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Outline 

• Wavelets 

• Eigen Decomposition 

• Singular Value Decomposition 

• Principle Component Analysis 

• Stochastic Images 
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Wavelet Transform 
• Decompose signals as linear combination of another set of 

basis functions (not sinusoid) 
▫ Can be more complex basis 

• Mother wavelets 
 
 
 
 
 

 
• Multiscale analysis 

▫ Provide localization in space  
▫ Search for particular “pattern” a different scales 

• Wavelets are better designed for digital images 
▫ Less coefficients required than for sinusoidal 

 Think about how many coefficients are required for a single on 
pixel (delta) 
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1D Continuous Wavelet Transform 

• 𝑐 𝑠, 𝜏 =  𝑓 𝑡 Ψ𝑠,𝜏
∗ 𝑡 𝑑𝑡

𝑅
 

▫ 𝑠 ∈ 𝑅+ − {0} – indicates scale  
▫ 𝜏 ∈ 𝑅 – indicates a time shift 

• Wavelets at scale and shift generated from a 
“mother” wavelet 

▫ Ψ𝑠,𝜏 𝑡 =
1

𝑠
Ψ

𝑡−𝜏

𝑠
 

• Wavelet functions must have two properties 
▫ Admissibility – must have bandpass spectrum  

 Use oscillatory functions 

▫ Regularity – must have smoothness and concentration 
in time/frequency domains 
 Fast decrease with decreasing scale 
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Haar Wavelet  
• “Mother” function (basis) 

▫ Ψ𝑗𝑖 𝑥 = 2
𝑗

2Ψ(2𝑗𝑥 − 𝑖) 

▫ Ψ 𝑥 =  

1 0 ≤ 𝑥 <
1

2

−1
1

2
≤ 𝑥 < 1

0 𝑒𝑙𝑠𝑒

 

 

• Scaling (“Father”) function 
(multi-resolution/scale) 

▫ Φ𝑗𝑖 𝑥 = 2
𝑗

2Φ(2𝑗𝑥 − 𝑖) 

▫ Φ 𝑥 =  
1 0 ≤ 𝑥 < 1
0 𝑒𝑙𝑠𝑒

 

▫ Scaled and translated box 
functions 
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Discrete Wavelet Transform 
• Computationally efficient 

implementation 

▫ Herringbone algorithm 
exploits relationship between 
coefficients at various scales 

• 1D case: 

• At each level produce 
approximation coefficients and 
details  

▫ Approximation from lowpass 

▫ Detail from highpass 

▫ Use downsample to change 
scale 

• Better approximation with 
more coefficients (more 
levels/scale) 
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2D Wavelet Transform 

• Similar idea and extension from 1D to 2D 

• 2D case 

▫ 4 decomposition types 

 Approximation  

 3 detail – horizontal, vertical, and diagonal 
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2D Wavelet Transform Example 

 

8 



2D Wavelet Transform Example 
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2D Wavelet Transform Example 
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Eigen-Analysis 
• Represent observations in a form that enhances mutual 

independence of contributory components 
▫ Fundamental of linear algebra 

• Find a new “natural” basis  
▫ Orthogonal basis vectors 

• Eigen solution 

▫ 𝐴𝑥 = 𝜆𝑥 
 𝐴 – 𝑛 × 𝑛 square matrix 
 𝜆 – eigenvalue (can be complex) 
 𝑥 – eigenvector  

• There will be 𝑛 eigenvalues 
▫ Can find as roots of characteristic polynomial 

 det(𝐴 − 𝜆𝐼) 
▫ May have repeated eigenvalues 

• The 𝑛 eigenvectors is a compact representation of the space 
▫ E.g. (𝑖, 𝑗, 𝑘) unit vectors in R3 
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Eigen-Analysis Idea 

• Imagine you have some data 𝑥 

• You have a transformation matrix 𝐴 that maps 
points 

▫ 𝐴𝑥 = 𝑏 

 

• The eigenvectors are the directions that are 
preserved under this mapping 

• They provide a basis for describing the new 
transformed space 
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Singular Value Decomposition 
• Generalization of eigen-analysis to operate on 

rectangular matrices (not just square) 
• SVD relationship 

▫ 𝐴𝑣 = 𝜎𝑢 and 𝐴∗𝑢 = 𝜎𝑣 
 𝐴 – rectangular matrix 
 𝑢 – right singular vector 
 𝑣 – left singular vector 

• This is a powerful matrix factorization tool 

▫ 𝐴 = 𝑈𝐷𝑉∗ 
 𝐴 - 𝑚 × 𝑛 matrix (𝑚 ≥ 𝑛) 
 𝑈- 𝑚 × 𝑚 orthonormal columns (right singular vectors) 
 𝑉 - 𝑛 × 𝑛 orthonormal rows (left singular vectors) 
 𝐷 – non-negative diagonal matrix of singular values 

▫ Solves linear equations in the least-squares sense 
 Used in signal processing, statistics, etc. 
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SVD In Practice 

• SVD is an input output relationship 
• 𝑉 are the orthonormal input basis vectors 
• 𝑈 are the orthonormal output basis vectors 
• 𝐷 are the scalar gains to go from input to output 

▫ This diagonal matrix is usually ordered in non-
increasing order 

 
• The SVD is often used even for eigen-analysis 

because it is numerically stable  
▫ Given noisy measurements eigen-analysis may not 

have a solution 
▫ Least-square solution 
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Wikipedia 

Principle Component Analysis 
• PCA is quite popular and 

known by other names 

▫ Karhunen-Loeve and 
Hotelling transforms 

• This is a dimensionality 
reduction technique 

• Multidimensional data is 
projected onto a lower 
dimensional space for analysis 
or visualization 

▫ E.g. R𝑛 → R2 for print  

• Determine new basis for data 
to best account for variance 

▫ Basis vectors are in directions 
of greatest variance 

 

• Change from Euclidean 
coordinates to data centric 
coordinates 
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PCA Formulation 
• Given 𝑁 observations of 𝑀 

dimensions, want to represent 
each datapoint by only 𝐿  

▫ 𝑁 ≫ 𝑀 

▫ 1 ≤ 𝐿 < 𝑀 

• Arrange data into columns of 
raw observation matrix 𝑅 

▫ 𝑅 is large 𝑀 × 𝑁 matrix 

• Create normalized matrix 𝑋 

▫ 𝑋 = 𝑅 − 𝑢1𝑇 

 𝑢 𝑚 =
1

𝑁
 𝑅 𝑚, 𝑛𝑁

𝑛=1  

 1 – vector of ones 

▫ Normalization centers at 
mean of data 

 

 

 

• Compute data covariance 
matrix 

▫ 𝐶𝑋 =
1

𝑁
𝑋𝑋𝑇 

• Diagonalize covariance 

▫ 𝐶𝑌 = 𝐴𝑇𝐶𝑋𝐴 

 Use svd.m 

• 𝐶𝑦 is a diagonal matrix with 

same eigen values as 𝐶𝑥 

• Rows of 𝐴 are eigenvectors  

▫ 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼 

• Map datapoints to new vectors 

▫ 𝑦 = 𝐴𝐿 𝑥 − 𝑢  

▫ 𝐴 is like a rotation matrix 

▫ Choose to use only a certain 
𝐿 top eigen vectors 
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PCA Approximation Error 
• Recover original data from 

transformed 

▫ 𝑦 = 𝐴 𝑥 − 𝑢  

▫ 𝐴𝑇𝑦 = 𝐴𝑇𝐴 𝑥 − 𝑢  

▫ 𝑥 = 𝐴𝑇𝑦 − 𝑢 

• Using only top 𝐿 eigen vectors 

▫ 𝑥 = 𝐴𝐿𝑦 − 𝑢 

▫ 𝑦 are 𝐿 dimensional 

• Reconstruction is no longer exact 
▫ Similar to Fourier series when you 

drop higher coefficients 

• 𝑥 = 𝑥  when the eigenvectors that are 
dropped do not have informational 
content 
▫ Redundant directions 

▫ 𝜆𝑘 = 0 

• Mean square error of approximation  

▫ 𝜖2 =
1

𝑁
 𝑥𝑛 − 𝐴𝑇𝑦𝑛

2
𝑛  

• Without transformation 

• 𝜖2 =
1

𝑁
 𝑥𝑛

2 −  𝑏𝑖
𝑇(

1

𝑁
 𝑥𝑛𝑥𝑛

𝑇) 𝑏𝑖
𝑁
𝑛=1

𝐿
𝑖=1

𝑁
𝑛=1  

• This is minimized by maximizing 

▫  𝑏𝑖
𝑇(

1

𝑁
 𝑥𝑛𝑥𝑛

𝑇) 𝑏𝑖
𝑁
𝑛=1

𝐿
𝑖=1  

▫  𝑏𝑖
𝑇cov 𝑥 𝑏𝑖

𝐿
𝑖=1  

• Based on eigenvalues 

▫ 𝜖2 =  𝜆𝑗 −  𝜆𝑗
𝐿
𝑗=1 =  𝜆𝑗

𝑀
𝑗=𝐿+1

𝑀
𝑗=1  
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Eigenfaces 
• Application of PCA to face recognition 
• Given a set of face images 

 
 
 
 
 
 
 

• Each face can be treated as a point in a high dimensional 
image space 
▫ Each face image is made into a vector by stacking rows (e.g. 
col=I(:))in Matlab) 

▫ Example 321 × 261 = 83781 pixels  
 R83781 dimensional image space 
 Fewer images (datapoints) than dimensions 
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Eigenface PCA 
• Collect data matrix 

▫ 𝑅 = 𝑥1, 𝑥2, … , 𝑥𝑘 𝑛×𝑘 

• Remove mean to center 

▫ 𝑋 = 𝑅 − 𝑢1𝑇 

• Compute data covariance 

▫ 𝐶𝑥 =
1

𝑘
𝑋𝑋𝑇 

 𝑛 × 𝑛 matrix 

• Do eigen decomposition 

▫ 𝐶𝑥𝑒 = 𝜆𝑒 → 𝑋𝑋𝑇𝑒 = 𝜆𝑒 

 Use SVD 

• Each eigenvector is known as an 
eigenface 

▫ Basis of faces (can compose a face 
as mixture of basis) 

 

 

• Notice this procedure requires the 
decomposition of 𝑛 × 𝑛 matrix 

▫ This can be computationally 
expensive for images 

• Trick to save memory 

▫ Decompose a 𝑘 × 𝑘 matrix 

▫ 𝑋𝑇𝑋𝑓 = 𝜆𝑓 

▫ 𝑋𝑋𝑇 𝑋𝑓 = 𝜆(𝑋𝑓) 

• Let 𝑒 = 𝑋𝑓 

▫ Be sure to normalize 𝑒 = 1 
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Stochastic Images 
• Images can be considered 

statistical in nature 

▫ The same image of a scene 
will be slightly different each 
time 

 

• Think of an image as a 
stochastic process 𝜙 

▫ 𝜙(𝑥, 𝑦) – is the random 
intensity variable for pixel at 
(𝑥, 𝑦) 

• An image 𝑓 𝑥, 𝑦  is a specific 
realization or the random 
process 

▫ It is a real deterministic 
function 
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Image Processes 

• The joint distribution of all pixels is large and 
complicated 

• Often will simplify to distributions on single 
pixels 𝑝1 𝑧; 𝑥, 𝑦  

• Characterize distribution by simple statistics 

▫ Mean (first order expectation) 

 𝜇𝜙 𝑥, 𝑦 = 𝐸 𝜙 𝑥, 𝑦 =  𝑧𝑝1 𝑧; 𝑥, 𝑦 𝑑𝑧
∞

−∞
 

▫ Cross correlation 

 𝑅𝜙𝛾 𝑥1, 𝑦1, 𝑥2, 𝑦2 = 𝐸[𝜙 𝑥1, 𝑦1 𝛾 𝑥2, 𝑦2 ] 

 Autocorrelation  𝑅𝜙𝜙 

 Uncorrelated processes have zero correlation 
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Image Data Representation Levels 
• Computer vision 

(machine 
understanding) 
aims to make sense 
from visual image 
data 

• Must transform raw 
image data into a 
more semantically 
meaningful model 

• Relational models 

▫ High level of abstraction 

▫ Use of a priori knowledge 

• Geometric representations  

▫ Knowledge about 2D and 3D 
shapes 

▫ Quantification of shape 

• Segmented images 

▫ Semantically meaningful 
grouping (e.g. object) 

▫ Some domain knowledge is 
usually required 

• Iconic images 

▫ “Raw” data – pixel image 
brightness 
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Matrix Data 
• Most common data structure 

▫ Output of capture devices (cameras) 
▫ Each entry represents brightness 

• Explicit spatial relationships through matrix 
coordinates 
▫ Can define neighborhood relationships  

• Common matrix images 
▫ Binary image – only two intensity values 0, 1  

 Threshold image 
▫ Multispectral image – several matrices together with 

each matrix the response to a particular spectral band 
 RGB image - 𝑀 × 𝑁 × 3 matrix 

▫ Hierarchical image structures – images at different 
resolutions 
 Image pyramid – useful for analysis at scale 
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Co-Occurrence Matrix 

• Estimate of the probability of two pixels appearing in a 
spatial relationship 

• Define matrix 𝐶𝑟(𝑧, 𝑦) 

▫ Examine pixel 𝑓 𝑖1, 𝑗1 = 𝑧 and pixel 𝑓 𝑖2, 𝑗2 = 𝑦  

▫ Count the number of pixels that exhibit relationship 𝑟 
 𝑟 – can be a neighborhood relation 

• This is useful for describing texture 
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Integral Image 

• Cumulative sum image  

▫ 𝑖𝑖 𝑖, 𝑗 =  𝑓(𝑘, 𝑙)𝑘≤𝑖,𝑙≤𝑗  

▫ Each entry is the sum of pixels to the above left 

• Used for rapid calculation of simple rectangle 
feature at various scales  
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Integral Image Utility 

• Any rectangular sum can be computed from the 
integral image in only 4 array references 

▫ With basic matrix, need to reference each pixel in 
rectangular region 

• Only overhead is the single pass through the 
image to compute the integral image 
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Haar-Like Features 

• Sum of rectangular regions 

▫ Add white and subtract 
black regions 

 

 

 

 

 

 

• These look for intensity patterns 

▫ Used in face recognition [Viola and Jones] 
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Chains 

• Sequence to describe object borders 

• Can use language theory models for pattern 
recognition 

▫ E.g. letters and grammar rules 
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Topological Structures 
• Image described by elements and relationships 
• Represented by graphs 

▫ 𝐺 = (𝑉, 𝐸) 
 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} – nodes 
 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} – relationship edges (arcs) 
 Degree of node is the number of incident edges 

▫ Weighted graphs have values (weight, cost) for edges 
• Region adjacency graph 

▫ Nodes are image regions and edges connect neighboring 
regions 

▫ Created from region map (labeled image) 
▫ A graph cut can extract inside regions simply 
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Relational Structures 

• Relations between image objects 
(segmentations) are stored in a table 

• Useful for higher levels of image understanding 

 

 

 

 

 

• Relational databases are popular (MySQL, 
MyMaria, PostgreSQL, Oracle) 

▫ Efficient search with keys 
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Hierarchical Data Structures 

• Computer vision is a difficult and requires 
computational power 

▫ Can’t always use brute force 

• Hierarchical data structures give rise to 
algorithms that operate more efficiently 

▫ Use smaller subset of the data first 

▫ Go to full resolution processing only when 
required 
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Image Pyramids 
• Matrix-pyramid 

▫ Sequence of images of different resolution 

▫ {𝑀𝐿, 𝑀𝐿−1, … ,𝑀0} 
 Each 𝑀𝑙+1 is half the resolution of 𝑀𝑙 

▫ Allows operations at different resolutions (scale) 
 Half-size is ¼ pixels and 4 times speed up 

• Tree-pyramid 
▫ Use several resolutions simultaneously  
▫ At the bottom of the tree (the highest level) are the original pixels 

values 
▫ Each lower level contains a mapping from 4 higher resolution 

“pixels” 
 Each level is a lower resolution image 

• The memory for storing all images in a pyramid is only 1.33𝑁2  
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Quadtrees 
• Modification of T-pyramid 

▫ Less expensive representations 
▫ Do not need to keep all 4 children nodes unless necessary 

 No need to store 4 children with same value 

• Advantages: simple algorithms for addition of images, 
object areas, statistical moments 

• Disadvantages: dependence on position, orientation, size 
of objects 
▫ Normalized shape quadtree 

 Build quadtree for each object 

• Have become popular in GIS mapping for layered data 
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