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 Thresholding
> Optimal thresholds

- Edge-Based Segmentation
= Borders
» Hough Transform

- Region-Based Segmentation
= Merging and Splitting

- Template Matching

- Evaluation Issues
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Segmentation

Divide image into parts that correlate with objects or
“world areas”

= Important step for image analysis and understanding
Complete segmentation

= Disjoint regions corresponding to objects

* R=Uj_1R;, RiNR =0, i#]j

» Typically requires high level domain knowledge
Partial segmentation

= Regions do not correspond directly to objects

= Divide image based on homogeneity property
- Brightness, color, texture, etc.
= High-level info can take partial segmentation to complete

Main goal is reduction in data volume for higher level
processing
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Segmentation Methods
- Global knowledge

» Histogram of image features (e.g. intensity)
- Edge-based
- Region-based

- Edge and region are dual problems
= Region defined by closed boundary (edges)
» Use various characteristics

- Brightness, texture, velocity field, etc.
- Local properties
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Thresholding

- Segment object from background - Requires the correct threshold of
g(i,j) = { e - Difficulty to use a single global
0 f@GH<=T threshold

= T — threshold ST =T()

> 1 object and 0 background = More often want adaptive
threshold
- T=T{.f)

* f. - 1s smaller image region (e.g.
subimage)

- Many simple variants
> Band thresholding - range of values

for object
> Multiband — multiple bands to give
® Pl grayscale result

SYL 0

(c) (d)
Figure 6.1: Image thresholding. (a) Original image. (b) Threshold segmentation. (¢) Threshold (a) (b)
too low. (d) Threshold too high. © Cengage Learning 2015. Figure 6.2: Image thresholding modification. (a) Original image. (b) Border detection using

band-thresholding. © Cengage Learning 2015.



Threshold Detection Methods

- When objects are similar, the
resulting histogram is bimodal

> Objects one color and
background another

> Good threshold is between
“peaks” in less probable
intensity regions
* Intuitively the lowest point
between peaks
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Figure 6.3: Bimodal histograms. (a) In cases with well-separable objects from the background,
the shown histogram is clearly bimodal. (b) An example of a more shallow bimodal histogram
(see top-left of Figure 6.5 for original image, in which the distinction between foreground and
background has been deliberately perturbed). Note a wide, shallow peak whose distribution
reaches from 0 to approximately 140, and a higher one more easily visible to the right. The
distributions overlap in the gray-levels 100-160. © Cengage Learning 2015.

In practice is difficult to tell if a
distribution is bimodal

There can be many local maxima

= How should the correct one be
selected?

Notice also that since the
histogram is global, a histogram
for salt and pepper noise could be
the same as for objects on
background
Should consider some local
neighborhood when building
the histogram

* Account for edges
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Optimal Thresholding

- Model the histogram as a
weighted sum of normal
probability densities

- Threshold selected to
minimize segmentation error
(minimum number of
mislabeled pixels)

= Gray level closest to
minimum probability
between normal maxima

« Difficulties
= Normal distribution

assumption does not always

hold

o Hard to estimate normal
parameters

threshold

(a) Optimal Optimal Optimal
threshold
f
'Distribution of objects
Distribution of background
Optimal :
(b) threshold Optimal
Conventional
Conventional

Figure 6.4: Gray-level histograms approximated by two normal distributions—the threshold is
set to give minimum probability of segmentation error. (a) Probability distributions of back-
ground and objects. (b) Corresponding histograms and optimal threshold. @ Cengage Learning

2015.

» Useful tools:

m]

= Maximum-likelihood

classification
Expectation maximization
- Gaussian mixture modeling



Otsu’s Algorithm

» Automatic threshold detection

= Test all possible thresholds and find that which minimizes
foreground/background variance

“Tightest” distributions

- Algorithm 6.2

1.  Compute histogram H of image and normalize to make a probability
2. Apply thresholding at each gray-level t

Separate histogram into background B and foreground F

Compute the variance oz and og

?1. Compute probability of pixel being foreground or background
Wp = §'=0 H(j)
5.  Select optimal threshold as
t = min a(t)
o(t) = wgop(t) + wp(t)og(t)
THE ABERYSTWYTH FUNICULAR DISASIER| THE ABERYSTWYTH FUNICULAR DISASTER

DISASTER DISASTER DISAS

Figure 6.5: Top left, an image with artificially stretched white background—the image has also
been showered with random noise. Top right, thresholded with Otsu’s method: the histogram
is shown in Figure 6.3, and the algorithm delivers £ = 130. At bottom, the results of ¢ =
115,130,145 on the trickiest part of the image; segmentation quality degrades very quickly.
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« Assume Gaussian distribution
for each group

= Defined by mean intensity
and standard deviation

° Nmoder(9) =
i=1 a; exp{—(g — u)?/20}}

- Determine parameters by
minimizing mismatch between
model and actual histogram
with fit function

= Match Gaussians to
histogram

u] F:

2
ZgEG(hmodel(g) — hregion(g))
- Can use Otsu’s as a starting

guess

» Limit search space

White matter
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Figure 6.6: Segmentation of 3D T1-weighted MR brain image data using optimal thresholding.
(a) Local gray-level histogram. (b) Fitted Gaussian distributions, global 3D image fit. (¢) Gaus-
sian distributions corresponding to WM, GM, and CSF. Courtesy of R. J. Frank, T. J. Grabowski,

Figure 6.7: Optimal MR brain image segmentation. Left column: original T1-weighted MR
images, two of 120 slices of the 3D volume. Middle left: Partial-volume maps of gray matter.
The brighter the voxel, the higher is the partial volume percentage of gray matter in the voxel.
Middle right: Partial-volume maps of white matter. Right column: Partial-volume maps of
cerebro-spinal fluid. Courtesy of R. J. Frank, T. J. Grabowski, The University of ITowa.



Multi-Spectral Thresholding

- Compute thresholds in spectral bands independently and combine
in a single image
> Used for remote sensing (e.g. satellite images), MRI, etc.
- Algorithm 6.3
1. Compute histogram and segment between local minima on either
side of maximum peak for each band

2. Combine segmentation regions into multispectral image
3. Repeat on multispectral regions until each region is unimodal

O
-

(a) (b) (c)

Figure 6.8: Recursive multi-spectral thresholding. (a) Band 1 thresholding. (b) Band 2 thresh-
olding. (c¢) Multi-spectral segmentation. @ Cengage Learning 2015.
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Edge-Based Segmentation

- Early segmentation approach based off human
perception

- Edge detecting operators are used to look for
discontinuities in gray-level, color, texture, etc.
= Edges must be further processed to better represent

object borders as chains

- Better segmentation is available with prior
knowledge
= Can be used to evaluate confidence in segmentation

- Main problems are from noise or false edge
response (edge where none exists, no edge where it
exists)
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Edge Image Thresholding

Threshold based on edge - Edges tend to get thickened
magnitude using thresholds

- Still have difficulty - Can improve results:
determining a suitable

threshold

= Non-maximal suppression —
to thin edges

= Hysteresis thresholds — to
remove noise and focus on
long strong edges

iy A
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Figure 6.11: (a) Non-maximal suppression of the data in Figure 6.9b. (b) Hysteresis applied to
Figure 6.9: Edge image thresholding. (a) Original image. (b) Edge image (low contrast edges (a); high threshold 70, low threshold 10. © Cengage Learning 2015.

enhanced for display). (c¢) Edge image thresholded at 30. (d) Edge image thresholded at 10.
© Cengage Learning 2015.



Canny Edge Detection

- Popular edge detection
algorithm that produces a thin
lines

+ 1) Smooth with Gaussian
kernel
- 2) Compute gradient

> Determine magnitude and
orientation (45 degree 8-
connected neighborhood)

object Sobel Canny

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

» 3) Use non-maximal
suppression to get thin edges

> Compare edge value to

neighbor edgels in gradient

direction f

.
YAG
l /N
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» 4) Use hysteresis thresholding
to prevent streaking

= High threshold to detect edge

pixel, low threshold to trace
the edge
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Edge Relaxation

- Improve estimates by
accounting for local

relationships
- Iterative update process i|al e
- Typically only needs a few }
iterations

a ab a

b % b

- Can be computationally
expensive, but parallelizable

b

- Edge detector is an

Figure 6.12: The principle of edge relaxation: two di-

initialization rected strong edges—oriented upwards (compass N)
. . . . and up-right (compass ENE)—are indicated by ar-
e Use edge dlrectlon tO lndlcate rows. Pixels marked a receive ‘encouragement’ for
. . :dges directed N; pixels marked b receive encourage-
local nelghbor plxels that are fn(if: for Zfitges diri)(:t:dSENE.(;\I()te f)(l‘)i\;;)felc:e::ei%:s
likely to be edges incourag;ement to join the marked edges. © Cengage
earning 2015.
s Isolated responses are not
likely to be an edge

(continuity)



Border Tracing

- Use labeled image (regions) to
find border edges . .
- Inner border
= Part of the region
« QOuter border N
> Not part of the region . :
. V A N Al LT
» Useful for region-based shape T -V
properties
- Perimeter, compactness, etc.

N_V!

(c)

(d) (e) (f)
Figure 6.13: Inner boundary tracing. (a) Direction notation, 4-connectivity. (b) 8-connectivity.
(¢) Pixel neighborhood search sequence in 4-connectivity. (d), (e) Search sequence in 8-
connectivity. (f) Boundary tracing in 8-connectivity (dotted lines show pixels tested during
the border tracing). © Cengage Learning 2015.

- Border tracing considers
neighbor pixels to add to lis
border pixels .

Figure 6.14: Outer boundary tracing; e denotes outer border elements. Note that some pixels
may be listed several times. © Cengage Learning 2015.
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Border Detection

» Various border detection extensions exist
- Extended borders — single common border

- Gray-level borders — path of high gradient pixels
= Technique can be extended to multispectral
images and temporal image sequences using
multidimensional gradients
- Graph search — pixels are nodes and arcs (costs)
are based of edge magnitude and direction
= Borders are optimal path through weighted graph

= Can be solved efficiently using dynamic
programming
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Hough Transform

- Segmentation viewed as the problem of finding
objects
> Must be of known size and shape
- Typically hard to do because of shape distortions
= Rotation, zoom, occlusion
- Search for parameterized curves in image plane
* f(x,a) =0
- a — n-dimensional vector of curve parameters

= Each edge pixel “votes” for different parameters
and need to find set with most votes
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Hough Transform for Lines

- Original motivation for Hough transform
 Lines in the real-world can be broken, collinear, or
occluded

= Combine these collinear line segments into a larger
extended line

o 1Hough transform creates a parameter space for the
1ne
= Every pixel votes for a family of lines passing through
it
= Potential lines are those bins (accumulator cells) with
high count

- Uses global rather than local information

» See hough.m, radon.m 1n Matlab
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Hough Transform Insight o o

(b) Parameter
space.

- Want to search for all points : _ b .
that lie on a line \
= This is a large search (take b=-xaty

number of edgels) T /
- Infinite lines pass through a \ 00 \
single point (x;, y;) \ -
oy =ax;+b *
- Select any a, b
- Reparameterize
o h= —X;a + Vi
= ab-space representation has
single line defined by point

s (i, yi) :
two points and count the \ \I

- All points on a line will
intersect in parameter space

= Divide parameter space into
cells/bins and accumulate
votes across all a and b values

(xi, y1) for a particular point

= Cells with high count are
indicative of many points
voting for the same line
parameters (a, b)
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Hough Transform in Practice

- Use a polar parameterization of a line — why?

|||||||
““““““““““““““““““““

x;cosf + y;sinfl = p

Y
P P

- After finding bins of high count, need to verify edge

= Find the extent of the edge (edges do not go across the
whole image)

- This technique can be extended to other shapes like
circles



Hough Transform Example |

Input image

-90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80
0

Hough space Top edges



Hough Transform Example Il

-300
-200

-100

100
200

300

-80 -60 -40  -20 0 20 40 60 80
o (degrees)

http://www.mathworks.com/help/images/analyzing-images.html



Hough Transform for Circles

- Consider equation of circle - Each edgel votes for a circle of
o (x; —a)? + (xy — b)2 =12 radius r at center (a, b)
- (a,b) — center of circle - Accumulator array is now 3-
- r — radius dimensional
> Usually for fixed radius circle

(c) (d)
Figure 6.31: Hough transform—example of circle detection. (a) Image of a dark circle, of
known radius 7, on a bright background. (b) For each dark pixel, a potential circle-center locus
is defined by a circle with radius r and center at that pixel. (c¢) The frequency with which

image pixels occur On circle-center loci is determined-—the highest-frequency pixel represents (e) @
the center of the circle (marked by e). (d) The Hough transform correctly detects the circle Figure 6.32: Hough transform—circle detection. (a) Original image. (b) Edge image (note that
(marked by e) in the presence of incomplete circle information and overlapping structures. (See the edge information is far from perfect). (¢) Parameter space. (d) Detected circles. © Cengage

Figure 6.32 for a real-life example.) @ Cengage Learning 2015. Learning 2015.
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Hough Transform Considerations

- Practical only for 3-dimensions
= Exponential growth of accumulator array

- Use gradient information to simplify process
= Only accumulate limited number of bins

= Accounts for local consistency constraints

- Line pixels should be in edge direction (orthogonal to
gradient direction)

- Weight accumulator by edge magnitude
= Consider only the strongest edges
- “Back project” strongest accumulator cells of each
pixel to remove other votes
= Sharpen accumulator response
- Line tracing
= Find endpoints of line
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Region-Based Segmentation

- Regions are areas defined inside of borders
= Simple to go back and forth between both
= However, segmentation techniques differ
- Region growing techniques are typically better in
noisy images
= Borders are difficult to detect
- A region is defined by a homogeneity constraint
= Gray-level, color, texture, shape, model, etc.
= Each individual region is homogeneous
= Any two regions together are not homogeneous
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Region Merging

- Start with each pixel as a region and combine
regions with a merge criterion
= Defined over adjacent regions (neighborhood)
- Be aware the merging results can be different
depending on the order of the merging
= Prior merges change region relationships

- Simplest merge methods compute statistics over
small regions (e.g. 2 x 2 pixels)
= Gray-level histogram used for matching



Region Merging Via Boundary Melting

- Utilize crack information (edges between pixels)

- Merge regions if there are weak crack edges between
them

Figure 6.40: Region merging segmentation. (a) Original image. (b) Pseudo-color representation
of the original image (in grayscale). (c) Recursive region merging. (d) Region merging via
boundary melting. Courtesy of R. Marik, Czech Technical University.



- =
Region Splitting

- Opposite of region merging
» Start with full image as single region and split to
satisfy homogeneity criterion
- Merging and splitting do not result in the same
regions
= A homogenous split region may never have been
grown from smaller regions

- Use same homogeneity criteria as in region
merging



Split and Merge

- Try to obtain advantages of both / /
2
~

merging and splitting Soiiting l
- Operate on pyramid images W 7
= Regions are squares that 2 Z
correspon d to pyramid level Figure 6.41: Split-and-merge in a hierarchical data structure. © Cengage Learning 2015.
= Lowest level are pixels 55 |
- Regions in a pyramid level that 1
are not homogeneous are split 02 | 03 L 310
into four subregions
= Represent higher resolution a 30 =
level below 2 31
- 4 similar regions are merged sl e
into a single region at higher
pyramid level
- Segmentation creates a quadtree
> Kach leaf node represents a
homogenous region
- E.g. an element in a pyramid
level
= Number of leaf nodes are
number of regions 310 311 312 313

Figure 6.42: Segmentation quadtree. © Cengage Learning 2015.

T Merging




Watershed Segmentation

- Topography concepts - Region edges correspond to
- Watersheds are lines dividing high watersheds
catchment basins - Low gradient areas correspond

to catchment basins

= All pixels in a basin are
simply connected and
homogeneous because they
share the same minimum

Watersheds

Catchment
% basins

(a) (b)
Figure 6.44: One-dimensional example of watershed segmentation. (a) Gray-level profile of
image data. (b) Watershed segmentation—local minima of gray-level (altitude) yield catchment
basins, local maxima define the watershed lines. © Cengage Learning 2015.



Watershed Computation

- Can build watersheds by
examining gray-level values
from lowest to highest

- Watersheds form when
catchment basins merge

- Raw watershed results in
oversegmentation

- Use of region markers can
improve performance
= Matlab tutorial

(c) (d)

Figure 6.46: Watershed segmentation. (a) Original;. (b) Gradient image, 3 x 3 Sobel edge
detection, histogram equalized. (c¢) Raw watershed segmentation. (d) Watershed segmentation
using region markers to control oversegmentation. Courtesy of W. Higgins, Penn State University.


http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
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Matching

Basic approach to segmentation by locating known objects
(search for patterns)

> Generally have a model for object of interest

Various examples of matching
= Different sophistication

Optical character recognition (OCR)

> Template matching when font is known and image carefully
aligned

Font-independent OCR

> Match pattern of character

Face recognition

> Match pattern of face to image

= More variability in appearance
Pedestrian behavior matching

- Explain what a pedestrian is doing
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Template Matching

- Try to find template image in larger test image
- Minimize error between image and shifted template

rp o
=D (Tij—Lestim+i)’ =0, (6.29)
i=1 j=1
T o7
E(x) = ZZ(TM _IIQ-I-?L,J%—I-,?}E
i=1 j=1
rr Cr T Cp re op

— ZZ(TE:,‘};)Q —9 ZZ(E Toti. :.:H_j + ZZ(IEE—i_T’ Ib.,.j, (6.30)

i=1 j=1 i=1 j=1 i=1 j=1

First term is a constant and the last term changes slowly
so only the middle term needs to be maximized

rT o7

Corrr(x) =Y ¥ (Tijleatizuts) - (6.31)

i=1 j=1
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Binary Filtering as Detection

- Filtering (correlation) can be used a simple
object detector
= Mask provides a search template

= “Matched filter” — kernels look like the effects
they are intended to find

This 1s who I am.
Nobody said b/ R—
you had to like it.

image
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Correlation Masking

This 1s who I am.
Nobody said
you had to like it.

correlation detected letter

0.9 max threshold 0.5 max threshold



Normalized Cross-Correlation

- Extension to intensity values

- Handle variation in template and image
brightness

template

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



Where’s Waldo

Detected template correlation map

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/




Detection of Similar Objects

- Previous examples are detecting - What to do with different sized
exactly what we want to find objects, new scenes
= Give the perfect template
- What happens with similar
objects

Template

Figure 6.48: Template matching: A template of the
Detected template le.t.t.er R is sought .in an image that has.it'self, a
slightly rotated version, and a smaller version. The
correlation response (contrast stretched for display)
illustrates the diffuse response seen for even small ad-
justments to the original. © Cengage Learning 2015.

- Works fine when scale,
orientation, and general
orientation are matched

Adapted from K. Grauman
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Template Matching Strategies

- Detection of parts

= Full “pixel perfect” match may not exist, but smaller
subparts may be matched

= Connect subparts through elastic links
- Search at scale
= Pattern matching is highly correlated in space
- Neighborhoods around match have similar response

= Search at low resolution first and go to higher
resolution for refinement

- Less comparisons, much faster
» Quit sure mismatches quickly
= Do not compute full correlation when error is too large

= Matches are rare so only spend time on heavy
computation when required (cascade classifier later)
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Evaluating Segmentations

- Need to know what is the
“right” segmentation and then
measure how close and
algorithm matches @~

- Supervised approaches o
= Use “expert” opinions to

specify segmentation Ko deecore
o Evaluate by Figure 6.53: Border positioning errors. (a) Border positioning errors are computed as directed

distances between the computer-determined and correct borders. (b) If errors are calculated in
° Mutual OV€I'1 ap the opposite direction (from ground truth to the computer-determined border), a substantially
different answer may result. (¢) Zoomed area showing the difference in calculating directional

o Border pOSitiOn errors errors. @ Cengage Learning 2015.
(Hausdorff set distance)

- Unsupervised approaches

= No direct knowledge of true
segmentation
- Avoid label ambiguity

= Define criterion to evaluate
region similarity and inter-
region dissimilarity

Figure 6.52: Mutual overlap: machine segmented region
in solid, ground truth in dashed. © Cengage Learning
2015.

Independent standard

Computer-detected border

Figure 6.51: A region from a dynamically enhanced MRI study with partly ambiguous bound-
ary. Two different experts have overlaid their judgments. Courtesy of O. Kubassova, S. Tanner,
Universily of Leeds.



