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Linearity

- Image processing as a system

X —> L —> y

- Linearity defined on vector (linear) spaces
= Superposition principle:
. Additivity
- Homogeneity
s L(ax; + bxy) = al(xy) + bL(x,)

- Very important property for linear image
processing
» Can make use of 1D signal processing ideas
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Dirac Delta Distribution

» Dirac delta - 6 (x, y)

» Impulse - §(x,y) =0V(x,y) # 0

o oo e (e y)dxdy = 1
- Sifting property

= Use of §(x, y) to obtain value of function

o o o e Y)8(x = Ay — ydxdy = f(4, 1)
» Delta sampling

- [% " f(a,b)6(a —x,b — y)dadb = f(x,y)
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Convolution

- In image processing, this is an 2D convolution

“overlap” operation - (frm)(x,y) =
- 1D convolution /= [ f(a,b)h(x — a,y — b)dadb
: (]:o* h)(t) = o =
J_oof@h(t —Ddr = [Z % h(a,b)f(x — a,y — b)dadb
[ h@f (= Ddr = (hr PxY)

= Limits restricted to finite
support (similar to image
range)
- Properties

Discrete 2D convolution
» Linear preprocessing step
> QOutput pixel is a linear

> frh=hxf combination of neighborhood

nf*(g*h):(f*g)*h plXGlS

* fr@+hR)=fxg+fxh - g@p= |

= a(f*g)=C(af)*g = f*(ag) Z(m,n)eO h(i — m,j — n)f(m' n)

o d _df  , _ . dh = () — neighborhood (typically
wfrh)=rh=fxr rectangular with oddygumber

or rows and columns
= h - kernel or convolution mask



Images as Linear Systems
- Image viewed as superposition of deltas
feoy) —> L — J(x,y)
o g(x, y) — JFfOOO Jr_oooo f((,l, b)L{6(a — X, b — y)}dadb

FOO

g, y)=J__ |

™ f(a,b)h(a —x,b — y)dadb

cg(x,y) = (f *h)(x,y)
- Fourier transform relationship

- G(u,v) = F(u,

v)H (u, v)

» Useful for frequency domain smoothing and

sharpening



. 7
Intro Linear Integral Transforms

- Represent signals (images) in a more suitable
domain
= Information is better “visible”
= Solution to related (dual) problem is easier
- Most often interested in the “frequency domain”
= What a one-to-one mapping between spatial
(image coordinates) and frequency
- Inverse transform must exist
= Popular transforms include:
- Fourier, Cosine, Wavelet
- Most often used for filtering
= Image-to-image mapping



1D Fourier Transform

F{f(} = F () =
J-. f©e 2métqt
Inverse transform
c PR} = £(1) =

|- F(&)e?™stqe
This always exists for digital
signals (of finite length, e.g.
images)
Notice the FT is a linear

combination of complex

exponentials

> Linear combination of sines
and cosines

= /% = cosO + jsinf

= F(&) — indicates the

contribution of sinusoid with
frequency ¢

WAV
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum

of sines and cosines was met with skepticism.

it



1D Fourier Transform Representation

- In general, FT is complex valued
- Can express in polar form
S F(©) = |F(©)]em#®
« Magnitude spectrum
- [F(©)| = [Re?(F) + Im?(F)]'/?
- Phase spectrum (angle)

- 46) = tant [0

Re(F)
« Power spectrum
° P(§) = |F(§)|* = Re*(F) + Im?*(F)




Fourier Transform Properties

« DC value (offset)

= F(0) = f_oooof(t)dt Property f(t) F(¢)
= Area under f(t) Linearity afi(t) +0fa2(t) | a F1(€) + b Fa(§)
o Average value Duality F(t) (=€)
« FT offset Convolution (f * g)(%) F(&) G(€)
o f(0) = [, F(§)d¢ Product £(t) 92 (F+G)(©)
« Parseval’s Theorem Time shift f(t — to) R ()
o« [T If@12de=["_ |F(&)|?dé Frequency shift | e?™0!f () F(E - &)
= Energy in time domain is Differentiation o 2migF(¢)
equal to energy in frequency  Multiplication by ¢ t £(t) Ll
domai.n o Time scaling flat) |—1‘|F (§/a)
- Uncertainty principle
= Wide in time = narrow in T oS R e

frequency gage Learning 2015.

= Narrow in time = wide in
frequency
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Short Time Fourier Transform

- Non-stationary signal processing technique
= Signal distribution changes in time

- Divide signal into smaller pieces and do
computations in windows

= Typically, smooth windows are selected to reduce
border effects

- This gives a sense of “global” properties but also
a time when they happen (which window)
= Global — mean, variance, frequency content
= Timing — which window
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Discrete Fourier Transform

- Assume discrete signal obtained by sampling
» f(n), n=0..N—-1
« DFT

o F(k) =~ ZNZ3 f(n)exp(—2mi ™)

o f(n) = ZNZ3 F(k)exp(2mi ™)
- Since DFT is discrete, it is periodic
» k — represents a discrete frequency
» Fast Fourier transform (FFT)
= Fast implementation of DFT (O (nlogn))
= Basic DFT is 0(n?)
» Makes frequency domain processing possible



2D Fourier Transform

- Generalization of 1D FT - Properties:
« F(u,v) = - Linearity
J2 7 flx, y)e2milutyw) qygy > Flafi(x,y) + bfa(x,¥)} =
F;(u,v) + bF,(u,
C fxy) = . . Time 1((51;)211]’;a1) s}ii(fltt V
[ I F ()M dudy FIfGx—a,y — b)) =
- For images (u, v) are called spatial F(u,v) e-zﬁ(auwv)
frequencies - Fre uénc shift
FT indicates how to combine 2D q Y 221 (g x-4D07)
spatial sinusoids o F{f(x,y)e?moxtvoy)} =
F(u — Uy, V — vo)
- Real f(x,y)

o F(—u,—v) = F*(u,v)
= Only need first quadrant for
images (u = 0,v = 0)

Convolution duality
> F{(f*h)(x,y)} = F(wv)H(u,v)
> F{f(x,y)h(x,y)} = (F  H)(u, v)
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Discrete 2D Fourier Transform

1 — mu nv
- F(u,v) =m2%=% L f(m,n) exp[ an(M +W)]
-u=01..M—1, U—O,l,...,N 1

. fmu nv
o flx,y) =XM1 F(u,v) exp [2711 (7 + W)]
m=01..M-1, n=0,1,..,N—1
- Efficient implementation with 1D FFT
= Compute FFT of each row m
= Compute FFT of each column n (of FFT coefficients)
- Notice this is a period function

= Periodic in two directions
- v direction: period N, Au = 1/MAx
- u direction: period M, Av = 1/NAy



2D Fourier Transform Example

- Input image "alp] lcles
= Assumed periodicity for F—BXC Tt
harmonic frequencies YL
(discrete) (2) (b)

Power spectrum log(module of the FFT)

Spatial frequancy v

-50 0
Spatial frequency u

Power specirum cantered, log1D{moduls of the FFT)

° Reember that orlgln is
typically in the top right

= Low frequency components
are in the corners of FT image




More Fourier Transform Examples

ab

cd

FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots

a b
c d
FIGURE 4.25

(a) The rectangle
in Fig.4.24(a)

in the four corners. translated,

(c) Centered and (b) the'
spectrum. (d) Result corresponding
showing increased spectrum.
detail after a log (c) Rotated
transformation. The rectangle,
zero crossings of the and (d) the
spectrum are closer in corresponding
the vertical direction spectrum. The
because the rectangle spectrum

corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

in (a) is longer in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.

; |
¢ |

u u
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More Fourier Transform Examples

- Importance of magnitude and
phase

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)

- Higher values for edges and
changing textures
> Notice the 45 degree line

allblle
delf

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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Sampling

- Sample the continuous image function
- Sampling function

- s(x,y) = S, S-, 8(x — jAx,y — kAy)

- Ax, Ay — sampling intervals

- Sampling signal
* [s(6y) =, y)s(x, y)

= f(x,y) Xjo1 Xk=16(x — jAx,y — kAy)
- Taking FT of both sides

1 m n
R = g T o T Fu = 20— )

» Repeated copies of F(u, v) (DTFT)




Shannon’s Sampling Theorem

- Periodic copies of spectrum can - Inreality, sampling grid is used
result in image distortion - filx,y) =
(aliasing) 11 XR=1 £ (0 R (x = jx, y — kAY)
= Qccurs when copies overlap - R(uv) = ——
Sy AxAy

= Caused by undersampling
- Shannon’s sampling theorem
o Ax < %, Ay < %
= U,V — max frequencies in
image
> Sampling interval should be

less than half the smallest
image detail

Figure 3.11: Digitizing. (a) 256 x 256. (b) 128 x 128. (c) 64 x 64. (d) 32 x 32. Images have
been enlarged to the same size to illustrate the loss of detail. @ Cengage Learning 2015.
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Discrete Cosine Transform

- Similar to DFT but not complex
= Double length DFT with even functions

- Four basic DCT types depending on type of periodic
extension applied at boundaries
= DCT-I, -I1, -1III, -IV

- Image processing uses DCT-II (compression, object
detection/recognition)
= Even extension at both left and right boundaries

: Mirrorin% results in smooth period function which
requires less coefficients for approximation
QQTT So0? ?
il

il il l I, "7
T: | T- -_ I L LRt I |
ot
[ BN B 1 1 ‘i T l b | = {l = _‘I_+ I l I"I_‘I' 1 i L N
Figure 3.12: Illustration of the periodic extension used in DCT-II. The input signal of length

" 10}
11 is denoted by squares. Its periodic extension is shown as circles. © Cengage Learning 2015.

11 samples
P_‘*
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2D DCT

* F(u,v) =
2c(u)c(V) oN—1 ©N—-1 2m+1 2n+1
> =0 2n=o f (m,n) cos - Um | cos(——vm

-u—01,.N—-1v=01..N—-1
Dc(k)zil/\/i k=0

1 else
- For highly correlated images, is able to compact

energy into fewer coefficients

= Useful for compression (image, video)
+ Used in JPEG, MPEG-4

- Similar to DFT
= Can use FFT type calculations for speed
= DC is zeroth component



2D DCT Example

- Comparison with DFT - DCT basis

v 0

g Discontinuity\\ HGURE 8.23 )

| [ Discrete-cosine
FIGURE 8.25 The | | basis functions for
periodicity Boundary fee—n | n = 4. The origin
implicit in the 1-D points of each block is at
(a) DFT and | i
(b) DCT. } its top left.

| [
| l
| l
| [
| |
T

| |
T T T

» Subwindow size

abcd

FIGURE 8.27 Approximations of Fig. 8.27(a) using 25% of the DCT coefficients and (b) 2 X 2 subimages, (c)
4 X 4 subimages, and (d) 8 X 8 subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).
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Wavelet Transform

- Decompose signals as linear combination of another set of
basis functions (not sinusoid)
- Can be more complex basis

0 Mother wavelets

p = - -

(a) Haar (b) Meyer (c) Morlet (d) Daubechies-4 (e) Mexican hat

Figure 3.13: Examples of mother wavelets. ® Cengage Learning 2015.

- Multiscale analysis
= Provide localization in space
= Search for particular “pattern” a different scales
- Wavelets are better designed for digital images
» Less coefficients required than for sinusoidal

- Think about how many coefficients are required for a single on
pixel (delta)
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1D Continuous Wavelet Transform
s c(s, 1) = [, FOYs.(B)dt

> s € R* — {0} — indicates scale
= T € R — indicates a time shift

- Wavelets at scale and shift generated from a
“mother” wavelet
1 t—7
N LIJS,‘L' (t) — ﬁqj (_)

S
- Wavelet functions must have two properties
= Admissibility — must have bandpass spectrum
- Use oscillatory functions

= Regularity — must have smoothness and concentration
in time/frequency domains
- Fast decrease with decreasing scale



Haar Wavelet

» “Mother” function (basis) « Scaling (“Father”) function

J . s .
o W (x) = 22W(20x — i) (multi resolqtlon/scale)

J . .
1 0<x <% © @ji(x) = 22P(2/x — i)
1 0<x<1
» W) =4_4 %Sx<1 ° cI>(x)={0 se
0 else = Scaled and translated box
functions
| e ¥,
0 05, i 1

Figure 3.15: Haar wavelets ¥y, W5,
@ Cengage Learning 2015.

A l l l
: o, 1M e, T ®, T ®
0 0 0 0

1 1 > T > rat l—= T T >
0 05 1x 0 05 12X g 05 Ix 0 05 1 x
Figure 3.14: ‘Box-like’ scaling functions ®. © Cengage Learning 2015.




Discrete Wavelet Transform

- Computationally efficient cd,,,
. . low pass filter (R 2 ’
implementation cd,
> Herringbone algorithm
erril gbo e algo .t |y oy el s cD,,,
exploits relationship between Evel) level )
coefficients at various scales
- 1D case: Figure 3.16: A single decomposition step of the 1D dis-

crete wavelet transform consists of the convolution of co-

« At each level produce efficients from previous level 7 by a low/high pass filter
. . ffici and down-sampling by dyadic decimation. Approxima-
approximation coefficients and ion and detail coefficients at level 7 + 1 are obtained.

details @ Cengage Learning 2015.
> Approximation from lowpass G B .
s eD,
s Detail from highpass T B ey B
—r ___'_'_*
= Use downsample to change cA, | &
scale L,
* Better appro?clmatlon Wlth Figure 3.17: Example illustrat-
more COGfﬁClentS (mOI'e ing the structure of approxima-
tion and detail coefficients for lev-
1evels/scale) els up to a level § = 3. ® Cengage

Learning 2015.



2D Wavelet Transform

« Similar idea and extension from 1D to 2D
« 2D case

= 4 decomposition types
- Approximation

[ ] 3 — b o .
3 detail — horizontal, vertical, and diagonal
cA,
columns jol
”| low pass filter | » col¥2 —»
rOws ) w2 :
”| low pass filter »| row > 1 s D,,} '
columns
.l » coN2 —»
cA, high pass filter
I cD ‘/'-'
o|  columns o eoli |
low pass filter ’
rows
.S high pass filter row ¥2 —> CD‘I. ,
columns j*
"| high pass filter cod2 —
lovel) level j+1

Figure 3.19: 2D discrete wavelet transform. A decomposition step. © Cengage Learning 2015.
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2D Wavelet Transform Example

100

150

200

3 LA A0 A0 sl Decomposttion at level 3

Figure 3.21: Decomposition to three levels by the 2D discrete Haar wavelet transform. Left is
the original 256 x 256 gray-scale image, and right four quadrants. The undivided southwestern,
southeastern and northeastern quadrants correspond to detailed coefficients of level 1 at reso-
lution 128 x 128 in vertical, diagonal and horizontal directions, respectively. The northwestern
quadrant displays the same structure for level 2 at resolution 64 x 64. The northwestern quad-
rant of level 2 shows the same structure at level 3 at resolution 32 x 32. The lighter intensity
32 x 32 image at top left corresponds to approximation coefficients at level 3. © Cengage Learning

2015.
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2D Wavelet Transform Example

Approximations Horizontal Details Diagonal Details Vertical Details

Figure 3.22: 2D wavelet decomposition; another view of the same data as Figure 3.21. @ Cengage
Learning 2015.



2D Wavelet Transform Example

FIGURE 7.25
Computing a 2-D
three-scale FWT:
(a) the original
image; (b) a one-
scale FWT; (c) a
TR two-scale FWT;
A2 EES  and (d) a three-
: scale FWT.




