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Dense Motion Estimation

- Motion is extremely important in vision
- Biologically: motion indicates what is food and
when to run away
= We have evolved to be very sensitive to motion
cues (peripheral vision)
- Alignment of images and motion estimation is
widely used in computer vision
= Optical flow
= Motion compensation for video compression
= Image stabilization
» Video summarization



Biological Motion

Even limited motion information is perceptually
meaningful



http://www.biomotionlab.ca/Demos/BMLwalker.html
http://www.biomotionlab.ca/Demos/BMLwalker.html

Motion Estimation

- Input: sequence of images
- Output: point correspondence

- Prior knowledge: decrease problem complexity

» E.g. camera motion (static or mobile), time
interval between images, etc.

- Motion detection
= Simple problem to recognize any motion (security)
- Moving object detection and location

= Feature correspondence: “Feature Tracking”
- We will see more of this when we examine SIFT
> Pixel (dense) correspondence: “Optical Flow”



Dynamic Image Analysis

- Motion description - Motion assumptions
> Motion/velocity field — > Maximum velocity — object
velocity vector associated must be located in an circle
with corresponding keypoints defined by max velocity
- Optical flow — dense = Small acceleration — limited
acceleration

correspondence that requires

small time distance between » Common motion — all object
images points move similarly

> Mutual correspondence — rigid
objects with stable points

(@) (b) (c)
Figure 16.1: Object motion assumptions. (a) Maximum velocity (shaded circle represents area
of possible object location). (b) Small acceleration (shaded circle represents area of possible
object location at time #»). (¢) Common motion and mutual correspondence (rigid objects).
© Cengage Learning 2015.
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General Motion Analysis and Tracking

- Two interrelated components:

- Localization and representation of object of interest
(target)
> Bottom-up process: deal with appearance,
orientation, illumination, scale, etc.
- Trajectory filtering and data association

» Top-down process: consider object dynamics to
infer motion (motion models)



Differential Motion Analysis

- Simple motion detection
possible with image
subtraction

s Requires a stationary camera
and constant illumination

> Also known as change

detection
- Difference image
o d(i,)) = @
(1 IAGD - LGl <e é—*
0 else =Y,
- Binary image that highlights 1

moving pixels &
L]
Figure 16.2: Motion detection. (a) First frame of the image sequence. (b) Frame 2 of the
¢ What are the Varlous sequence. (c) Last frame (frame 5). (d) Differential motion image constructed from image
< o ’ o frames 1 and 2 (inverted to improve visualization). © M. Sonka 2015.
detections” from this
method?

= See book
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Background Subtraction

- Motion 1s an important
= Indicates an object of interest

- Background subtraction

= Given an image (usually a video frame), identify
the foreground objects in that image

- Assume that foreground objects are moving

- Typically, moving objects more interesting than the
scene

- Simplifies processing — less processing cost and less
room for error
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Background Subtraction Example

- Often used in traffic monitoring applications

- Human action recognition (run, walk, jump, ...)

- Human-computer interaction (“human as
interface”)

» Object tracking
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Requirements

- A reliable and robust background subtraction
algorithm should handle:
= Sudden or gradual illumination changes
- Light turning on/off, cast shadows through a day
= High frequency, repetitive motion in the
background
- Tree leaves blowing in the wind, flag, etc.
= Long-term scene changes
- A car parks in a parking spot
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Basic Approach

- Estimate the background at time ¢
- Subtract the estimated background from the
current input frame
- Apply a threshold, Th, to the absolute difference
to get the foreground mask.
I(x y,t) B(x y,t)| > Th=F(x,y,t)

I(x,y,t)

How can we estimate the background?



Frame Differencing

- Background is estimated to be the previous
frame
s B(x,y,t) =1(x,y,t — 1)

- Depending on the object structure, speed, frame
rate, and global threshold, may or may not be
useful

» Usually not useful — generates impartial objects
and ghosts

t
e |

Incomplete object ghosts




Frame Differencing Example

Th=25 Th =50

Th = 100 Th = 200
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Mean Filter

- Background is the mean of the previous N
frames

1 <N .

* B(x,y,t) = Nzlivzoll(x,y, t—1i)

> Produces a background that is a temporal
smoothing or “blur”

« N =10

Estimated Background Foreground Mask
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Mean Filter
« N =20

Estimated Background Foreground Mask

« N =50
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Median Filter

- Assume the background is more likely to appear
than foreground objects

s B(x,y,t) = median(l(x, y,t— i)), i€ {0,N—1}

« N =10

Estimated Background Foreground Mask




- s

Median Filter
« N =20

Estimated Background Foreground Mask

« N =50

Estimated Background Foreground Mask




Frame Difference Advantages

- Extremely easy to implement and use
- All the described variants are pretty fast

- The background models are not constant
= Background changes over time
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Frame Differencing Shortcomings

- Accuracy depends on object speed/frame rate
- Mean and median require large memory
= Can use a running average
s B(x,y,t) = (1—a)B(x,y,t — 1)+ al(x,y,t)
- a — is the learning rate

- Use of a global threshold

= Same for all pixels and does not change with time
= WIill give poor results when the:
- Background is bimodal

- Scene has many slow moving objects (mean,
median)

- Objects are fast and low frame rate (frame diff)
- Lighting conditions change with time
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Improving Background Subtraction

- Adaptive Background Mixture Models for Real-
Time Tracking
= Chris Stauffer and W.E.L. Grimson

- “The” paper on background subtraction
s Qver 4000 citations since 1999

= Will read this and see more next time
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Optical flow

- Dense pixel correspondence
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Optical Flow

- Dense pixel correspondence
- Hamburg Taxi Sequence
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Translational Alignment

- Motion estimation between images requires a error
metric for comparison

- Sum of squared differences (SSD)

o Essp(u) = X[l (g +u) — Ip(x))* =X, f
- u = (u,v) —is a displacement vector (can be subpixel)
- e; - residual error
- Brightness constancy constraint
= Assumption that that corresponding pixels will retain
the same value in two images
= Objects tend to maintain the perceived brightness
under varying illumination conditions [Horn 1974]
- Color images processed by channels and summed or
converted to colorspace that considers only
luminance
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SSD Improvements

- As we have seen, SSD is the simplest approach
and can be improved
- Robust error metrics
» L, norm (sum absolute differences)
- Better outlier resilience
- Spatially varying weights
> Weighted SSD to weight contribution of each pixel
during matching

- Ignore certain parts of the image (e.g. foreground),
down-weight objects during images stabilization

- Bias and gain
> Normalize exposure between images
- Address brightness constancy
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Correlation

- Instead of minimizing pixel differences,
maximize correlation

« Normalized cross-correlation

Z[fﬂ(’*)—fn] i (x: +u) — 1] |
\/Z [Lo(x;) — L] \/Z: I (z; +w) — )2

Ence(u)

I{]. = FZID{’I” and

1
_{rl = FZI]{TI—FH}

= Normalize by the patch intensities

= Value is between [-1, 1] which makes it easy to use
results (e.g. threshold to find matching pixels)



Problem definition: optical flow

./ Q °

W ®
o—> i (@) .
H(x,y) I(x,y)

- How to estimate pixel motion from image H to image I?

« Solve pixel correspondence problem
— given a pixel in H, look for{nearby|pixels of the same colorjin |

Key assumptions
« color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,9)
\£j|splacement = (u,v)

(@)
(z +u,y+v)

H(z,y) I(z,y)

- Let’s look at these constraints more closely
» brightness constancy: Q: what’s the equation?
e H(x,y) = I(x+u,y+v)

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(z4+u, y+v) = I(z, y)—l—ﬂu ﬂfU-I—higher order terms
~ Iz, y) + Gru+ 9t
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Optical flow equation

- Combining these two equations

shorthand: I, = 2L
0=1I(z+ u,y+v)— H(z,y) v O

~ I(x,y) + Ipyu+ Iyvo — H(x,y)
~ ([(z,y) — H(z,y)) + Leu + Iyv
~ I + Lou + Iy

~ I + VI [u v]

In the limit as u and v go to zero, this becomes exact

0=1+VI-[% X



Optical flow equation
O=1I1;+4+ VI [u v]

» Q: how many unknowns
and equations per pixel?

u v
> u and v are unknown - 1 [ ] VI
equation, 2 unknowns ['u, U]

- Intuitively, what does
this constraint mean?

= The component of the flow
in the gradient direction is
determined

> The component of the flow ey
parallel to an edge is (u*u v+v)
unknown

- This explains the Barber

Pole illusion If (u, v) satisfies the equation, so

http: //www.sandlotscience.com/A does (u + v, v+ 1) if

mbiguous/Barberpole Illusion.ht VIi-[u'v']=0
m

\4

gradient

(u,v)

edge



http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Aperture problem

\ Actual Motion



Aperture problem

erceived Motion




Solving the aperture problem

» Basicidea: assume motion field is smooth

« Horn & Schunk: add smoothness term
[ [ e+ 91w oD2 402 Vul 2+ Vo) da dy

- Lucas & Kanade: assume locally constant motion
» pretend the pixel’s neighbors have the same (u,v)

- Many other methods exist. Here’s an overview:

= S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and
evaluation methodology for optical flow. In Proc. ICCV, 2007

= http://vision.middlebury.edu/flow/



http://vision.middlebury.edu/flow/

Lucas-Kanade flow

- How to get more equations for a pixel?

> Basic idea: impose additional constraints
+ most common is to assume that the flow field is smooth locally

- one method: pretend the pixel’s neighbors have the same (u,v)
- If we use a 5x5 window, that gives us 25 equations per pixel!

0= Ii(p;) + VI(p;) - [u v]

- I:(p1)  Iy(p1) | - Ii(p1) |
I+(p2)  Iy(p2) [ u ] — _ | Li(p2)
i Ix(f)25) Iy(li.>25) ] i It(1;25) ]

A d b

25x%x2 2x1 2bx1



RGB version

- How to get more equations for a pixel?

> Basic idea: impose additional constraints
+ most common is to assume that the flow field is smooth locally

- one method: pretend the pixel’s neighbors have the same (u,v)
- If we use a 5x5 window, that gives us 25%*3 equations per pixel!

- I(p1)[0]  Iy(p1)I[O] I+(p1)[0.
I:(p1)[1]  Iy(p1)[1. It(p1)[1.
L(py[2]  Iy(p1)[2 [ . ] Ii(p1)[2.
I:(p25)[0] Iy(p25)[0] | L © 11(p25)[0
I:(p2s)[1] Iy(p2s)[1] It(p25)[1]

| Ix(p25)[2] Iy(p2s)[2] | | 1i(p2s5)[2] |

A d b

75x2 2x1 75x1



Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad —b||?
25x2 2x1 25bx1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) d= ATh

2x2 2x1 2x1

[2156133 zfxly] [u] __[zfxft]
> Ixly > Iyly v | > Iyl

AT A Alp

« The summations are over all pixels in the K x K window
« This technique was first proposed by Lucas & Kanade (1981)



Conditions for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation

S hpley SLely || uw | _ Z%h]
S Iely Sy || o | | DI,

AT A Alp

- When is This Solvable?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
« ATA should be well-conditioned
— A/ A, should not be too large (A, = larger eigenvalue)

« Does this look familiar?
« ATA is the Harris matrix



Observation
- This is a two image problem BUT

= Can measure sensitivity by just looking at one of the images!

= This tells us which pixels are easy to track, which are hard
- very useful for feature tracking...



Aperture problem

\ Actual Motion



Aperture problem

erceived Motion




Errors in Lucas-Kanade

- What are the potential causes of errors in this
procedure?
» Suppose ATA is easily invertible
= Suppose there is not much noise in the image

- When our assumptions are violated

 Brightness constancy is not satisfied
* The motion is not small

* A point does not move like its neighbors
— window size is too large
— what is the ideal window size?



Improving accuracy

- Recall our small motion assumption
~ I(x,y) + Lpu+ Iyv — H(z,y)

- Not exact, need higher order terms to do better
= I(z,y) + Iru + Iyv + nigher order terms — H(x, y)
- Results in polynomial root finding problem
> Can be solved using Newton’s method
- Also known as Newton-Raphson
- Lucas-Kanade method does a single iteration of
Newton’s method

= Better results are obtained with more iterations



|lterative Refinement

- [terative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence



Rev151 ing t he small motlon assumptlon
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- Is this motion small enough?
= Probably not—it’s much larger than one pixel (274 order terms dominate)
= How might we solve this problem?



Reduce the resolution!




Coarse-to-fine optical flow estimation
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Coarse-to-fine optical flow estimation
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Optical Flow Results

Lucas-Kanade
without pyramids
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Khurram Hassan Shafique — CAP5415 UCF 2003



Optical Flow Results
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Robust methods

- L-K minimizes a sum-of-squares error metric

s ]east squares techniques overly sensitive to
outliers

g8° o °
o0

Error metrics

A A A

NS

quadratic truncated quadratic lorentzian

pla) = o by = | A<y = tog (14 5(5)°)
« Ootherwise

A



Robust optical flow

» Robust Horn & Schunk
| [ o4 V11w o)+ 2201V ul2+ [V ol?) d dy

« Robust Lucas-Kanade
> p(Ii +VI-[uv])

guadratic flow lorentzian flow detected outliers

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on
Computer Vision (ICCV), 1993, pp. 231-236
http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf



http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

Benchmarking optical flow algorithms

- Middlebury flow page
= http://vision.middlebury.edu/flow/



http://vision.middlebury.edu/flow/

Flow quality evaluation




Flow quality evaluation
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Flow quality evaluation

Middlebury flow page

http://vision.middlebury.edu/flow/

Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Flow quality evaluation

Middlebury flow page
* http://vision.middlebury.edu/flow/

Army - PyramidLK flow
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Lucas-Kanade flow Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Flow quality evaluation

Middlebury flow page
* http://vision.middlebury.edu/flow/

Army - Layers++ flow

2

Best-in-class alg (as of 2/26/12) Ground Truth

Color encoding
of flow vectors



http://vision.middlebury.edu/flow/

Discussion: features vs. flow?

» Features are better for:

» Flow 1is better for:



Advanced topics

- Particles: combining features and flow
> Peter Sand et al.
= http://rvsn.csail.mit.edu/pv/

- State-of-the-art feature tracking/SLAM
= Georg Klein et al.
= http://www.robots.ox.ac.uk/~gk/



http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/

