A Model of Saliency-Based Visual Attention for Rapid Scene Analysis

Laurent Itti, Christof Koch, Ernst Niebur

1998
Overview

- Biologically-plausible architecture for visual attention
- Computational model of primate visual attention for static scenes
- Algorithm builds and updates a saliency map to guide focus of attention over time
- Bottom-up approach uses only local information to determine saliency
Overview

• In primate species, structures similar to a saliency map are thought to exist in certain regions of the brain
 • Posterior parietal cortex
 • Pulvinar nuclei of the thalamus
Architecture

- Multi-scale processing using Gaussian pyramids
- Features computed using center-surround difference operations (similar to SIFT)
- Separate feature maps are computed for intensity, orientation, and color at each scale/channel/orientation
Architecture

- Feature maps are combined into three conspicuity maps.
- Conspicuity maps are combined by linear combination into a total saliency map.
Architecture

• Saliency map is modeled as a leaky 2D “integrate-and-fire” neural network

• A winner is selected by max value and surrounding pixels are suppressed; repeat

• Similar to nonmax suppression
Center-Surround Features

• Comparable to Difference of Gaussian features used in SIFT

• The center is the pixel at scale c and the surround is the corresponding pixel at scale $c + \delta$

• Center-surround difference $c \ominus s$ is computed by interpolating the image at scale s to the finer scale c and subtracting the images

• Using multiple values for c and δ results in multi scale feature extraction

• Unlike SIFT, no scales between octaves are used
Features: Intensity

- Intensity image is obtained as $I = (r + g + b) / 3$
- In mammals, intensity contrast is detected by two types of neurons
 - Sensitive to light centers/dark surrounds, dark centers/light surrounds
- Absolute value of difference covers both types of features
- 6 maps are computed (3 values for c × 2 values for δ)
Features: Color

• Based on color double-opponent system

• Surround pixels inhibit response to same color, increase response to opponent color

• Four color channels: Red, green, blue, and yellow

• Color opponency for R/G, B/Y
Features: Color

\[R = r - (g + b) / 2 \quad G = g - (r + b) / 2 \]
\[B = b - (r + g) / 2 \quad Y = (r + g) / 2 - |r - g| / 2 - b \]

\[\mathcal{RG}(c, s) = | (R(c) - G(c)) \ominus (G(s) - R(s)) | \]
\[\mathcal{BY}(c, s) = | (B(c) - Y(c)) \ominus (Y(s) - B(s)) | \]
Features: Orientation

- Local orientation is extracted using oriented Gabor pyramids

- Orientation feature maps are constructed from the difference in response between scales for the same orientation

\[O(c, s, \theta) = |O(c, \theta) \ominus O(s, \theta)| \]

- 24 feature maps (8 scales \((c, s)\) \(\times 4\) orientations)
The Normalization Operator

- Local maxima are found in each feature map.

- For each feature map, the global maximum M and the mean of its local maxima m is computed.

- Each feature map is multiplied by $(M - m)^2$.

- This emphasizes maps with clear feature responses and attenuates those which are mostly noise.
Conspicuity Maps

- Three conspicuity maps are constructed by adding the feature maps together
- Intensity, Color, Orientation

\[
\vec{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(I(c, s))
\]

\[
\vec{C} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \left[\mathcal{N}(RG(c, s)) + \mathcal{N}(BY(c, s)) \right]
\]

\[
\vec{O} = \sum_{\theta \in \{0^\circ, 45^\circ, 90^\circ, 135^\circ\}} \mathcal{N} \left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(O(c, s, \theta)) \right)
\]
Saliency Map

- Finally, the three conspicuity maps are averaged into a saliency map.
- The saliency map is implemented as a 2D layer of neurons.
- The magnitude of the computed saliency determines the synaptic input to each neuron.
Saliency Map

- A winner-take-all network is used to select the neuron with the max charge, which then “fires”
- When a neuron fires, the focus of attention is shifted to that neuron’s location
- Charge is drained from nearby neurons
- This process is repeated until time is elapsed
Results

• The authors showed that this model is superior to previous spatial frequency content (SFC) based models in the presence of noise

• Resulting FOA trajectories were not directly compared against human visual trajectories, but agreed with other models when identifying regions of high saliency
Discussion

• As in the primate visual system, the saliency map can be used as a filter between low-level and high-level systems in computer vision

• The model presented here is fairly complex (on the order of SIFT feature extraction)

• May be useful as a precursor to more advanced CV algorithms