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Wavelet Transform

- Decompose signals as linear combination of another set of
basis functions (not sinusoid)
- Can be more complex basis

0 Mother wavelets

p = - -

(a) Haar (b) Meyer (c) Morlet (d) Daubechies-4 (e) Mexican hat

Figure 3.13: Examples of mother wavelets. ® Cengage Learning 2015.

- Multiscale analysis
= Provide localization in space
= Search for particular “pattern” a different scales
- Wavelets are better designed for digital images
» Less coefficients required than for sinusoidal

- Think about how many coefficients are required for a single on
pixel (delta)
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1D Continuous Wavelet Transform
s c(s, 1) = [, FOYs.(B)dt

> s € R* — {0} — indicates scale
= T € R — indicates a time shift

- Wavelets at scale and shift generated from a
“mother” wavelet
1 t—7
N LIJS,‘L' (t) — ﬁqj (_)

S
- Wavelet functions must have two properties
= Admissibility — must have bandpass spectrum
- Use oscillatory functions

= Regularity — must have smoothness and concentration
in time/frequency domains
- Fast decrease with decreasing scale



Haar Wavelet

» “Mother” function (basis) « Scaling (“Father”) function

J . s .
o W (x) = 22W(20x — i) (multi resolqtlon/scale)

J . .
1 0<x <% © @ji(x) = 22P(2/x — i)
1 0<x<1
» W) =4_4 %Sx<1 ° cI>(x)={0 se
0 else = Scaled and translated box
functions
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Figure 3.15: Haar wavelets ¥y, W5,
@ Cengage Learning 2015.
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Figure 3.14: ‘Box-like’ scaling functions ®. © Cengage Learning 2015.




Discrete Wavelet Transform

- Computationally efficient cd,,,
. . low pass filter (R 2 ’
implementation cd,
> Herringbone algorithm
erril gbo e algo .t |y oy el s cD,,,
exploits relationship between Evel) level )
coefficients at various scales
- 1D case: Figure 3.16: A single decomposition step of the 1D dis-

crete wavelet transform consists of the convolution of co-

« At each level produce efficients from previous level 7 by a low/high pass filter
. . ffici and down-sampling by dyadic decimation. Approxima-
approximation coefficients and ion and detail coefficients at level 7 + 1 are obtained.

details @ Cengage Learning 2015.
> Approximation from lowpass G B .
s eD,
s Detail from highpass T B ey B
—r ___'_'_*
= Use downsample to change cA, | &
scale L,
* Better appro?clmatlon Wlth Figure 3.17: Example illustrat-
more COGfﬁClentS (mOI'e ing the structure of approxima-
tion and detail coefficients for lev-
1evels/scale) els up to a level § = 3. ® Cengage

Learning 2015.



2D Wavelet Transform

« Similar idea and extension from 1D to 2D

« 2D case
= 4 decomposition types
- Approximation
- 3 detail — horizontal, vertical, and diagonal

. cA,,
i) columns i 142 j
low pass filter ”l ¢O —>
rows i N
| low pass filter > row V2 > D
columns 142 CL iy
—? 4 ; » colV2 ——>
high pass filter
cA, gh pass filte
e cD
B s colv2 —»
low pass filter
TOws
| high pass filter row ¥2 > D’ I
columns i+
i high pass filter » col2 >
el level j+/

Figure 3.19: 2D discrete wavelet transform. A decomposition step. @ Cengage Learning 2015.



2D Wavelet Transform Example

100

50 100 150 200 250

Decomposition at level 3

Figure 3.21: Decomposition to three levels by the 2D discrete Haar wavelet transform. Left is
the original 256 x 256 gray-scale image, and right four quadrants. The undivided southwestern,
southeastern and northeastern quadrants correspond to detailed coefficients of level 1 at reso-
lution 128 x 128 in vertical, diagonal and horizontal directions, respectively. The northwestern
quadrant displays the same structure for level 2 at resolution 64 x 64. The northwestern quad-
rant of level 2 shows the same structure at level 3 at resolution 32 x 32. The lighter intensity
32 x 32 image at top left corresponds to approximation coefficients at level 3. @ Cengage Learning
2015.



2D Wavelet Transform Example

Approximations Horizontal Details Diagonal Details Vertical Details

Figure 3.22: 2D wavelet decomposition; another view of the same data as Figure 3.21. @ Cengage
Learning 2015.



2D Wavelet Transform Example

FIGURE 7.25
Computing a 2-D
three-scale FWT:
(a) the original
image; (b) a one-
scale FWT; (c) a
TR two-scale FWT;
A2 EES  and (d) a three-
: scale FWT.
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Eigen-Analysis

- Represent observations in a form that enhances mutual
independence of contributory components
> Fundamental of linear algebra
Find a new “natural” basis
= Orthogonal basis vectors
Eigen solution
= Ax = Ax
* A —n X n square matrix

- A — eigenvalue (can be complex)
* x — eigenvector

There will be n eigenvalues
= Can find as roots of characteristic polynomial
- det(4A — AlI)
= May have repeated eigenvalues
The n eigenvectors is a compact representation of the space
= E.g. (i,], k) unit vectors in R3
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Eigen-Analysis ldea

- Imagine you have some data x

- You have a transformation matrix A that maps
points
s Ax = b

- The eigenvectors are the directions that are
preserved under this mapping

- They provide a basis for describing the new
transformed space
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Singular Value Decomposition

- Generalization of eigen-analysis to operate on
rectangular matrices (not just square)
» SVD relationship
= Av = cu and A*u = ov
- A — rectangular matrix
- u — right singular vector
- v — left singular vector
- This is a powerful matrix factorization tool

s A =UDV~
* A-m X nmatrix (m = n)
- U- m X m orthonormal columns (right singular vectors)
* VV -n X n orthonormal rows (left singular vectors)
- D — non-negative diagonal matrix of singular values
= Solves linear equations in the least-squares sense
- Used in signal processing, statistics, etc.
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SVD In Practice

- SVD is an input output relationship

- V are the orthonormal input basis vectors

- U are the orthonormal output basis vectors

- D are the scalar gains to go from input to output

= This diagonal matrix is usually ordered in non-
increasing order

- The SVD is often used even for eigen-analysis
because it is numerically stable

> (Given noisy measurements eigen-analysis may not
have a solution

= Least-square solution
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Principle Component Analysis

-+ PCA is quite popular and Wikipedia
known by other names
> Karhunen-Loeve and

Hotelling transforms

- This is a dimensionality
reduction technique

- Multidimensional data is
projected onto a lower
dimensional space for analysis
or visualization
- E.g. R" - R? for print

- Determine new basis for data
to best account for variance

= Basis vectors are in directions
of greatest variance

- Change from Euclidean
coordinates to data centric
coordinates
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PCA Formulation

« Given N observations of M

Compute data covariance

dimensions, want to represent matrix
each datapoint by only L 2 Cy = % xxT
= N>»M : : :
- Diagonalize covariance
- 1<L<M .
Arrange data into columns of S by = A A
* Arrange data ito columns o . Use svd.m

raw observation matrix R
= R islarge M x N matrix
» Create normalized matrix X
- X=R—ull
©u(m) = = 2N R(m,n)
- 1 — vector of ones

= Normalization centers at
mean of data

« C, is a diagonal matrix with
same eigen values as C,

- Rows of A are eigenvectors
= ATA = AAT =1

- Map datapoints to new vectors
° y=A,(x —u)
= A is like a rotation matrix

= Choose to use only a certain
L top eigen vectors
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PCA Approximation Error

Recover original data from
transformed

© y=Ax—u)

= ATy = ATA(x — u)

= x=ATy—u

Using only top L eigen vectors

o X=Ay—u

=y are L dimensional
Reconstruction is no longer exact

= Similar to Fourier series when you
drop higher coefficients

x = X when the eigenvectors that are
dropped do not have informational
content

=  Redundant directions
o Ak = 0

Mean square error of approximation

2 _1 T, \2
°OET = EZn(xn — A yp)
Without transformation
€2 =
1$N 2 L pTelyN T
N2n=1|xn| - Zi=1 bi (ﬁZnﬂ xnxn) bi
This is minimized by maximizing
L 3TelgyN T
* Xi=1bi ( Xn=1%nXn) b;
L T
s D=1 bj cov (x)b;
Based on eigenvalues

s 2 yM 3 _yL g _yM g
€°=Nj=1dy — Lj=1 A = L= dy



Eigenfaces

- Application of PCA to face recognition
- Given a set of face images

Fg e 3.23: 32 riginal images fbyf ach 321 x 261p els. © C

- Each face can be treated as a p01nt in a hlgh dimensional
image space

- Each face image is made into a vector by stacking rows (e.g.
col=1I (:))in Matlab)

- Example 321 x 261 = 83781 pixels
- R83781 dimensional image space
- Fewer images (datapoints) than dimensions




Eigenface PCA

+ Collect data matrix - Notice this procedure requires the
o R = [x1, X2, ) X uxk decomposition of n X n matrix

* Remove mean to center = This can be computationally
° X=R-ul' expensive for images

- Compute data covariance
1
= Cx = EX X T

n X n matrix

« Trick to save memory
= Decompose a k X k matrix

T _
- Do eigen decomposition * X {,f = Af
= Cre=le—>XXTe=1e * XXT(Xf) = AXf)
Use SVD - Lete = Xf
- Each eigenvector is known as an = Be sure to normalize ||e|| =1

eigenface

= Basis of faces (can compose a face
as mixture of basis)

)

Figure 3.24: Reconstruction of the image from four basis vectors b;, i = 1,...,4 which can be
displayed as images. The linear combination was computed as q1b; + ¢2b2 + ¢3bsz + qabs =
0.078 b; + 0.062bs — 0.182bz + 0.179by. © Cengage Learning 2015.



Stochastic Images

- Images can be considered
statistical in nature
> The same image of a scene
will be slightly different each
time

- Think of an image as a
stochastic process ¢
= ¢(x,y) — is the random
intensity variable for pixel at
(x,y) e i ) ity
* Animage f(x,) is a specific sz s i s o e e s st o ot e
re aliz ation or the random glgc;:‘g)\az ;sLeezix;i;déolfgtice that pixels really differ in the same locations in three realizations.
process
o It is a real deterministic
function
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Image Processes

- The joint distribution of all pixels is large and
complicated

- Often will simplify to distributions on single
pixels p;(z; x,y)

- Characterize distribution by simple statistics
> Mean (first order expectation)

oo

up(x,y) = Elp(x, )] = __ zp:1(z; x,y)dz
= Cross correlation

’ R¢y(x1,y1,x2,y2) = E[¢p(x1,y1)7(x2,¥2)]
- Autocorrelation = Ry

- Uncorrelated processes have zero correlation



Image Data Representation Levels

Relational models

= High level of abstraction

= Use of a priori knowledge
Geometric representations

= Knowledge about 2D and 3D

» Computer vision
(machine
understanding)
aims to make sense
from visual image
data

shapes
. MUS’E transff)rm raw = Quantification of shape
image data into a - Segmented images

more semantically

meaningful model > Semantically meaningtul

grouping (e.g. object)

> Some domain knowledge is
usually required

Iconic images

= “Raw” data — pixel image
brightness

Low Level
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Matrix Data

- Most common data structure
= Qutput of capture devices (cameras)
= Each entry represents brightness
- Explicit spatial relationships through matrix
coordinates
= Can define neighborhood relationships
- Common matrix images
= Binary image — only two intensity values {0, 1}
- Threshold image
= Multispectral image — several matrices together with
each matrix the response to a particular spectral band
- RGB image - M X N X 3 matrix
= Hierarchical image structures — images at different
resolutions
- Image pyramid — useful for analysis at scale
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Co-Occurrence Matrix

- Estimate of the probability of two pixels appearing in a
spatial relationship

- Define matrix C,(z,y)
» Examine pixel f(iy,j;) = z and pixel f(i,,j,) =y
= Count the number of pixels that exhibit relationship r
 r — can be a neighborhood relation
- This is useful for describing texture

Algorithm 4.1: Co-occurrence matrix C,.(z,y) for the relation r
1. Set Cy(z,y) =0 for all z, y € [0, L], where L is the maximum brightness.

2. For all pixels (i1, j1) in the image, determine all (iz, j2) which have the relation r
with the pixel (i1, j1), and perform

Cy|f(i1,51), f(iz, 42)] = Cr [ f(ir, 1), fiz, j2)] + 1.
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Integral Image

- Cumulative sum image
; ll(l!]) = sti,lsjf(k: l)
= Each entry is the sum of pixels to the above left

- Used for rapid calculation of simple rectangle
feature at various scales

Algorithm 4.2: Integral image construction
1. Let s(7,j) denote a cumulative row sum, and set s(i,—1) = 0.
2. Let ii(7,j) be an integral image, and set ii(—1,j) = 0.

3. Make a single row-by-row pass through the image. For each pixel (i, j) calculate
the cumulative row sums s(i, j) and the integral image value #i(7, j) using

S(i:-j) =S{i,j—1)+f(‘i,j), (4‘2}

4. After completing a single pass through the image, the integral image ii is con-
structed.
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Integral Image Utility

- Any rectangular sum can be computed from the
integral image in only 4 array references
= With basic matrix, need to reference each pixel in
rectangular region
- Only overhead is the single pass through the
image to compute the integral image

A B

o oP
C D

o) o0

Figure 4.1: Calculation of rectangle features from an integral image. The sum of pixels within
rectangle D can be obtained using four array references. Deym = ii(0) + ii(a) — (i1(8) + ii(y)),
where ii(a) is the value of the integral image at point a (and similarly for 3,4,d). © Cengage

Learning 2015.



Haar-Like Features

an:r ! \Pn
0 0.5 0

- Sum of rectangular regions i os | |
-1 e

= Add white and subtract 5 _
) igure 3.15: Haar wavelets ¥y, ¥ys.
black reglons @ Cengage Learning 2015.

o

(a) (b) (c) (d)

Figure 4.2: Rectangle-based features may be calculated from an integral image by subtraction of
the sum of the shaded rectangle(s) from the non-shaded rectangle(s). The figure shows (a,b) two-
rectangle, (c) three-rectangle, and (d) four-rectangle features. Sizes of the individual rectangles
can be varied to yield different features as well as features at different scales. Contributions
from the regions may be normalized to account for possibly unequal region sizes. © Cengage
Learning 2015.

- These look for intensity patterns
= Used in face recognition [Viola and Jones]




Chains

- Sequence to describe object borders

- Can use language theory models for pattern
recognition
= E.g. letters and grammar rules

O
00000
n

Figure 4.3: An example chain code; the reference pixel starting the chain is marked by an arrow:
00077665555556600000006444444442221111112234445652211. © Cengage Learning 2015.
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Topological Structures

- Image described by elements and relationships
- Represented by graphs
« G = (V,E)
V ={v,vy,...,v,} — nodes
E = {e e,,...,e,} —relationship edges (arcs)
- Degree of node is the number of incident edges
> Weighted graphs have values (weight, cost) for edges
- Region adJacency graph

= Nodes are image regions and edges connect neighboring
regions

= Created from region map (labeled image)
= A graph cut can extract inside regions simply

4 1 2
3 4
5

Figure 4.5: An example region adjacency graph.
© Cengage Learning 2015.
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Relational Structures

- Relations between image objects
(segmentations) are stored in a table

- Usetul for higher levels of image understanding

No. | Object name I Color | Min. row | Min. col. | Inside
1 | sun white 5 40 2

2 | sky blue 0 0 -

3 | cloud gray 20 180 2

4 | tree trunk brown 95 75 6

H tree crown green 53 63 -

6 | hill light green 97 0 -

7 | pond blue 100 160 6

Figure 4.7: Description of objects using relational structure. @ Cengage L Table 4.1: Relational table. © Cengage Learning 2015,

- Relational databases are popular (MySQL,
MyMaria, PostgreSQL, Oracle)
» Efficient search with keys
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Hierarchical Data Structures

- Computer vision is a difficult and requires
computational power
» Can’t always use brute force

- Hierarchical data structures give rise to
algorithms that operate more efficiently
= Use smaller subset of the data first

= Go to full resolution processing only when
required
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Image Pyramids

- Matrix-pyramid
> Sequence of images of different resolution
o {Mp, M1, ..., Mo}
- Each M;,, is half the resolution of M;
> Allows operations at different resolutions (scale)
- Half-size is Y4 pixels and 4 times speed up
- Tree-pyramid
= Use several resolutions simultaneously

i Atlthe bottom of the tree (the highest level) are the original pixels
values

: ]:chhllquer level contains a mapping from 4 higher resolution
pixels
- Each level is a lower resolution image
» The memory for storing all images in a pyramid is only 1.33N?

Level 0

Level 1

Figure 4.8: T-pyramid.
Level 2 © Cengage Learning 2015.



Quadtrees

Modification of T-pyramid
s Less expensive representations

= Do not need to keep all 4 children nodes unless necessary
- No need to store 4 children with same value

Advantages: simple algorithms for addition of images,
object areas, statistical moments

Disadvantages: dependence on position, orientation, size

of objects

= Normalized shape quadtree
* Build quadtree for each object

Have become popular in GIS mapping for layered data

10

1

120

121

122

123

13

0 2 3

10 1 13

120 121 122 123 Figure 4.9: Quadtree. © Cengage
Learning 2015.



