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Linearity 

• Image processing as a system 
 
 

• Linearity defined on vector (linear) spaces 
▫ Superposition principle: 

 Additivity  
 Homogeneity  

▫ ℒ 𝑎𝑥1 + 𝑏𝑥2 = 𝑎ℒ 𝑥 + 𝑏ℒ(𝑦) 
 

• Very important property for linear image 
processing 
▫ Can make use of 1D signal processing ideas 
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ℒ 𝑥 𝑦 



Dirac Delta Distribution 

• Dirac delta - 𝛿 𝑥, 𝑦  

▫ Impulse - 𝛿 𝑥, 𝑦 = 0 ∀ 𝑥, 𝑦 ≠ 0 

▫   𝛿 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 1
∞

−∞

∞

−∞
 

• Sifting property 

▫ Use of 𝛿 𝑥, 𝑦  to obtain value of function 

▫   𝑓 𝑥, 𝑦 𝛿(𝑥 − 𝜆, 𝑦 − 𝜇)𝑑𝑥𝑑𝑦 = 𝑓(𝜆, 𝜇)
∞

−∞

∞

−∞
 

• Delta sampling 

▫   𝑓 𝑎, 𝑏 𝛿(𝑎 − 𝑥, 𝑏 − 𝑦)𝑑𝑎𝑑𝑏 = 𝑓(𝑥, 𝑦)
∞

−∞

∞

−∞
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Convolution 
• In image processing, this is an 

“overlap” operation 
• 1D convolution 

▫ 𝑓 ∗ ℎ 𝑡 =

 𝑓 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
∞

−∞
=

 ℎ 𝜏 𝑓 𝑡 − 𝜏 𝑑𝜏
∞

−∞
 

▫ Limits restricted to finite 
support (similar to image 
range) 

• Properties 

▫ 𝑓 ∗ ℎ = ℎ ∗ 𝑓 

▫ 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ 

▫ 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + 𝑓 ∗ ℎ 

▫ 𝑎 𝑓 ∗ 𝑔 = 𝑎𝑓 ∗ 𝑔 = 𝑓 ∗ (𝑎𝑔) 

▫
𝑑

𝑑𝑥
𝑓 ∗ ℎ =

𝑑𝑓

𝑑𝑥
∗ ℎ = 𝑓 ∗

𝑑ℎ

ℎ𝑥
 

• 2D convolution 
• 𝑓 ∗ ℎ 𝑥, 𝑦 = 

  𝑓 𝑎, 𝑏 ℎ(𝑥 − 𝑎, 𝑦 − 𝑏)𝑑𝑎𝑑𝑏
∞

−∞

∞

−∞
 

• =

  ℎ 𝑎, 𝑏 𝑓(𝑥 − 𝑎, 𝑦 − 𝑏)𝑑𝑎𝑑𝑏
∞

−∞

∞

−∞
 

• = ℎ ∗ 𝑓 𝑥, 𝑦  
 

• Discrete 2D convolution 
▫ Linear preprocessing step 
▫ Output pixel is a linear 

combination of neighborhood 
pixels 

• 𝑓 𝑖, 𝑗 =
 ℎ 𝑖 − 𝑚, 𝑗 − 𝑛 𝑔(𝑚, 𝑛)𝑚,𝑛 ∈𝒪  

▫ 𝒪 – neighborhood (typically 
rectangular with odd number 
or rows and columns 

▫ ℎ - kernel or convolution mask 
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Images as Linear Systems 

• Image viewed as superposition of deltas 
 
 
 

• 𝑔 𝑥, 𝑦 =   𝑓 𝑎, 𝑏 ℒ{𝛿 𝑎 − 𝑥, 𝑏 − 𝑦 }𝑑𝑎𝑑𝑏
∞

−∞

∞

−∞
 

• 𝑔 𝑥, 𝑦 =   𝑓 𝑎, 𝑏 ℎ 𝑎 − 𝑥, 𝑏 − 𝑦 𝑑𝑎𝑑𝑏
∞

−∞

∞

−∞
 

• 𝑔 𝑥, 𝑦 = (𝑓 ∗ ℎ)(𝑥, 𝑦) 
• Fourier transform relationship 

• 𝐺 𝑢, 𝑣 = 𝐹 𝑢, 𝑣 𝐻(𝑢, 𝑣) 
▫ Useful for frequency domain smoothing and 

sharpening 
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ℒ 𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦) 



Intro Linear Integral Transforms 

• Represent signals (images) in a more suitable 
domain 
▫ Information is better “visible”  
▫ Solution to related (dual) problem is easier 

• Most often interested in the “frequency domain” 
▫ What a one-to-one mapping between spatial 

(image coordinates) and frequency  
 Inverse transform must exist 

▫ Popular transforms include: 
 Fourier, Cosine, Wavelet 

• Most often used for filtering 
▫ Image-to-image mapping 
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1D Fourier Transform 
• 𝐹 𝑓 𝑡 = 𝐹 𝜉 =

 𝑓 𝑡 𝑒−2𝜋𝑖𝜉𝑡𝑑𝑡
∞

−∞
 

• Inverse transform 
▫ 𝐹−1 𝐹 𝜉 = 𝑓 𝑡 = 

 𝐹 𝜉 𝑒2𝜋𝑖𝜉𝑡𝑑𝜉
∞

−∞
 

• This always exists for digital 
signals (of finite length, e.g. 
images) 

• Notice the FT is a linear 
combination of complex 
exponentials 
▫ Linear combination of sines 

and cosines  

▫ 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃 

▫ 𝐹(𝜉) – indicates the 
contribution of sinusoid with 
frequency 𝜉 
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1D Fourier Transform Representation 

• In general, FT is complex valued 

• Can express in polar form 

▫ 𝐹 𝜉 = 𝐹 𝜉 𝑒−𝑖𝜙(𝜉) 

• Magnitude spectrum 

▫ 𝐹 𝜉 = 𝑅𝑒2(𝐹) + 𝐼𝑚2(𝐹) 1/2 

• Phase spectrum (angle) 

▫ 𝜙 𝜉 = tan−1 𝐼𝑚 𝐹

𝑅𝑒 𝐹
 

• Power spectrum 

▫ 𝑃 𝜉 = 𝐹 𝜉 2 = 𝑅𝑒2(𝐹) + 𝐼𝑚2(𝐹) 
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Fourier Transform Properties 
• DC value (offset) 

▫ 𝐹 0 =  𝑓 𝑡 𝑑𝑡
∞

−∞
 

▫ Area under 𝑓(𝑡) 

▫ Average value 

• FT offset 

▫ 𝑓 0 =  𝐹 𝜉 𝑑𝜉
∞

−∞
 

• Parseval’s Theorem 

▫  𝑓 𝑡 2𝑑𝑡
∞

−∞
= 𝐹 𝜉 2𝑑𝜉

∞

−∞
 

▫ Energy in time domain is 
equal to energy in frequency 
domain 

• Uncertainty principle  
▫ Wide in time  narrow  in 

frequency  

▫ Narrow in time  wide in 
frequency  
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Short Time Fourier Transform 

• Non-stationary signal processing technique 

▫ Signal distribution changes in time 

• Divide signal into smaller pieces and do 
computations in windows 

▫ Typically, smooth windows are selected to reduce 
border effects 

 

• This gives a sense of “global” properties but also 
a time when they happen (which window) 

▫ Global – mean, variance, frequency content 

▫ Timing – which window  
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Discrete Fourier Transform 

• Assume discrete signal obtained by sampling 

▫ 𝑓 𝑛 , 𝑛 = 0…𝑁 − 1 

• DFT 

▫ 𝐹 𝑘 =
1

𝑁
 𝑓 𝑛 exp (−2𝜋𝑖

𝑛𝑘

𝑁
)𝑁−1

𝑛=0   

▫ 𝑓 𝑛 =  𝐹 𝑘 exp (2𝜋𝑖
𝑛𝑘

𝑁
)𝑁−1

𝑘=0  

• Since DFT is discrete, it is periodic 
▫ 𝑘 – represents a discrete frequency 

• Fast Fourier transform (FFT) 
▫ Fast implementation of DFT (𝑂(𝑛 log 𝑛)) 
▫ Basic DFT is 𝑂 𝑛2  
▫ Makes frequency domain processing possible 
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2D Fourier Transform 
• Generalization of 1D FT 

• 𝐹 𝑢, 𝑣 =

  𝑓 𝑥, 𝑦 𝑒−2𝜋𝑖 𝑥𝑢+𝑦𝑣∞

−∞
𝑑𝑥𝑑𝑦

∞

−∞
 

• 𝑓 𝑥, 𝑦 =

  𝐹 𝑢, 𝑣 𝑒2𝜋𝑖 𝑥𝑢+𝑦𝑣∞

−∞
𝑑𝑢𝑑𝑣

∞

−∞
 

• For images (𝑢, 𝑣) are called spatial 
frequencies 
▫ FT indicates how to combine 2D 

spatial sinusoids  

 

• Properties: 

• Linearity 

▫ 𝐹 𝑎𝑓1 𝑥, 𝑦 + 𝑏𝑓2 𝑥, 𝑦 =
𝑎𝐹1 𝑢, 𝑣 + 𝑏𝐹2 𝑢, 𝑣  

• Time (spatial) shift 

▫ 𝐹 𝑓 𝑥 − 𝑎, 𝑦 − 𝑏 =

𝐹 𝑢, 𝑣 𝑒−2𝜋𝑖 𝑎𝑢+𝑏𝑣  

• Frequency shift 

▫ 𝐹 𝑓 𝑥, 𝑦 𝑒2𝜋𝑖 𝑢0𝑥+𝑣0𝑦 =

𝐹 𝑢 − 𝑢0, 𝑣 − 𝑣0  

• Real 𝑓(𝑥, 𝑦) 

▫ 𝐹 −𝑢,−𝑣 = 𝐹∗(𝑢, 𝑣) 

▫ Only need first quadrant for 
images (𝑢 ≥ 0, 𝑣 ≥ 0) 

• Convolution duality 

▫ 𝐹 𝑓 ∗ ℎ 𝑥, 𝑦 = 𝐹 𝑢, 𝑣 𝐻 𝑢, 𝑣  

▫ 𝐹 𝑓 𝑥, 𝑦 ℎ 𝑥, 𝑦 = (𝐹 ∗ 𝐻)(𝑢, 𝑣) 
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Discrete 2D Fourier Transform 

• 𝐹 𝑢, 𝑣 =
1

𝑀𝑁
  𝑓 𝑚, 𝑛 exp −2𝜋𝑖

𝑚𝑢

𝑀
+

𝑛𝑣

𝑁
𝑁−1
𝑛=0

𝑀−1
𝑚=0  

▫ 𝑢 = 0,1,…𝑀 − 1,   𝑣 = 0,1,… ,𝑁 − 1  

• 𝑓 𝑥, 𝑦 =   𝐹 𝑢, 𝑣 exp 2𝜋𝑖
𝑚𝑢

𝑀
+

𝑛𝑣

𝑁
𝑁−1
𝑣=0

𝑀−1
𝑢=0  

▫ 𝑚 = 0,1,…𝑀 − 1,   𝑛 = 0,1,… ,𝑁 − 1  

• Efficient implementation with 1D FFT 

▫ Compute FFT of each row 𝑚 

▫ Compute FFT of each column 𝑛 (of FFT coefficients) 

• Notice this is a period function 

▫ Periodic in two directions 

 𝑣 direction: period 𝑁, Δ𝑢 = 1/𝑀Δ𝑥 

 𝑢 direction: period 𝑀, Δ𝑣 = 1/𝑁Δy 
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2D Fourier Transform Example 
• Input image  

▫ Assumed periodicity for 
harmonic frequencies 
(discrete) 

 

 

 

 

 

 

 

 

• Remember that origin is 
typically in the top right 

▫ Low frequency components 
are in the corners of FT image 
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More Fourier Transform Examples 
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More Fourier Transform Examples 
 

 

 

 

 

 

 

 

 

• Higher values for edges and 
changing textures 

▫ Notice the 45 degree line 

 

• Importance of magnitude and 
phase 
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Sampling 

• Sample the continuous image function  

• Sampling function 

▫ 𝑠 𝑥, 𝑦 =   𝛿(𝑥 − 𝑗Δ𝑥, 𝑦 − 𝑘Δ𝑦)𝑁
𝑘=1

𝑀
𝑗=1  

 Δ𝑥, Δ𝑦 – sampling intervals 

• Sampling signal 

• 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 𝑠 𝑥, 𝑦  

▫ = 𝑓(𝑥, 𝑦)   𝛿(𝑥 − 𝑗Δ𝑥, 𝑦 − 𝑘Δ𝑦)𝑁
𝑘=1

𝑀
𝑗=1  

• Taking FT of both sides 

▫ 𝐹𝑠 𝑢, 𝑣 =
1

Δ𝑥Δ𝑦
   𝐹(𝑢 −

𝑚

Δ𝑥
, 𝑣 −

𝑛

Δy
)∞

𝑛=−∞
∞
𝑚=−∞  

▫ Repeated copies of 𝐹(𝑢, 𝑣) (DTFT) 
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Shannon’s Sampling Theorem 
• Periodic copies of spectrum can 

result in image distortion 
(aliasing) 

▫ Occurs when copies overlap  

▫ Caused by undersampling 

• Shannon’s sampling theorem 

▫ Δ𝑥 <
1

2𝑈
, Δ𝑦 <

1

2𝑉
 

▫ 𝑈, 𝑉 – max frequencies in 
image 

▫ Sampling interval should be 
less than half the smallest 
image detail 

• In reality, sampling grid is used 

• 𝑓𝑠 𝑥, 𝑦 = 
  𝑓 𝑥, 𝑦 ℎ𝑠(𝑥 − 𝑗Δ𝑥, 𝑦 − 𝑘Δ𝑦)𝑁

𝑘=1
𝑀
𝑗=1  

• 𝐹𝑠 𝑢, 𝑣 =
1

Δ𝑥Δ𝑦
 

  𝐹 𝑢 −
𝑚

Δ𝑥
, 𝑣 −

𝑛

Δy
∞
𝑛=−∞

∞
𝑚=−∞ ⋅ Hs

𝑚

Δ𝑥
,
𝑛

Δ𝑦
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Discrete Cosine Transform 
• Similar to DFT but not complex 

▫ Double length DFT with even functions 
• Four basic DCT types depending on type of periodic 

extension applied at boundaries 
▫ DCT-I, -II, -III, -IV 

• Image processing uses DCT-II (compression, object 
detection/recognition) 
▫ Even extension at both left and right boundaries 
▫ Mirroring results in smooth period function which 

requires less coefficients for approximation 
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2D DCT 

• 𝐹 𝑢, 𝑣 =
2𝑐 𝑢 𝑐 𝑣

𝑁
  𝑓 𝑚, 𝑛 cos

2𝑚+1

2𝑁
𝑢𝜋𝑁−1

𝑛=0
𝑁−1
𝑚=0 cos

2𝑛+1

2𝑁
𝑣𝜋  

▫ 𝑢 − 0,1,…𝑁 − 1, 𝑣 = 0,1,…𝑁 − 1 

▫ 𝑐 𝑘 =  1/ 2 𝑘 = 0
1 𝑒𝑙𝑠𝑒

 

• For highly correlated images, is able to compact 
energy into fewer coefficients 

▫ Useful for compression (image, video) 

 Used in JPEG, MPEG-4 

• Similar to DFT 

▫ Can use FFT type calculations for speed 

▫ DC is zeroth component 
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2D DCT Example 
• Comparison with DFT 

 

 

 

 

 

 

• Subwindow size 

• DCT basis 
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Wavelet Transform 
• Decompose signals as linear combination of another set of 

basis functions (not sinusoid) 
▫ Can be more complex basis 

• Mother wavelets 
 
 
 
 
 

 
• Multiscale analysis 

▫ Provide localization in space  
▫ Search for particular “pattern” a different scales 

• Wavelets are better designed for digital images 
▫ Less coefficients required than for sinusoidal 

 Think about how many coefficients are required for a single on 
pixel (delta) 
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1D Continuous Wavelet Transform 

• 𝑐 𝑠, 𝜏 =  𝑓 𝑡 Ψ𝑠,𝜏
∗ 𝑡 𝑑𝑡

𝑅
 

▫ 𝑠 ∈ 𝑅+ − {0} – indicates scale  
▫ 𝜏 ∈ 𝑅 – indicates a time shift 

• Wavelets at scale and shift generated from a 
“mother” wavelet 

▫ Ψ𝑠,𝜏 𝑡 =
1

𝑠
Ψ

𝑡−𝜏

𝑠
 

• Wavelet functions must have two properties 
▫ Admissibility – must have bandpass spectrum  

 Use oscillatory functions 

▫ Regularity – must have smoothness and concentration 
in time/frequency domains 
 Fast decrease with decreasing scale 

24 



Haar Wavelet  
• “Mother” function (basis) 

▫ Ψ𝑗𝑖 𝑥 = 2
𝑗

2Ψ(2𝑗𝑥 − 𝑖) 

▫ Ψ 𝑥 =  

1 0 ≤ 𝑥 <
1

2

−1
1

2
≤ 𝑥 < 1

0 𝑒𝑙𝑠𝑒

 

 

• Scaling (“Father”) function 
(multi-resolution/scale) 

▫ Φ𝑗𝑖 𝑥 = 2
𝑗

2Φ(2𝑗𝑥 − 𝑖) 

▫ Φ 𝑥 =  
1 0 ≤ 𝑥 < 1
0 𝑒𝑙𝑠𝑒

 

▫ Scaled and translated box 
functions 
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Discrete Wavelet Transform 
• Computationally efficient 

implementation 

▫ Herringbone algorithm 
exploits relationship between 
coefficients at various scales 

• 1D case: 

• At each level produce 
approximation coefficients and 
details  

▫ Approximation from lowpass 

▫ Detail from highpass 

▫ Use downsample to change 
scale 

• Better approximation with 
more coefficients (more 
levels/scale) 
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2D Wavelet Transform 

• Similar idea and extension from 1D to 2D 

• 2D case 

▫ 4 decomposition types 

 Approximation  

 3 detail – horizontal, vertical, and diagonal 
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2D Wavelet Transform Example 

• Fig 7.22 pg 388 GW, 7.23 

• Fig 3.21,3.22 pg 71 
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2D Wavelet Transform Example 

• Fig 7.22 pg 388 GW, 7.23 

• Fig 3.21,3.22 pg 71 
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2D Wavelet Transform Example 
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