Histograms of Oriented Gradients
for Human Detection by Navneet
Dalal, Bill Triggs

Marzieh Sharbat Maleki
Spring 2014



Challenges of pedestrian detection

Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions

Different Scales




Histogram of Oriented Gradients(HOG) Steps:
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Extract fixed-sized (64x128 pixel) window at each position and scale.

> HOG feature extraction:

Compute centered horizontal and vertical gradients orientation and magnitudes with no smoothing and create

histograms over cells.

The combination of these histograms then represents the descriptor.
For color image, pick the color channel with the highest gradient magnitude for each pixel.

HOG descriptor assumes that the local object appearance and shape within an image is described by the

distribution of intensity gradients or edge directions.
Score the window with a linear SVM classifier

Perform non-maxima suppression to remove overlapping detections with lower scores.



Main Advantages:

* Since it operates on localized cells, it shows invariance to geometric and photometric
transformations.

* The HOG descriptor is particularly suited for human detection in images. Essential in
contextually critical environments: surveillance of pedestrians, vehicles and groups of
unknown objects.

Performance limited by
the occlusion problem often occurring in surveillance applications.

noise occurring in e.g. large illumination variations, persistent shadows.
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Tested with

Input
image

— RGB Slightly better performance vs. grayscale
— LAB

— Grayscale
Gamma Normalization and Compression

— Square root of image intensity} Very slightly better

performance
vs. no adjustment

This step can be omitted in HOG descriptor computation, as the descriptor
normalization essentially achieves the same result.
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They used Gaussian smoothing followed by one the several discrete derivative masks for
computing gradients.

Although, performing Gaussian smoothing before applying the derivative mask, reduces the
performance.

Centered filter outperforms the rest.
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Comparison of different Sigma for calculating Gaussian:
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Blocks, Cells: Block 1 Block 2
* For a 64x128 image, divide the image into 16x16 \
blocks of 50% overlap.

e  7x15=105 blocks in total.

*  Each block should consist of 2x2 cells with size 8x8.
*  Quantize the gradient orientation into 9 bins.

*  The vote is the gradient magnitude.

NOTE: HOG blocks typically overlap: each cell contributes
more than once to the final descriptor.
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Comparison of number of Bins:
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Blocks:

Two main block geometries exist:
** R-HOG blocks : Rectangular or square grids represented by three parameters:

*  the number of cells per block.
*  the number of pixels per cell.
*  the number of channels per cell histogram.

+* C-HOG blocks : Circular blocks a) With one single, central cell.
b) With an angularly-divided central cell.

C-HOG blocks can be represented by these parameters:
o R-HOG C-HOG
*  the number of angular and radial bins.

~ Center Bin
__‘( ell — 3 -

. the radius of the center bin.
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Effect of Block and Cell Size:
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Contrast normalization is essential and results in better invariance to changes in illumination,
shadowing or foreground-background contrast.

Different methods for block normalization:

~L1-norm L1 —mnorm :v — v/{||v|[1 + €]
-L2-norm L2 —norm : v — v/\/||v||3 + €
-LI-sart L1 — sqrt :v — Vu/(|[v]]i + €)

All methods showed very significant improvement over the non-normalized data. The best
methods are L2-norm and L1-sqrt.



Comparison of different Normalization methods:

DET - effect of normalization methods
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Concatenate histograms:
 Make it a 1D matrix of length 3780.

# orientations

# features = 15 x 7 x 9 x 4 = 3780

# cells

Visualization:

# normalizations by
neighboring cells
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HOG descriptors are fed into a recognition system based on SVM supervised learning which looks
for an optimal hyper plane as a decision function.

Positive
Weight

Negative
Weight




Data Sets Evaluation:

MIT pedestrian database INRIA person database

507 positive windows
Negative data unavailable

1208 positive windows
1218 negative images

200 positive windows 566 positive windows

Test | Train
Test Train

Negative data unavailable 453 negative images

Overall 709 annotations+ Overall 1774 annotations+
reflections reflections



miss rate

Overall Performance:

MIT pedestrian database
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Movie Example vs. Image Example



https://www.youtube.com/watch?v=QaeJQTVnB-Y

Thank Youl!
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