OUTLINE

- Biological Inspiration
- Logic Computation with Neurons
- The Perceptron
- The Multilayer Perceptron and Backpropagation
- Regression MLPs
- Classification MLPs
Artificial neural networks (ANNs) first introduced in 1943

Excitement with ANNs waned in the 1960s

1980s had renewed interest but was overtaken in the 1990s with ML techniques such as SVM

Since 2010s major renewed interest

- Huge quantities of data are available to train networks
- Major computing power increases for reduced training times (GPU and cloud)
- Improved training algorithms
- Local optima issue rare
- Lots of funding in ANNs (Artificial Intelligence/Deep Learning)
Cell mostly found in animal brains
Produce short electrical impulses (action potentials, APs, or signals) to make synapses release chemical signals (neurotransmitters)
When a neuron receives enough neurotransmitters it fires its own electrical pulses
Individual neurons are simple but arranged into vast networks of billions
- Each neuron connected to thousands of other neurons
- Neurons seem to be organized in consecutive layers
Artificial neuron proposed by McCulloch and Pitts
- Simple binary inputs and one binary output
- Activates output when certain number of inputs on/active
- Even with the simple model, any logical proposition can be computed
- Basic building block networks can be combined for more complex logical expressions

Building block networks
- Implement basic logic functions
THE PERCEPTRON I (TLU)

- Invented by Frank Rosenblatt in 1957
- Inputs/outputs are numbers (instead of binary)
- Based on threshold logic unit (TLU) or linear threshold unit
- Inputs associated with a weight
- TLU computes weighted sum of input
 - $z = w_1x_1 + w_2x_2 + w_3x_3$
- Output after a step (threshold) function
 - Heavyside of sign function
- TLU can be used as a simple linear binary classifier

Output: $h_w(x) = \text{step}(x^T w)$
Step function: $\text{step}(z)$
Weighted sum: $z = x^T w$
Perceptron is a layer for TLU
- Fully connected (dense) layer – all inputs connected to all neurons

Input neuron – pass value through unchanged

Bias neuron – always outputs 1

Example: Multilabel classifier
- 2 inputs 3 outputs
- Can classify into three binary classes based on two input values
THE PERCEPTRON III

- Output of fully connected layer
 \[h_{W,b}(X) = \phi(XW + b) \]
 - \(X \) – matrix of input features
 - \(W \) – weight matrix (all weights between input and neurons)
 - One row per input neuron
 - One column per neuron layer
 - \(b \) – bias (weights) vector
 - \(\phi \) – activation function (e.g. step)

- Produces linear (non-complex) decision boundary

- Perceptron training – reinforce connections that reduce prediction error
 \[w_{i,j}^{(next\ step)} = w_{i,j} + \eta(y_j - \hat{y}_j)x_i \]
 - \(w_{i,j} \) - connection weight between ith input and jth output neuron
 - \(x_i \) - ith input value
 - \(\hat{y}_j \) - perceptron output of jth neuron
 - \(y_j \) - target (ground truth) output of jth neuron
 - \(\eta \) – learning rate
MULTILAYER PERCEPTRON (MLP)

- Stack TLU layers for more complicated functions
 - Input layer - passthrough
 - Hidden layer – intermediate TLU layer
 - Output layer – final fully connected TLU layer
- Lower layers – closer to input
- Upper layers – closer to output
- Deep neural network (DNN) has many hidden layers
Effective method to train a MLP developed in 1986
- Gradient Descent method with efficient gradient computation technique
- Single forward-backward pass through network to compute gradient of network error for all model parameters
 - Can update all connection weights and bias terms
- Backpropagation uses reverse-mode autodiff to automatically compute gradients (Appendix D)
Process full dataset each epoch
- Use mini-batch at each iteration – larger more efficient and more stable gradient but requires more memory

Mini-batch of input is sent through the MLP in a forward pass (from input to output prediction)
- All intermediate results (from hidden layers) are saved for backward pass

Measure current network prediction error
- Use of loss function to define error metric

Compute contribution of each connection to the total error
- Performed backward from output through hidden layers back to input using the chain rule

Perform Gradient Descent step to adjust all connection weights
- Using the error gradients from the backward pass
ACTIVATION FUNCTIONS

- Cannot use step for activation since it has no gradient information
- Sigmoid (logistic) function
 - $\sigma(z) = 1/(1 + \exp(-z))$
 - S-shaped between [0, 1]
- Hyperbolic tangent function
 - $\tanh(z) = 2\sigma(2z) - 1$
 - Output between [-1,1] helps speed convergence
- Rectified Linear Unit function
 - $ReLU(z) = \max(0, z)$
 - Not differentiable, but works well and fast so popular

![Activation functions](image1.png)

Activation functions add non-linearity!
Single output neuron
- Multivariate regression requires an output neuron for each output dimension
 - 2: (x, y) for center of object
 - 4: (x, y, h, w) for a bounding box around object

Output activation
- No activation – no limits on output range of value
- ReLU or softplus (smooth ReLU) – positive output only
- Scaled sigmoid/tanh – fixed output range

Loss function
- Mean squared error (L2 norm)
- Mean absolute error (L1 norm) when there are a lot of outliers
- Huber loss is a combination

Regression MLP summary
CLASSIFICATION MLPs I

- Single class (binary) – single output neuron
 - Output between [0,1] using sigmoid
 - Estimate probability of positive class (confidence)
- Multilabel binary – output neuron for every binary classification
 - Output between [0,1] using sigmoid
 - Output probabilities do not sum to one
 - Combinational output space
Multiclass classification – multiple possible classes (e.g. number 0-9)
- Each input instance can only belong to a single class (>2)
- One output neuron per class
- Softmax activation on the full output layer (Chapter 4 pg 148)
 \[\hat{p}_k = \sigma(s(x))_k = \frac{\exp(s_k(x))}{\sum_j \exp(s_j(x))} \]
 \[s_k(x) = (\theta^{(k)})^T x \]
 - Estimated probabilities between [0,1] and sum to 1
- Cross entropy loss
 \[J(\theta) = -\frac{1}{m} \sum_i \sum_k y_k^{(i)} \log(\hat{p}_k^{(i)}) \]
 - Penalizes models with low probability estimate for the ground truth class

Classification summary

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Binary classification</th>
<th>Multilabel binary classification</th>
<th>Multiclass classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input and hidden layers</td>
<td>Same as regression</td>
<td>Same as regression</td>
<td>Same as regression</td>
</tr>
<tr>
<td># output neurons</td>
<td>1</td>
<td>1 per label</td>
<td>1 per class</td>
</tr>
<tr>
<td>Output layer activation</td>
<td>Logistic</td>
<td>Logistic</td>
<td>Softmax</td>
</tr>
<tr>
<td>Loss function</td>
<td>Cross entropy</td>
<td>Cross entropy</td>
<td>Cross entropy</td>
</tr>
</tbody>
</table>
IMPLEMENTATION

- Follow Chapter 2 for machine setup (Get the Data section)
 - Highly recommend use of Anaconda Python for setting up your sandbox
 - Google Colab is convenient and free with GPU access
 - Additional notes from Stanford
- Read and follow Implementing MLPs with Keras section ➔ installation of Keras and TensorFlow2
Many hyperparameters must be tweaked for good model performance.

Grid search can evaluate different hyperparameter combinations → slow
- Book gives other libraries for hyperparam optimization
- These typically explore more in good hyperparameter space

Number of hidden layers → deeper is better
- Transfer learning – reuse lower layers from network trained on large dataset (good initialization and avoid cost of learning from scratch)

Number of neurons per hidden layers → use fixed size

Activation function → ReLU works well

Learning rate – very important parameter, need learning schedule

Optimizer – more than just mini-batch gradient descent (e.g. Adam)

Batch size – significant impact on model performance and training time
- Large batch – efficiently process for reduced training time → maximize for GPU with learning rate warm-up (schedule)
- Small batch – more stable early in learning and good generalization