two-

class problem
▫ Maximizes the margin (separation) between two

classes generalizable and avoids overfitting
▫ Relaxed constraints for non-separable classes
▫ Can use kernel trick to provide non-linear separating

hyper-surfaces
• Support vectors – vectors from each class that are

closest to the discriminating surface
▫ Define the margin

• Rather than explicitly model the likelihood, search
for the discrimination function
▫ Don’t waste time modeling densities when class label

is all we need

12

SVM Insight
• SVM is designed for binary classification of linearly

separable classes
• Input 𝒙 is n-dimensional (scaled between [0,1] to

normalize) and class label 𝜔 ∈ {−1,1}
• Discrimination between classes defined by hyperplane

s.t. no training samples are misclassified

▫ 𝒘 ⋅ 𝒙 + 𝑏 = 0
 𝒘 – plane normal, 𝑏 offset

▫ Optimization finds “best” separating hyperplane

13

SVM Power
• Final discrimination function

▫ 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏
• Re-written using training data

▫ 𝑓 𝑥 = 𝛼𝑖𝜔𝑖 𝑥𝑖 ⋅ 𝑥 + 𝑏𝑖∈𝑆𝑉
 𝛼𝑖 - weight of support vector

SV
▫ Only need to keep support

vectors for classification
• Kernel trick

▫ Replace 𝑥𝑖 ⋅ 𝑥 with non-linear
mapping kernel

 𝑘 𝑥𝑖 , 𝑥 = Φ 𝑥𝑖 ⋅ Φ 𝑥𝑗

▫ For specific kernels this can be
efficiently computed without
doing the warping Φ
 Can even map into an infinite

dimensional space
▫ Allows linear separation in a

higher dimensional space

14

SVM Resources

• More detailed treatment can be found in

▫ Duda, Hart, Stork, “Pattern Classification”

• Lecture notes from Nuno Vasconcelos (UCSD)

▫ http://www.svcl.ucsd.edu/courses/ece271B-
F09/handouts/SVMs.pdf

• SVM software

▫ LibSVM [link]

▫ SVMLight [link]

15

http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/SVMs.pdf
http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/SVMs.pdf
http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/SVMs.pdf
http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/SVMs.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

Cluster Analysis
• Unsupervised learning method that does not require labeled

training data
• Divide training set into subsets (clusters) based on mutual

similarity of subset elements
▫ Similar objects are in a single cluster, dissimilar objects in

separate clusters
• Clustering can be performed hierarchically or non-

hierarchically
• Hierarchical clustering

▫ Agglomerative – each sample starts as its own cluster and
clusters are merged

▫ Divisive – the whole dataset starts as a single cluster and is
divided

• Non-hierarchical clustering
▫ Parametric approaches – assumes a known class-conditioned

distribution (similar to classifier learning)
▫ Non-parametric approaches – avoid strict definition of

distribution

16

K-Means Clustering

• Very popular non-parametric clustering technique

▫ Based on minimizing the sum of squared distances

 𝐸 = 𝑑2(𝑥𝑗 , 𝑣𝑖)𝑥𝑗∈𝑉𝑖
𝐾
𝑖=1

▫ Simple and effective

• K-means algorithm

▫ Input is n-dimensional data points and number of
clusters 𝐾

▫ Initialize cluster starting points

 {𝑣1, 𝑣2, … , 𝑣𝐾}

▫ Assign points to closest 𝑣𝑖 using distance metric 𝑑

▫ Recompute 𝑣𝑖 as centroid of associated data 𝑉𝑖

▫ Repeat until convergence

17

K-Means Demo

• http://home.deib.polimi.it/matteucc/Clustering
/tutorial_html/AppletKM.html

18

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Neural Networks
• Early success on difficult

problems
▫ Renewed interest with deep

learning

• Motivated by human brain and
neurons
▫ Neuron is elementary

processor which takes a
number of inputs and
generates a single output

• Each input has associated
weight and output is a
weighted sum of inputs

• The network is formed by
interconnecting neurons
▫ Outputs of neurons as inputs

to others

▫ May have many inputs and
many outputs

• NN tasks:
▫ Classification – binary output

▫ Auto-association – re-
generate input to learn
network representation

▫ General association –
associations between patterns
in different domains

19

http://deeplearning.net/
http://deeplearning.net/

NN Variants
• Feed-forward networks

▫ Include “hidden” layers
between input and output

• Can handle more complicated
problems

• Networks “taught” using back-
propagation
▫ Compare network output to

expected (truth) output
▫ Minimize SSD error by

adjusting neuron weight

• Kohonen feature maps
▫ Unsupervised learning that

organizes network to recognize
patterns

• Performs clustering
▫ Neighborhood neurons are

related

• Network lies on a 2D layer
▫ Fully connect neurons to all

inputs
▫ Neuron with highest input

 𝑥 = 𝑣𝑖𝑤𝑖
𝑛
𝑖=1

▫ is the winner (cluster label)

20

Boosting
• Generally, a single classifier does

not solve problem well enough
▫ Is it possible to improve

performance by using more
classifiers (e.g. experts)?

• Boosting – intelligent combination
of weak classifiers to generate a
strong classifier
▫ Weak classifier works a little better

than chance (50% for binary
problem)

▫ Final decision rule combines each
weak classifier output by weighted
confidence majority vote

 𝐶 𝑥 = 𝑠𝑖𝑔𝑛 𝛼𝑖𝐶𝑖 𝑥𝑖
 𝛼𝑖 - confidence in classifier
𝐶𝑖(.)

• Training
▫ Sequentially train classifiers to

focus classification effort on “hard”
examples

▫ After each training round, re-
weight misclassified examples

• Advantages:
▫ Generally, does not overfit but is

able to achieve high accuracy
 Training rounds increase margin

▫ Many modification exist to
improve performance
 Gentle and BrownBoost for outlier

robustness
 Strong theoretical background

▫ Flexible with only “weak” classifier
requirement
 Can use any type of classifier

(statistical, rule-based, of different
type, etc.)

21

