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Outline 

• Smoothing  

• Edges 

▫ Canny Edge Detector 

• Frequency Domain Processing 

• Interest Point Detection 

• Maximally Stable Regions 
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Image Pre-Processing 

• Low level operations  
▫ Lowest-level of abstraction 
▫ Image-to-image transformations 

• Does not increase image information content 
▫ Actually decreases entropy  
▫ However, it can suppress irrelevant info  

 Not needed for analysis task 

• Improve image by suppressing unwanted distortions 
and enhancing important image features 
▫ Note: geometric transforms also considered 
▫ Utilizes information redundancy  

 Large number of similar pixels for statistical 
characterization 
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Pixel Brightness Correction 

• Modify pixel brightness with regard to position 

• Systematic imaging degradation can be suppressed 

▫ E.g. CCD sensitivity on borders  

• Multiplicative error model 

▫ 𝑓 𝑖, 𝑗 = 𝑒 𝑖, 𝑗 𝑔 𝑖, 𝑗  

▫ 𝑓 – degraded image 

▫ 𝑔 – reference (“good”) image 

▫ 𝑒 – multiplicative noise, error coefficient 

• Recovery of good image 

▫ 𝑔 𝑖, 𝑗 =
𝑓 𝑖,𝑗

𝑒 𝑖,𝑗
 

▫ Estimate error by imaging a known constant value 
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Gray-Scale Transformation 
• Change pixel brightness 

without regard for position in 
image 

▫ E.g. histogram equalization 

• Define a mapping between one 
gray level to another 

▫ Represented as a lookup table 

▫ Generalizes to multi-spectral 
images 

 Color conversion tables 

• Typically used for human 
observation 

▫ Contrast is needed 
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Local Pre-Processing 
• Smoothing 

▫ Suppress noise and other small 
fluctuations 

▫ Equivalent to suppression of 
high frequency content 

▫ Blurs sharp edges 
 May lose information content 

• (Sharpening) Gradient 
operators 
▫ Based on local derivatives of 

image 

▫ Suppress low frequency 
content 
 Accentuate edges 

▫ Increases noise level 

 

• Linear transformations 
▫ Output value is a linear 

combination of local 
neighborhood values 

▫ 𝑓 𝑖, 𝑗 =

  ℎ 𝑖 − 𝑚, 𝑗 − 𝑛 𝑔(𝑚, 𝑛)𝑚,𝑛 ∈𝑂  

▫ Discrete 
convolution(correlation) 
definition 
 Use rectangular 

neighborhoods with odd 
dimensions 

• Non-linear transforms  
▫ Non-linear relationship 

between neighborhood  

▫ More computationally 
expensive 

▫ No strict frequency 
representation 
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Smoothing 
• Want to edge-preserving smoothing 

▫ Remove noise but leave edges 

• Averaging filter 
▫ Noise should be smaller in size 

than smallest object of interest 

▫ Significant edge blurring 

▫ ℎ =
1
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• Gaussian approximation 
▫ Put more weight in center 

▫ ℎ =
1

10

1 1 1
1 2 1
1 1 1

 

• Separable filters 
▫ Used to significantly speed up 

convolution neighborhood 
operation 

▫ Kernel can be factorized into the 
product of two 1D vectors 

 Separate convolution summations 

• 2D binomial kernel (Gaussian 
approximation) 

• ℎ 𝑥, 𝑦 = 4− 𝑁−1
𝑁 − 1
𝑥

𝑁 − 1
𝑦

 

▫ 𝑁 = 3 

▫ ℎ 𝑥, 𝑦 =
1
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1 2 1
2 4 2
1 2 1

 

▫ ℎ(𝑥, 𝑦) =
1

4

2 1
2
1
1 2 1  

▫ Elements from Pascal’s triangle 

7 



Averaging with Limited Data Validity 

• Avoid blurring by averaging only pixels 
that meet a criterion function 
▫ Try to avoid including pixels from 

separate features 
 E.g. two sides of edge 

• Define an invalid data interval [𝑚𝑖𝑛,𝑚𝑎𝑥] 

• ℎ 𝑖, 𝑗 =

 
1 𝑓𝑜𝑟 𝑔 𝑚 + 𝑖, 𝑛 + 𝑗 ∉ [𝑚𝑖𝑛,𝑚𝑎𝑥]
0 𝑒𝑙𝑠𝑒

 

▫ Convolution mask defined for each 
neighborhood 
 Only changes invalid data 

 Uses only valid data for averaging 

• Define a brightness interval around 
central pixel 

• Use gradient strength to only average 
those pixels with low gradients 
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Rotating Mask Averaging 

• Non-linear smoothing technique 

▫ Also sharpens image 

• Idea is to determine a good neighborhood for 
averaging 

• Calculate average over different mask rotations 

 

 

• Homogeneity of region measured by a 
brightness dispersion 
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Smoothing with Rotating Mask 

• Only use “best” mask for pixel replacement 
▫ Looking for “stable” average 

• Iterative solution convergence depends on mask size 
and shape 
▫ Smaller mask has smaller changes and more iterations 
▫ Large mask suppresses noise faster and has more 

sharpening 
 Small detail is lost 

10 



Median Filtering 
• Non-linear smoothing method that reduces blurring of edges 

▫ Median not affected by noise spikes like mean 
 Removes impulse noise very well 

• Iterative application is possible since blurring is not a 
problem 

• More computationally expensive than linear filtering 
▫ Must sort values of all pixels in a neighborhood 
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Efficient Median Filtering 

• Don’t sort neighborhood for each pixel 

▫ Each pixel advance removes a column of pixels 
and adds a new column 

▫ 𝑚𝑛 − 2𝑚 pixels are unchanged in pixel advance 
and do not need re-sorting 

• Retain a histogram of pixel neighborhood values 

▫ Update histogram counts with removed and added 
values 

▫ Keep track of median value and adjust based on 
new values coming in 

• See Algorithm 5.3 
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Median Filtering Upgrades 

• Thin lines and sharp corners are destroyed 

▫ Look like noise in the neighborhood 

▫ Use preserving kernel 

 

• Rank filtering 

▫ Generalization of median filtering to use other 
statistics on ordered neighborhood values 

 E.g. max, min 

• Order statistics 

▫ Neighborhood values ordered into sequence 

▫ Output value is a linear combination of sequence 
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Edge Detection 

• Locate changes in image intensity function 

▫ Edges are abrupt changes 

• Very important pre-processing step for many 
computer vision techniques 

▫ Object detection, lane tracking, geometry 

• Edges are important neurological and 
psychophysical processes 

▫ Part of human image perception loop 

▫ Information reduction but not understanding 

• Edgels – edge element with strong magnitude 

▫ Pixels with large gradient magnitude 
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Informative Edges 

• Edges arise from various physical phenomena 
during image formation 

▫ Trick is to determine which edges are most 
important 
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Edge Definition 

• Edge defined at each pixel by gradient vector  
▫ Gives direction of maximal change 

 Points from black (0) to white (255) 

• Describe edge by magnitude and direction 
▫ Edge direction is 90 degrees from gradient direction 
▫   
▫   
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Image Sharpening 

• Basic idea is to add a edge emphasized image 
back to the original image 

▫ The Laplacian operator is used to provide rotation 
invariance and focus only on edge strength 
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Categories of Gradient Operators 
• Differences for derivative approximation 

▫ Rotational invariance can be computed in a single 
convolution 
 E.g. Laplacian concerned with magnitude only 

▫ First derivatives use multiple masks 
 Estimate orientation based on each mask response 

• Zero crossing operators 
▫ Operate on the second derivative 

 E.g. Canny edge detector 

• Parametric edge models 
▫ Define edge model and perform matching 
 

• Very important operation for a variety of vision 
tasks 
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Edge Convolution Kernels 
• A number of popular kernels 

have been designed 

• Roberts operator 

▫ Small and fast 

▫ Sensitive to noise 

 

• Laplace operator 

▫ Approximation of Laplacian 

▫ Rotation invariant 

▫ 4 or 8-connected neighbors 

 

19 

• Prewitt, Kirsch, Sobel 
▫ Family of kernels to approximate first derivatives at different 

orientations 
▫ Sobel used often for horizontal and vertical edges (gradient.m) 

 Magnitude - ℎ1 + ℎ3  

 Direction - arctan(ℎ1/ℎ3) 

 



Oriented Edge Image 
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Zero-Crossings of Second Derivative 

• Edge can be localized with second derivative 
▫ Easier to find zero-crossing than maxima value 
 
 
 
 
 
 
 

• Marr-Hildreth edge detector  
▫ Smooth image first to reduce noise before computing 

second derivative 
▫ Must determine how much to smooth  

 Bandlimit frequencies of change 
 Limit the spatial neighborhood  
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Gaussian Smoothed Edges 

• Use Gaussian to smooth image 
▫ Standard deviation controls neighborhood size 

• Compute second derivative of image after 
smoothing 
▫ Use Laplace operator 𝛻2  

 Laplacian of Gaussian (LoG) 

• Notice this requires convolution of image twice 
▫ Use linearity to simplify with derivative of 

Gaussian filter 𝛻2 𝐺 - LoG operator (Mexican hat) 

22 



Zero-Crossing Issues 
• Generally will smooth image before 

derivative 
• Gaussian 𝜎 can better control 

neighborhood 
▫ Larger 𝜎 more globally significant 

edges 
▫ Operations at many 𝜎 levels can 

give scale space response 
• 𝛻2 𝐺 can be effectively 

approximated 
▫ Difference of Gaussians (DoG)  
▫ Use difference between Gaussians 

of different 𝜎 values 
• Zeros do not exist in LoG (DoG) 

image 
▫ Threshold generally gives 

disconnected edges 
▫ Need to search for transitions 

between polarities 
 Edge is between pixels 

▫ Improve performance by 
accounting for first derivative 
response 
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Canny Edge Detection 
• Optimal edge detection 

algorithm 

▫ Returns long thin (1 pixel wide) 
connected edges 

• Non-maximal edge suppression 
technique to return a single 
pixel for an edge 

▫ Examine pixels along gradient 
direction 

▫ Only retain pixel if it is larger 
than neighbors 

• Hysteresis threshold to remove 
spurious responses and 
maintain long connected edges 

▫ High threshold used to find 
definite edges 

▫ Low threshold to track edges 
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Canny Edge Examples 
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Multispectral Edges 

• Pixel (𝑖, 𝑗) has 𝑛-dimensional vector 
representation 

• Trivial edge detection 

▫ Operate on each spectral band separately 

▫ Combine all bands to form single edge image 

• Multiband (Roberts-like) edge operator 

▫ 2 × 2 × 𝑛 - neighborhood 

26 



Frequency Domain Pre-Processing 
• Use Fourier transform for spatial frequency filtering 

▫ Convolution becomes multiplication in frequency 
domain 

▫ 𝐺 = 𝐹.∗ 𝐻 
 Image 𝑔(𝑥, 𝑦) obtained by inverse Fourier transform 

• Basic filters (rotationally symmetric) 
▫ Lowpass – smoothing 
▫ Highpass – edge detection/enhancement 
▫ Bandpass – enhancement (structured noise) 
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Lowpass Filtering 
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Highpass Filtering 
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Bandpass Filtering 
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Bandpass Noise Removal 
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Fourier Image Processing 
• Take Fourier transform of 

input image 𝑓(𝑥, 𝑦) 

• Take Fourier transform of 
kernel ℎ 𝑥, 𝑦  

▫ Need to pad images 

• Multiply 𝐺 = 𝐹.∗ 𝐻 

▫ Element-wise multiplication  

• Inverse Fourier transform for 
output image 𝑔 𝑥, 𝑦  

▫ Crop borders 

 

• Filtering is generally more 
intuitive in frequency domain 

• Frequency domain filtering is 
better with larger kernels 

▫ More effieicent  

 

 

• Padding 

• Remember the output of a 
convolution is a longer 
sequence 

▫ 𝑔 𝑥 = 𝑓 𝑥 ∗ ℎ 𝑥  

 𝑓 𝑥  is length 𝐴 

 ℎ 𝑥  is length 𝐵 

 𝑔 𝑥  is length 𝐴 + 𝐵 − 1 

• Need to pad to ensure the 
output of the convolution fits 

▫ Use a power of 2 for FFT 

▫ Padding makes each have the 
same implicit period 

▫ Crop off un-needed areas 
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Detection of Corners (Interest Points) 

• Useful for fundamental vision techniques 

▫ Image matching or registration 

• Correspondence problem needs to find all pairs 
of matching pixels 

▫ Typically a complex problem 

▫ Can be made easier only considering a subset of 
points 

• Interest points are these important image 
regions that satisfy some local property 

▫ Corners are a way to get to interest points 
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Feature Detection and Matching 

• Essential component of modern computer vision 

▫ E.g. alignment for image stitching, 
correspondences for 3D model construction, 
object detection, stereo, etc. 

 

• Need to establish some features that can be 
detected and matched  
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Determining Features to Match 
• What can help establish correspondences between images? 
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Different Types of Features 
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Different Types of Features 

• Points and patches 

• Edges 

• Lines 

 

• Which features are best? 

▫ Depends on the application 

▫ Want features that are robust 

 Descriptive and consistent (can readily detect) 
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Points and Patches 

• Maybe most generally useful feature for 
matching 

▫ E.g. Camera pose estimation, dense stereo, image 
stitching, video stabilization, tracking 

▫ Object detection/recognition 

 

• Key advantages: 

▫ Matching is possible even in the presence of 
clutter (occlusion) 

▫ and large scale and orientation changes 
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Point Correspondence Techniques 

• Detection and tracking 

▫ Initialize by detecting features in a single image 

▫ Track features through localized search 

▫ Best for images from similar viewpoint or video 

• Detection and matching 

▫ Detect features in all images 

▫ Match features across images based on local 
appearance 

▫ Best for large motion or appearance change 
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Keypoint Pipeline 

• Feature detection (extraction) 
▫ Search for image locations that are likely to be 

matched in other images 

• Feature description 
▫ Regions around a keypoint are represented as a 

compact and stable descriptor 

• Feature matching 
▫ Descriptors are compared between images 

efficiently 

• Feature tracking 
▫ Search for descriptors in small neighborhood  
▫ Alternative to matching stage best suited for video 
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Feature Detectors 

• Must determine image locations that can be 
reliably located in another image 
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Comparison of Image Patches 
• Textureless patches 

▫ Nearly impossible to localize 
and match 

 Sky region “matches” to all 
other sky areas 

• Edge patches 

▫ Large contrast change 
(gradient) 

▫ Suffer from aperture problem 

 Only possible to align 
patches along the direction 
normal the edge direction 

• Corner patches 

▫ Contrast change in at least 
two different orientations 

▫ Easiest to localize 
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Aperture Problem I 

• Only consider a small window of an image 

▫ Local view does not give global structure 

▫ Causes ambiguity  

 

 

• Best visualized with motion (optical flow later) 

▫ Imagine seeing the world through a straw hole 

▫ Aperture Problem - MIT – Demo 

▫ Also known as the barber pole effect 
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Source: Wikipedia 

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


Aperture Problem II 

• Corners have strong matches 

• Edges can have many potential matches 
▫ Constrained upon a line 

• Textureless regions provide no useful information 
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WSSD Matching Criterion 

• Weighted summed squared difference 

▫ 𝐸𝑊𝑆𝑆𝐷 𝒖 =  𝑤 𝒙𝑖𝑖 𝐼1 𝒙𝑖 − 𝒖 − 𝐼0 𝒙𝑖
2 

 𝐼1, 𝐼0 - two image patches to compare 

 𝒖 = (𝑢, 𝑣) – displacement vector 

 𝑤 𝒙  - spatial weighting function 

• Normally we do not know the image locations to 
perform the match 

▫ Calculate the autocorrelation in small 
displacements of a single image  

 Gives a measure of stability of patch  

▫ 𝐸𝐴𝐶 ∆𝒖 =  𝑤 𝒙𝑖𝑖 𝐼0 𝒙𝑖 − ∆𝒖 − 𝐼0 𝒙𝑖
2 
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Image Patch Autocorrelation 
 

 

 

 

 

• 𝛻𝐼0 𝒙𝑖   - image gradient 
▫ We have seen how to 

compute this 

• 𝐴 – autocorrelation matrix 

 

 

 
▫ Compute gradient images and 

convolve with weight function 

▫ Also known as second 
moment matrix 

▫ (Harris matrix) 

 

• Example autocorrelation 
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𝐸𝐴𝐶 ∆𝒖 = 𝑤 𝒙𝑖
𝑖

𝐼0 𝒙𝑖 − ∆𝒖 − 𝐼0 𝒙𝑖
2 

= 𝑤 𝒙𝑖
𝑖

𝛻𝐼0 𝒙𝑖 ∙ ∆𝒖
2 

= ∆𝒖𝑇𝐴∆𝒖 

𝐴 = 𝑤 ∗
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑦𝐼𝑥 𝐼𝑦
2  



Image Autocorrelation II 
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Image Autocorrelation III 
• The matrix A provides a 

measure of uncertainty in 
location of the patch 

• Do eigenvalue decomposition 

▫ Get eigenvalues and 
eigenvector directions 

 

 

• Good features have both 
eigenvalues large 

▫ Indicates gradients in 
orthogonal directions (e.g. a 
corner) 

 

• Uncertainty ellipse 

 

 

 

 

 

 

 

• Many different methods to 
quantify uncertainty 

▫ Easiest: look for maxima in 
the smaller eigenvalue  
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Basic Feature Detection Algorithm  
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Interest Point Detection 
• The correlation matrix gives a measure of edges in a patch 
• Corner 

▫ Gradient directions 


1
0
,
0
1

 

▫ Correlation matrix 

 𝐴 ∝
1 0
0 1

 

• Edge 
▫ Gradient directions 


1
0

 

▫ Correlation matrix 

 𝐴 ∝
1 0
0 0

 

• Constant 
▫ Gradient directions 

  
0
0

 

▫ Correlation matrix 

 𝐴 ∝
0 0
0 0
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Harris Corners 
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Improving Feature Detection 
• Corners may produce more than one strong 

response (due to neighborhood) 
▫ Estimate corner with subpixel accuracy – 

use edge tangents 
▫ Non-maximal suppression – only select 

features that are far enough away 
 Create more uniform distribution – can 

be done through blocking as well 

• Scale invariance  
▫ Use an image pyramid – useful for images 

of same scale 
▫ Compute Hessian of difference of Gaussian 

(DoG) image 
▫ Analyze scale space [SIFT – Lowe 2004] 

• Rotational invariance 
▫ Need to estimate the orientation of the 

feature by examining gradient information 

• Affine invariance 
▫ Closer to appearance change due to 

perspective distortion 
▫ Fit ellipse to autocorrelation matrix and use 

it as an affine coordinate frame 
▫ Maximally stable region (MSER) [Matas 

2004] – regions that do not change much 
through thresholding 
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Maximally Stable Extremal Regions 

• MSERs are image structures that can be recovered 
after translations, rotations, similarity (scale), and 
affine (shear) transforms 

• Connected areas characterized by almost uniform 
intensity, surrounded by contrasting background 

• Constructed based on a watershed-type 
segmentation 

▫ Threshold image a multiple different values 

▫ MSERs are regions with shape that does not change 
much over thresholds 

• Each region is a connected component but no global 
or optimal threshold is selected 
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MSER 
 • Red borders from increasing 

intensity 

• Green boarders from 
decreasing intensity 
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MSER Invariance 

• Fit ellipse to area and normalize into circle 
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