Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

ECG782: Multidimensional Digital Signal Processing

Spring 2014 TTh 14:30-15:45 CBC C313

Lecture 02 Image Basics 13/01/23

http://www.ee.unlv.edu/~b1morris/ecg782/

Outline

- Image Formation and Models
- Pixels
- Pixel Processing
- Color

M-D Signals

- Use mathematical models to describe signals
 - A function depending on some variable with a physical meaning
- 1D signal
 - E.g. speech, audio, voltage, current
 - Dependent on "time"
- 2D signal
 - E.g. image
 - Dependent on spatial coordinates in a plane
- 3D signal
 - E.g. volume in space, video
- M-D signal
 - E.g. ???

Image Formation

• Incoming light energy is focused and collected onto an image plane

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Formation Model

- Imaging takes the 3D world and projects it onto a 2D image
- Simple model for the process is called the pinhole camera

- $X = [x, y, z]^T$ represents point in world 3D space
- $u = [u, v]^T$ represents a 2D point on image plane
- *f* focal length of camera
- World-image relationship

•
$$u = \frac{xf}{z}$$
 $v = \frac{yf}{z}$

Perspective Projection

- Pinhole camera causes perspective distortion
 - Loss of information from perspective projection
 - The transform is not one-to-one
 - A line in space gets mapped to the same point
 - Need depth information to resolve ambiguity
- Orthographic (parallel) projection
 - Linear approximation with $f \rightarrow \infty$
 - This is how far away objects z → ∞ are mapped onto image plane

Image Representation

- Multiple equivalent representations
- Image

• Surface

• Matrix

188 186 188 187	168 130 101 9	9 110 113 1	12 107 117 140	153 153 156 158 156 153
189 189 188 181	163 135 109 10	$04 \ 113 \ 113 \ 1$	10 109 117 134	147 152 156 163 160 156
190 190 188 176	159 139 115 10	$06 \ 114 \ 123 \ 1$	14 111 119 130	141 154 165 160 156 151
190 188 188 175	158 139 114 10	$03 \ 113 \ 126 \ 1$	12 113 127 133	137 151 165 156 152 145
191 185 189 177	158 138 110 9	9 112 119 1	$07 \ 115 \ 137 \ 140$	135 144 157 163 158 150
193 183 178 164	148 134 118 1	$12 \ 119 \ 117 \ 1$	18 106 122 139	140 152 154 160 155 147
185 181 178 165	149 135 121 1	$16 \ 124 \ 120 \ 12$	22 109 123 139	141 154 156 159 154 147
175 176 176 163	145 131 120 1	$18 \ 125 \ 123 \ 12$	25 112 124 139	142 155 158 158 155 148
170 170 172 159	137 123 116 1	$14 \ 119 \ 122 \ 12$	26 113 123 137	141 156 158 159 157 150
171 171 173 157	131 119 116 1	$13 \ 114 \ 118 \ 12$	25 113 122 135	140 155 156 160 160 152
174 175 176 156	128 120 121 1	$18 \ 113 \ 112 \ 12$	$23 \ 114 \ 122 \ 135$	141 155 155 158 159 152
176 174 174 151	123 119 126 1	$21 \ 112 \ 108 \ 12$	22 115 123 137	143 156 155 152 155 150
$175 \ 169 \ 168 \ 144$	117 117 127 12	$22 \ 109 \ 106 \ 12$	22 116 125 139	145 158 156 147 152 148
179 179 180 155	127 121 118 10	$09 \ 107 \ 113 \ 11$	25 133 130 129	139 153 161 148 155 157
176 183 181 153	122 115 113 1	$06 \ 105 \ 109 \ 10$	23 132 131 131	140 151 157 149 156 159
180 181 177 147	115 110 111 1	$07 \ 107 \ 105 \ 10$	20 132 133 133	141 150 154 148 155 157
181 174 170 141	113 111 115 1	$12 \ 113 \ 105 \ 1$	19 130 132 134	144 153 156 148 152 151
$180 \ 172 \ 168 \ 140$	114 114 118 1	$13 \ 112 \ 107 \ 1$	19 128 130 134	146 157 162 153 153 148
$186 \ 176 \ 171 \ 142$	114 114 116 1	$10 \ 108 \ 104 \ 1$	$16 \ 125 \ 128 \ 134$	148 161 165 159 157 149
185 178 171 138	109 110 114 1	$10 \ 109 \ 97 \ 1$	10 121 127 136	$150\ 160\ 163\ 158\ 156\ 150$

Image Representation

- Image f(x, y) is a 2D function
 - f amplitude, gray level, or brightness
 - (x, y) spatial coordinates
 - Conceptually, (x, y) are continuous but are discrete in practice
- In general, the function can be vector-valued
 E.g. color images represented by (red, green, blue)
 f(x,y) = [r,g,b]^T
- The image function can be M-dimensional
 - E.g. computed tomography (CT) images are 3D
 - f(x, y, z) represents x-ray absorption at point (x, y, z)

Image as Function

- Think of an image as a function, *f*, that maps from *R*² to *R*
 - $0 < f(x, y) < \infty$ is the intensity at a point (x, y)
- In reality, an image is defined over a rectangle with a finite range of values

• $f:[a,b] \times [c,d] \rightarrow [0,1]$

- Computationally, [0,1] range is convenient but usually we have an 8-bit quantized representation
 0 < f(x, y) < 255
- Color image is just three separate functions pasted together

•
$$f(x,y) = [r(x,y); g(x,y); b(x,y)]$$

Image as Matrix

- Images are usually represented by matrices
 - $M \times N$ dimension
- Be aware that images can have different origin definitions
 - Bottom left typical Cartesian coordinates
 - Upper left typical image definition (matrix or table notation)
 - Matlab uses (1,1) for origin not (0,0)

- Index an element either by
 - □ (*x*, *y*)
 - (row, col)

Matrix Notation

- Mathematical
- Notation starts with f(0,0)

- Matlab
- Notation starts with I(1,1)
 - No zero indexing

Image Sampling

- A continuous image is sampled and ordered into a image grid
- Each grid element is known as a pixel
 - Voxel for volume element
- Consider the pixel as the smallest unit in an image
 - This is not quite a delta because it has a finite size on the CMOS sensor
 - It is possible to do sub-pixel processing (e.g. corner detection)

Sampling and Quantization

• Sampling gives fixed grid of image

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

• Quantization gives the number of output levels L

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Quantization Levels

- *L* = number of output levels
- *k* = number of bits per pixel
- Output range of image
 - $[0, L-1] = [0, 2^k]$
- Image storage size
 - $b = M \times N \times k$
 - Number of bits to store image with dimensions M × N

- 8-bits per channel is typical
 - Provide enough resolution to provide quality visual reproduction

(b)

Figure 2.3: Brightness levels. (a) 64. (b) 16. (c) 4. (d) 2. © Cengage Learning 2015.

Resolution

- Spatial resolution is the smallest discernible detail in an image
 - This is controlled by the sampling factor (the size *M* × *N* of the CMOS sensor)

- Gray-level resolution is the smallest discernible change in gray level
 - Based on number of bits for representation

Pixel Neighborhood

• The pixel neighborhood corresponds to nearby pixels

(x-1, y-1)	(x, y-1)	(x+1, y-1)
(x-1, y)	(x, y)	(x+1, y)
(x-1, y+1)	(x, y+1)	(x+1, y+1)

- 4-neighbors
 - Horizontal and vertical neighbors
- 8-neighbors
 - Include 4-neighbors and the diagonal pixels

Connectivity

• Path exists between pixels

• 4-connected

• 8-connected

Image Processing

- Usually the first stage of computer vision applications
 - Pre-process an image to ensure it is in a suitable form for further analysis
- Typical operations include:
 - Exposure correction, color balancing, reduction in image noise, increasing sharpness, rotation of an image to straighten
- Digital Image Processing by Gonzalez and Woods is a great book to learn more

2D Signal Processing

- Image processing is an extension of signal processing to two independent variables
 Input signal, output signal
- General system

$$x \longrightarrow f \longrightarrow y$$

• Image processing

$$f(x,y) \longrightarrow w \longrightarrow g(x,y)$$

Point Operators/Processes

- Output pixel value only depends on the corresponding input pixel value
- Often times we will see operations like dividing one image by another
 - Matrix division is not defined
 - The operation is carried out between corresponding pixels in the two image
 - Element-by-element dot operation in Matlab
 - >> I3 = I1./I2
 - Where I1 and I2 are the same size

Pixel Transforms

- Gain and bias (Multiplication and addition of constant)
 - g(x,y) = a(x,y)f(x,y) + b(x,y)
 - a (gain) controls contrast
 - b (bias) controls brightness
 - Notice parameters can vary spatially (think gradients)
- Linear blend
 - $g(x) = (1 \alpha)f_0(x) + \alpha f_1(x)$
 - We will see this used later for motion detection in video processing

Color Transforms

- Usually we think of a color image as three images concatenated together
 - Have a red, green, blue slice corresponding to the notion of primary colors

- Manipulations of these color channels may not correspond directly with desired perceptual response
 - Adding bias to all channels may actually change the apparent color instead of increasing brightness
- Need other representations of color for mathematical manipulation

Color Images

• Color comes from underlying physical properties

Figure 2.23: Division of the electromagnetic spectrum (ELF is Extremely Low Frequencies). © Cengage Learning 2015.

Figure 2.24: Wavelength λ of the spectrum visible to humans. © Cengage Learning 2015.

- However, humans do not perceive color in the same physical process
 - There is some subjectivity (e.g. color similarity)

Human Color Perception

- Cones in human retina are sensitive to color
 - In the center of eye
 - 3 different types for different EM frequency sensitivity
- Rods are monochromatic
 - On outside of the eye and good for low lighting and motion sensing

Colorspaces

- Uniform method for defining colors
- Can transform from one to another
 - Want to take advantage of properties and color gamut
- XYZ
 - International absolute color standard
 - No negative mixing
- RGB
 - Additive color mixing for red, green, and blue
 - Widely used in computers
- CMYK
 - Cyan, magenta, yellow, black
 - Used for printers and based off of reflectivity

• HSV

- Hue, saturation, and value = color, amount, brightness
- Closer to human perception

25

(c) film

(b) printer

(a) CRT monitor