ECG782: Multidimensional
Digital Signal Processing

Spring 2014
TTh 14:30-15:45 CBC C313

Lecture 08
Image Pre-Processing 11

13/02/13

http://www.ee.unlv.edu/~bimorris/ecg782/



Outline

- Smoothing
- Edges
= Canny Edge Detector
- Frequency Domain Processing
- Interest Point Detection
- Maximally Stable Regions
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Image Pre-Processing

- Low level operations
= Lowest-level of abstraction
= Image-to-image transformations
- Does not increase image information content
= Actually decreases entropy
= However, it can suppress irrelevant info
- Not needed for analysis task
- Improve image by suppressing unwanted distortions
and enhancing important image features
= Note: geometric transforms also considered

= Utilizes information redundancy

- Large number of similar pixels for statistical
characterization
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Pixel Brightness Correction

- Modify pixel brightness with regard to position
- Systematic imaging degradation can be suppressed
= E.g. CCD sensitivity on borders
- Multiplicative error model
o f(,)) =e(i,j)g(,j)
= f — degraded image
= g — reference (“good”) image
= e — multiplicative noise, error coefficient

- Recovery of good image
- f(@.J)
) g(ll]) — e(l,])
= Estimate error by imaging a known constant value
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Gray-Scale Transformation

- Change pixel brightness T ——
without regard for position in \\ J| ={aleanirastanhancement
. _ (b) threshold
lmage \\\ r ‘
> E.g. histogram equalization N
- Define a mapping between one |
K (c) negative
gray level to another L
= Represented as a lookup table — & 3 -
= Generalizes to multi-spectral , ,
. Figure 5.1: Some gray-scale transforma-
lmages tions. © Cengage Learning 2015.

- Color conversion ta

- Typically used for hum
observation

= Contrast is needed

Figure 5.3: Histogram equalization. (a) Original image. (b) Equalized image. © Cengage
Learning 2015.



Local Pre-Processing

- Smoothing - Linear transformations
> Suppress noise and other small > Output value is a linear
fluctuations combination of local
> Equivalent to suppression of neighborhood values
high frequency content o f(i,)) =
= Blurs sharp.edges . ¥ ¥ mmeo h(i —m,j —n)g(m,n)
- May lose information content - Discrete
» (Sharpening) Gradient convolution(correlation)
operators definition
> Based on local derivatives of - Use rectangular
image neighborhoods with odd
= Suppress low frequency dimensions
content - Non-linear transforms
- Accentuate edges > Non-linear relationship
> Increases noise level between neighborhood
= More computationally
expensive

= No strict frequency
representation
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Smoothing

- Want to edge-preserving smoothing
= Remove noise but leave edges
- Averaging filter
= Noise should be smaller in size
than smallest object of interest
= Significant edge blurring
1 1 1
© h=7 [1 1 1]
1 1 1
- Gaussian approximation
= Put more weight in center

1111
= h=—11 2 1

10
1 1 1

Separable filters

> Used to significantly speed up
convolution neighborhood
operation

= Kernel can be factorized into the
product of two 1D vectors

- Separate convolution summations

2D binomial kernel (Gaussian
approximation)

h(x,y) = 4-(N-1) (N - 1) (N — 1)

X y
= N=3

. 1 2 1
o h(x,y)=1—62 4 2
1 2 1

| h(x,y)=(i)2[é][1 2 1]
1

= Elements from Pascal’s triangle



.||
Averaging with Limited Data Validity

- Avoid blurring by averaging only pixels
that meet a criterion function

> Try to avoid including pixels from
separate features

- E.g. two sides of edge
- Define an invalid data interval [min, max]
* h(i,j) =
{1 for glm +i,n+j) & [min, max]|
0 else

= Convolution mask defined for each
neighborhood

 Only changes invalid data
- Uses only valid data for averaging
- Define a brightness interval around
central pixel

- Use gradient strength to only average
those pixels with low gradients

Figure 5.10: Averaging with limited data validity. (a) Original corrupted image. (b) Result of
corruption removal. @ Cengage Learning 2015.



Rotating Mask Averaging

- Non-linear smoothing technique

> Also sharpens image
- Idea is to determine a good neighborhood for

averaging
- Calculate average over different mask rotations
i ; + t : * -+ Figure 5.11: Eight possible rotated
3x3 masks. © Cengage Learning 2015

1 2 7 8

- Homogeneity of region measured by a
brightness dispersion

Uz:% 3 ( _E 3 q”) _ (5.31)

(,7)ER (i.j)ER
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Smoothing with Rotating Mask

Algorithm 5.2: Smoothing using a rotating mask
1. Consider each image pixel (i, j).

2. Calculate dispersion for all possible mask rotations about pixel (i, j) according
to equation (5.31).

3. Choose the mask with minimum dispersion.

4. Assign to the pixel f(i,j) in the output image f the average brightness in the
chosen mask.

» Only use “best” mask for pixel replacement
= Looking for “stable” average

- Iterative solution convergence depends on mask size
and shape
= Smaller mask has smaller changes and more iterations

= Large mask suppresses noise faster and has more
sharpening
- Small detail is lost
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Median Filtering

- Non-linear smoothing method that reduces blurring of edges
= Median not affected by noise spikes like mean
- Removes impulse noise very well

- Iterative application is possible since blurring is not a
problem

- More computationally expensive than linear filtering
> Must sort values of all pixels in a neighborhood

N T T ] (“
]

Fiigs (i,

Figure 5.12: Median filtering. (a) Image corrupted with impulse noise (14% of image area
covered with bright and dark dots). (b) Result of 3 x 3 median filtering. © Cengage Learning
2015,
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Efficient Median Filtering

- Don’t sort neighborhood for each pixel

= Each pixel advance removes a column of pixels
and adds a new column

= mn — 2m pixels are unchanged in pixel advance
and do not need re-sorting
- Retain a histogram of pixel neighborhood values

» Update histogram counts with removed and added
values

= Keep track of median value and adjust based on
new values coming in

» See Algorithm 5.3
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Median Filtering Upgrades

» Thin lines and sharp corners are destroyed
= Look like noise in the neighborhood X
= Use preserving kernel

Figure 5.13: Horizontal/vertical line preserving neighbor-
hood for median filtering. © Cengage Learning 2015.

- Rank filtering
= Generalization of median filtering to use other
statistics on ordered neighborhood values
- E.g. max, min
- Order statistics
= Neighborhood values ordered into sequence
= Qutput value is a linear combination of sequence
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Edge Detection

- Locate changes in image intensity function
> Edges are abrupt changes
- Very important pre-processing step for many
computer vision techniques
= Object detection, lane tracking, geometry
- Edges are important neurological and
psychophysical processes
= Part of human image perception loop

/A

» Information reduction but not understanding
- Edgels — edge element with strong magnitude
= Pixels with large gradient magnitude



Informative Edges

- Edges arise from various physical phenomena
during image formation

s Trick is to determine which edges are most
important

~ surface normal discontinuity
. — depth discontinuity ?~.«;,-«"-'- |
~ — highlights

« — surface color/texture

Figure 5.15: Origin of edges, i.e., physical phenomena in image formation process which lead to
edges in images. At right, a Canny edge detection (see Section 5.3.5). © Cengage Learning 2015.
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Edge Definition

- Edge defined at each pixel by gradient vector

= Gives direction of maximal change
- Points from black (0) to white (255)

- Describe edge by magnitude and direction
= Edge direction is 90 degrees from gradient direction

o o
99\*  [0g\? h— 99 9y
. |grad g(z,y)| = \/(a) + (d_z;) ) v=arg | 5. dy )’

gradient ¥

white 255( /(£ NG

S Figure 5.16: Gradient direction and

edge direction ® edge direction. @ Cengage Learning
2015.

g g g g
Step R% Line ‘ | Nji:\yf/j\/v

X X % %
Figure 5.17: Typical edge profiles. © Cengage Learning 2015.




Image Sharpening

- Basic idea is to add a edge emphasized image
back to the original image
= The Laplacian operator is used to provide rotation

invariance and focus only on edge strength

Pg(z,y) | g(z,y)
2 . ] 3 E 9F
Veg(z,y) = 92 T R (5.35)

el ettt (

: ¥ \!umf“ﬂ,.z

““ H[ Fﬂ“ﬁ-}

Figure 5.18: Laplace gradient operator. (a) Laplace edge image using the 8-connectivity mask.
(b) Sharpening using the Laplace operator (equat.ion 5.36, C = 0.7). Compare the sharpening
effect with the original image in Figure 5.9a. @ Cengage Learning 2015.
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Categories of Gradient Operators

- Differences for derivative approximation
= Rotational invariance can be computed in a single
convolution
- E.g. Laplacian concerned with magnitude only
= First derivatives use multiple masks
- Estimate orientation based on each mask response
- Zero crossing operators
= Operate on the second derivative
- E.g. Canny edge detector
- Parametric edge models
= Define edge model and perform matching

: Ve11'<y important operation for a variety of vision
tasks
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Edge Convolution Kernels

- A number of popular kernels - Laplace operator

have been designed = Approximation of Laplacian
- Roberts operator » Rotation invariant

- Small and fast = 4 or 8-connected neighbors

= Sensitive to noise

1 0 0 1
N R h[

| -
» Prewitt, Kirsch, Sobel
= Family of kernels to approximate first derivatives at different
orientations
> Sobel used often for horizontal and vertical edges (gradient .m)
- Magnitude - |h,| + |h3|
- Direction - arctan(h,/h3)

1 2 1 0 1 2 -1 0 1
hi=1 0 0 0, hy=|—-1 0 1, hy3=1[-2 0 2|,
-1 -2 -1 -2 -1 0 -1 0 1

Lo R . |
=
= = =
—_
— 00 =

1
1| .
1



Oriented Edge Image
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Figure 5.19: First-derivative edge detection using Prewitt operators. (a) North direction (the

brighter the pixel value, the stronger the edge). (b) East direction. (c) Strong edges from (a).
(d) Strong edges from (b). © Cengage Learning 2015.
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Zero-Crossings of Second Derivative

- Edge can be localized with second derivative

= Easier to find zero-crossing than maxima value
fix) f'(x) [7(x)!

fﬂ/\/

ftx) f'(x)! ()1

/ _/\ /\/- Figure 5.20: 1D edge profile of the

% zero-crossing. © Cengage Learning
(a) (b) 2015.

- Marr-Hildreth edge detector

= Smooth image first to reduce noise before computing
second derivative
> Must determine how much to smooth
- Bandlimit frequencies of change
- Limit the spatial neighborhood



=l

Gaussian Smoothed Edges

. . . = (=*+vy*)/ 202
- Use Gaussian to smooth image “®v =< """

= Standard deviation controls neighborhood size
- Compute second derivative of image after
smoothing
- Use Laplace operator V2 V2[G(x,y.0) * f(z.y)] .
- Laplacian of Gaussian (LoG)
- Notice this requires convolution of image twice

> Use linearity to simplify with derivative of
Gaussian filter V2 G - LoG operator (Mexican hat)

Vi

[VEG(m,y, o)] = f(z.y).

ol

2 2 2
h(:g,”) = (:E Y~ 20 ) E—{IE—FHE}XIEJE :
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Zero-Crossing Issues

- Generally will smooth image before
derivative

« Gaussian o can better control
neighborhood

= Larger o more globally significant
edges

= QOperations at many o levels can
give scale space response

« V2 G can be effectively
approximated
= Difference of Gaussians (DoG)

o Use.difference between Gaussians
of different o values

« Zeros do not exist in LoG (DoG)
image
= Threshold generally gives
disconnected edges

= Need to search for transitions
between polarities

- Edge is between pixels
= Improve performance by

. f f- d . . Figure 5.21: Zero-crossings of the second derivative, see Figure 5.9a for the original image.
accountlng or lrSt erlvatlve (a) DoG image (o7 = 0.10,02 = 0.09), dark pixels correspond to negative values, bright pixels
response to positive. (b) Zero-crossings of the DoG image. (¢) DoG zero-crossing edges after removing

edges lacking first-derivative support. (d) LoG zero-crossing edges (o = 0.20) after removing
edges lacking first-derivative support—note different scale of edges due to different Gaussian
smoothing parameters. @ Cengage Learning 2015.



Canny Edge Detection

- Optimal edge detection
algorithm

> Returns long thin (1 pixel wide)

connected edges

- Non-maximal edge suppression
technique to return a single
pixel for an edge

- Examine pixels along gradient
direction

= Only retain pixel if it is larger
than neighbors

- Hysteresis threshold to remove
spurious responses and

maintain long connected edges

= High threshold used to find
definite edges

= Low threshold to track edges

Lewvel

Boundary in image

Neighboring pixels (defined
by edge direction)

Pixel under inspection

Figure 6.10:
pixels adjacen
information a

Learning 2015.
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Canny Edge Examples

igure 6.11: (a) Non-maximal suppression of the data in Figure 6.9b. (b) Hysteresis applied to
a); high threshold 70, low threshold 10. @ Cengage Learning 2015

G 0
=2 E‘ﬁ%g] IE% ﬂmﬁfﬁ
(a) (b)

Figure 5.23: Canny edge detection at two different scales. @ Cengage Learning 2015.
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Multispectral Edges

- Pixel (i, j) has n-dimensional vector
representation
- Trivial edge detection
= Operate on each spectral band separately
> Combine all bands to form single edge image
- Multiband (Roberts-like) edge operator
= 2 X 2 X n-neighborhood

>y d(i,4)] [d(i+1,j+1)] Sy [di+1.5)] [d(i,j+1)]
VI 46 0)]) Sy [+ 15+ 1] S0 [+ 1)) S0 [dei,g + 1)
where d(k,1)=f (ff I!’)— f(k D).

(5.60)



Frequency Domain Pre-Processing

- Use Fourier transform for spatial frequency filtering
= Convolution becomes multiplication in frequency
domain
o G =FxH
- Image g(x, y) obtained by inverse Fourier transform
- Basic filters (rotationally symmetric)
> Lowpass — smoothing
= Highpass — edge detection/enhancement
> Bandpass — enhancement (structured noise)

(a) (b) ©
Figure 5.24: Frequency filters displayed in 3D. (a) Low-pass filter. (b) High-pass filter. (c¢) Band-
pass filter. © Cengage Learning 2015.



Lowpass Filtering

+

(a)

()

Figure 5.25: Low-pass frequency-domain filtering—for the original image and its spectrum
see Figure 3.7. (a) Spectrum of a low-pass filtered image, all higher frequencies filtered out.
(b) Image resulting from the inverse Fourier transform applied to spectrum (a). (c) Spectrum of
a low-pass filtered image, only very high frequencies filtered out. (d) Inverse Fourier transform
applied to spectrum (c). © Cengage Learning 2015.



Highpass Filtering

Figure 5.26: High-pass frequency domain filtering. (a) Spectrum of a high-pass filtered image,
only very low frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). (c) Spectrum of a high-pass filtered image, all lower frequencies filtered
out. (d) Inverse Fourier transform applied to spectrum (c). © Cengage Learning 2015.



Bandpass Filtering

(a)

Figure 5.27: Band-pass frequency domain filtering. (a) Spectrum of a band-pass-filtered image,
low and high frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). © Cengage Learning 2015.



Bandpass Noise Removal
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Figure 5.28: Periodic noise removal. (a) Noisy image. (b) Image spectrum used for image
reconstruction—note that the areas of frequencies corresponding with periodic vertical lines are
filtered out. (¢) Filtered image. © Cengage Learning 2015.
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Fourier Image Processing

- Take Fourier transform of - Padding
input image f(x, y) - Remember the output of a

- Take Fourier transform of convolution is a longer
kernel h(x,y) sequence
> Need to pad images o glx) = f(x) * h(x)

- Multiply G = F.xH - f(x)islength A
= Element-wise multiplication * h(x) is length B

- Inverse Fourier transform for © g(x)islengthA+ B -1
output image g(x, y) - Need to pad to ensure the
- Crop borders output of the convolution fits

= Use a power of 2 for FFT

» Padding makes each have the
same implicit period

= Crop off un-needed areas

- Filtering is generally more
intuitive in frequency domain
- Frequency domain filtering is
better with larger kernels
= More effieicent
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Detection of Corners (Interest Points)

- Useful for fundamental vision techniques
» Image matching or registration

- Correspondence problem needs to find all pairs
of matching pixels
= Typically a complex problem
> Can be made easier only considering a subset of

points

- Interest points are these important image
regions that satisfy some local property
= Corners are a way to get to interest points
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Feature Detection and Matching

- Essential component of modern computer vision

= E.g. alignment for image stitching,
correspondences for 3D model construction,
object detection, stereo, etc.

» Need to establish some features that can be
detected and matched
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Determining Features to Match

- What can help establish correspondences between images?




Different Types of Features

(c) (d)

Figured4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) (©) 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban er al. 2004) (©) 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) (© 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) (©) 2008 ACM.



Different Types of Features

- Points and patches
- Edges
- Lines

- Which features are best?
= Depends on the application

= Want features that are robust
- Descriptive and consistent (can readily detect)
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Points and Patches

- Maybe most generally useful feature for
matching

= E.g. Camera pose estimation, dense stereo, image
stitching, video stabilization, tracking

= Object detection/recognition

- Key advantages:

= Matching is possible even in the presence of
clutter (occlusion)

= and large scale and orientation changes
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Point Correspondence Techniques

- Detection and tracking
= Initialize by detecting features in a single image
= Track features through localized search
= Best for images from similar viewpoint or video
- Detection and matching
= Detect features in all images

» Match features across images based on local
appearance

= Best for large motion or appearance change
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Keypoint Pipeline

- Feature detection (extraction)

= Search for image locations that are likely to be
matched in other images

- Feature description

> Regions around a keypoint are represented as a
compact and stable descriptor

- Feature matching

= Descriptors are compared between images
efficiently

- Feature tracking
= Search for descriptors in small neighborhood
= Alternative to matching stage best suited for video



Feature Detectors

- Must determine image locations that can be
reliably located in another image

Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.
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Comparison of Image Patches

- Textureless patches

= Nearly impossible to localize
and match

- Sky region “matches” to all
other sky areas

- Edge patches
= Large contrast change
(gradient) ‘ ‘
= Suffer from aperture problem

- Only possible to align
patches along the direction
normal the edge direction

- Corner patches

> Contrast change in at least
two different orientations

o Easiest to localize




Aperture Problem |

» Only consider a small window of an image
= Local view does not give global structure
= Causes ambiguity

- Best visualized with motion (optical flow later)
= Imagine seeing the world through a straw hole
= Aperture Problem - MIT — Demo
= Also known as the barber pole effect



http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

Aperture Problem Il

(a) (b) (c)

Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like™) flow;
(b) classic aperture problem (barber-pole illusion); (¢) textureless region. The two images [
(yellow) and I; (red) are overlaid. The red vector w indicates the displacement between the
patch centers and the w(x;) weighting function (patch window) is shown as a dark circle.

- Corners have strong matches

- Edges can have many potential matches
= Constrained upon a line

- Textureless regions provide no useful information
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WSSD Matching Criterion

- Weighted summed squared difference

* Ewssp(W) = X;w(xy) [I; (x; — ) — Ip(x)]°
- 1,1, - two image patches to compare
- u = (u,v) — displacement vector
- w(x) - spatial weighting function
- Normally we do not know the image locations to
perform the match
= Calculate the autocorrelation in small
displacements of a single image
- Gives a measure of stability of patch

o Egc(Au) = Z;waxy) o (x; — Au) — Ip(x;)]?



Image Patch Autocorrelation

Eqjc(Au) = Z w(x;) [I,(x; — Aw) — I,(x;)]? * Example autocorrelation

B Z w(x) [VIp(x;) - Aul?

i
= Au’ AAu
- VI,(x;) -image gradient
> We have seen how to
compute this

« A — autocorrelation matrix

2
A=W*[Ix ley]
2
Iylx Iy

> Compute gradient images and
convolve with weight function

= Also known as second
moment matrix

= (Harris matrix)



Image Autocorrelation Il

(b)

(c)

(d)

Figure 4.5 Three auto-correlation surfaces Eac(Awu) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of

Au.




Image Autocorrelation Il

- The matrix A provides a
measure of uncertainty in
location of the patch

- Do eigenvalue decomposition

> Get eigenvalues and
eigenvector directions

- Good features have both
eigenvalues large
> Indicates gradients in

orthogonal directions (e.g. a
corner)

- Uncertainty ellipse

direction of the
fastest change

direction of the
slowest change

- Many different methods to
quantify uncertainty

= Fasiest: look for maxima in
the smaller eigenvalue



Basic Feature Detection Algorithm

1. Compute the horizontal and vertical derivatives of the image I, and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.
4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature

point locations.

Algorithm 4.1 Outline of a basic feature detection algorithm.



Interest Point Detection

The correlation matrix gives a measure of edges in a patch
Corner
= Gradient directions

11 10
e
= Correlation matrix
1 0
A X 0 1
Edge

= Gradient directions
1
H
= Correlation matrix
1 0
A X [0 0]
Constant
= Gradient directions

ol
= Correlation matrix
c A [g g
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Improving Feature Detection

« Corners may produce more than one strong
response (due to neighborhood)

= Estimate corner with subpixel accuracy —
use edge tangents

> Non-maximal suppression — only select
features that are far enough away

«  Create more uniform distribution — can
be done through blocking as well

« Scale invariance

= Use an image pyramid — useful for images
of same scale

= Compute Hessian of difference of Gaussian
(DoG) image
= Analyze scale space [SIFT — Lowe 2004]
- Rotational invariance

> Need to estimate the orientation of the
feature by examining gradient information

« Affine invariance

> Closer to apgearance change due to
perspective distortion

= Fit ellipse to autocorrelation matrix and use
it as an affine coordinate frame

> Maximally stable region (MSER) [Matas
2004] — regions that do not change much
through thresholding

Ii.
=

(a) Strongest 250

A
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Maximally Stable Extremal Regions

- MSERs are image structures that can be recovered
after translations, rotations, similarity (scale), and
affine (shear) transforms

- Connected areas characterized by almost uniform
intensity, surrounded by contrasting background

- Constructed based on a watershed-type
segmentation
= Threshold image a multiple different values
= MSERSs are regions with shape that does not change

much over thresholds

- Each region is a connected component but no global
or optimal threshold is selected
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MSER Invariance

- Fit ellipse to area and normalize into circle
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