
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL
DIGITAL SIGNAL PROCESSING
OBJECT RECOGNITION

1

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

Knowledge Representation

Statistical Pattern Recognition

Neural Networks

Boosting

2

These slides will follow parts of Sonka Chapter 9

 Available through UNLV library (or VPN)

Additional reading available through Szeliski

 1e Chapter 14: “Classical” recognition

 2e Chapter 6: Modern deep learning approaches

 Will be covering these topics in more detail in the coming
weeks

3

NOTE

OBJECT RECOGNITION

 Pattern recognition is a fundamental component of
machine vision

 Recognition is high-level image analysis
 From the bottom-up perspective (pixels  objects)

 Many software packages exist to easily implement
recognition algorithms (e.g. Weka Project, R package)

 Goal of object recognition is to “learn” characteristics
that help distinguish object of interest
 Most are binary problems

4

KNOWLEDGE REPRESENTATION

 Syntax – specifies the symbols that may be used and
ways they may be arranged

 Semantics – specifies how meaning is embodied in syntax
 Representation – set of syntactic and semantic

conventions used to describe things

 Sonka book focuses on artificial intelligence (AI)
representations
 More closely related to human cognition modeling (e.g. how

humans represent things)
 Not as popular in vision community

5

DESCRIPTORS/FEATURES

 Most common representation in vision

 Descriptors (features) usually represent some scalar
property of an object
 These are often combined into feature vectors

 Numerical feature vectors are inputs for statistical
pattern recognition techniques
 Descriptor represents a point in feature space

6

 Object recognition = pattern recognition
 Pattern – measureable properties of object

 Pattern recognition steps:

 Description – determine right features for task
 Classification – technique to separate different object “classes”

 Separable classes – hyper-surface exists perfectly distinguish
objects
 Hyper-planes used for linearly separable classes
 This is unlikely in real-world scenarios

7

STATISTICAL PATTERN RECOGNITION

 A statistical classifiers takes in a 𝑛-dimensional feature of an object and
has a single output
 The output is one of the 𝑅 available class symbols (identifiers)

 Decision rule – describes relations between classifier inputs and output

 𝑑 𝒙 = 𝜔𝑟

 Divides feature space into 𝑅 disjoint subsets 𝐾𝑟
 Discrimination hyper-surface is the border between subsets
 Discrimination function

 𝑔𝑟 𝒙 ≥ 𝑔𝑠 𝒙 , 𝑠 ≠ 𝑟

 𝒙 ∈ 𝐾𝑟

 Discrimination hyper-surface between class regions

 𝑔𝑟 𝒙 − 𝑔𝑠 𝒙 = 0

8

GENERAL CLASSIFICATION PRINCIPLES I

 Decision rule

 𝑑 𝒙 = 𝜔𝑟 ⇔ 𝑔𝑟 𝒙 = max
𝑠=1,…,𝑅

𝑔𝑠(𝒙)

 Which subset (region) provides maximum discrimination

 Linear discriminant functions are simple and often used in linear
classifier

 𝑔𝑟 𝒙 = 𝑞𝑟0 + 𝑞𝑟1𝑥1 +⋯+ 𝑞𝑟𝑛𝑥𝑛
 Must use non-linear for more complex problems

 Trick is to transform the original feature space into a higher dimensional
space
 Can use a linear classifier in the higher dimensional space

 𝑔𝑟 𝒙 = 𝒒𝒓 ⋅ Φ 𝒙
 Φ(𝒙) – non-linear mapping to higher-d space

9

GENERAL CLASSIFICATION PRINCIPLES II

Classifier based on minimum distance principle

Minimum distance classifier labels pattern 𝒙 into
the class with closest exemplar

 𝑑 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠|𝒗𝑠 − 𝒙|

 𝒗𝑠 - exemplars (sample pattern) for class 𝜔𝑠

With a single exemplar per class, results in linear
classifier

10

NEAREST NEIGHBORS (NN) CLASSIFIER I

 Very simple classifier uses multiple exemplars per class
 Take same label as closest exemplar

 k-NN classifier
 More robust version by examining 𝑘 closest points and

taking most often occurring label

 Advantage: easy “training”

 Problems: computational complexity
 Scales with number of exemplars and dimensions

 Must do many comparisons

 Can improve performance with K-D trees

11

NEAREST NEIGHBORS (NN) CLASSIFIER II

 Discriminative classifiers are deterministic
 Pattern 𝒙 always mapped to same class

 Would like to have an optimal classifier
 Classifier the minimizes the errors in classification

 Define loss function to optimize based on classifier parameters 𝑞

 𝐽 𝑞∗ = min
𝑞

𝐽 𝑞

 𝑑 𝑥, 𝑞 = 𝜔 – decision of classifier with params 𝑞 given test example 𝑥

 Minimum error criterion (Bayes criterion, maximum likelihood) loss function
 𝜆 𝜔𝑟 𝜔𝑠 - loss incurred if classifier incorrectly labels object 𝜔𝑟

 𝜆 𝜔𝑟 𝜔𝑠 = 1 for 𝑟 ≠ 𝑠

 Mean loss

 𝐽 𝑞 = 𝑋׬ σ𝑠=1
𝑅 𝜆 𝑑 𝑥, 𝑞 𝜔𝑠 𝑝 𝑥 𝜔𝑠 𝑝 𝜔𝑠 𝑑𝑥

 𝑝 𝜔𝑠 - prior probability of class

 𝑝 𝑥 𝜔𝑠 - conditional probability density

12

CLASSIFIER OPTIMIZATION I

 Discriminative function

 𝑔𝑟 𝑥 = 𝑝 𝑥 𝜔𝑟 𝑝 𝜔𝑟

 Corresponds to posteriori probability 𝑝(𝜔𝑟|𝑥)

 Posteriori probability describes how often pattern 𝑥 is from class 𝜔𝑟

 Optimal decision is to classify 𝑥 to class 𝜔𝑟 if posteriori 𝑝(𝜔𝑟|𝑥) is highest
 However, we do not know the posteriori

 Bayes theorem

 𝑝 𝜔𝑠 𝑥 =
𝑝 𝑥 𝜔𝑠 𝑝 𝜔𝑠

𝑝 𝑥

 Since 𝑝(𝑥) is a constant and prior 𝑝 𝜔𝑠 is known,
 Just need to maximize likelihood 𝑝 𝑥 𝜔𝑠

 This is desirable because the likelihood is something we can learn using
training data

13

CLASSIFIER OPTIMIZATION I

Supervised approach: Training set is given with
feature and associated class label

 𝑇 = { 𝒙𝑖 , 𝑦𝑖 }

 Used to set the classifier parameters 𝒒

Learning methods should be inductive to generalize
well

 Represent entire feature space

 E.g. work even on unseen examples

14

CLASSIFIER TRAINING

 Usually, larger datasets result in better generalization

 Some state-of-the-art classifiers use millions of examples

 Try to have enough samples to statistical cover space

 N Cross-fold validation/testing

 Divide training data into a train and validation set

 Only train using training data and check results on
validation set

 Can be used for “bootstrapping” or to select best parameters
after partitioning data N times

15

CLASSIFIER TRAINING II

CLASSIFIER LEARNING

 Probability density estimation
 Estimate the probability densities 𝑝(𝒙|𝜔𝑟) and priors 𝑝(𝜔𝑟)

 Parametric learning
 Typically, the distribution 𝑝 𝒙 𝜔𝑟 shape is known but the

parameters must be learned
 E.g. Gaussian mixture model

 Like to select a distribution family that can be efficiently
estimated such as Gaussians

 Prior estimation by relative frequency
 𝑝 𝜔𝑟 = 𝐾𝑟/𝐾

 Number of objects in class 𝑟 over total objects in training database

16

SUPPORT VECTOR MACHINES (SVM)

 Maybe the most popular classical classifier
 Good generalizability even with limited data

 SVM is an optimal classification for separable two-class problem
 Maximizes the margin (separation) between two classes  generalizable

and avoids overfitting
 Relaxed constraints for non-separable classes
 Can use kernel trick to provide non-linear separating hyper-surfaces

 Support vectors – vectors from each class that are closest to the
discriminating surface  define the margin

 Rather than explicitly model the likelihood, search for the
discrimination function
 Don’t waste time modeling densities when class label is all we need

17

 SVM is designed for binary
classification of linearly separable
classes

 Input 𝒙 is n-dimensional (scaled
between [0,1] to normalize) and
class label 𝜔 ∈ {−1,1}

 Discrimination between classes
defined by hyperplane such that
no training samples are
misclassified

 𝒘 ⋅ 𝒙 + 𝑏 = 0
 𝒘 – plane normal, 𝑏 offset

 Optimization finds “best” separating
hyperplane

18

SVM INSIGHT

SVM POWER
 Final discrimination function

 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏

 Re-written using training data

 𝑓 𝑥 = σ𝑖∈𝑆𝑉 𝛼𝑖𝜔𝑖 𝑥𝑖 ⋅ 𝑥 + 𝑏
 𝛼𝑖 - weight of support vector SV

 Only need to keep support vectors for
classification

 Kernel trick – replace 𝑥𝑖 ⋅ 𝑥 with non-
linear mapping kernel

 𝑘 𝑥𝑖 , 𝑥 = Φ 𝑥𝑖 ⋅ Φ 𝑥𝑗

 For specific kernels this can be efficiently
computed without doing the warping Φ
 Can even map into an infinite dimensional space

 Allows linear separation in a higher dimensional
space

19

SVM RESOURCES

 More detailed treatment can be found in
 Duda, Hart, Stork, “Pattern Classification”

 Lecture notes from Nuno Vasconcelos (UCSD)
 http://www.svcl.ucsd.edu/courses/ece271B-

F09/handouts/SVMs.pdf

 SVM software
 LibSVM (Java) [link]

 SVMLight (C) [link]

 Scikit-learn (Python) [link]

20

http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/SVMs.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.cs.cornell.edu/people/tj/svm_light/
https://scikit-learn.org/stable/modules/svm.html

CLUSTER ANALYSIS

 Unsupervised learning method that does not require labeled training data
 Divide training set into subsets (clusters) based on mutual similarity of

subset elements
 Similar objects are in a single cluster, dissimilar objects in separate clusters

 Clustering can be performed hierarchically or non-hierarchically
 Hierarchical clustering

 Agglomerative – each sample starts as its own cluster and clusters are merged
 Divisive – the whole dataset starts as a single cluster and is divided

 Non-hierarchical clustering
 Parametric approaches – assumes a known class-conditioned distribution (similar

to classifier learning)
 Non-parametric approaches – avoid strict definition of distribution

21

K-MEANS CLUSTERING

 Very popular non-parametric clustering technique
 Based on minimizing the sum of squared distances

 𝐸 = σ𝑖=1
𝐾 σ𝑥𝑗∈𝑉𝑖

𝑑2(𝑥𝑗 , 𝑣𝑖)

 Simple and effective

 K-means algorithm
 Input is n-dimensional data points and number of clusters 𝐾
 Initialize cluster starting points

 {𝑣1, 𝑣2, … , 𝑣𝐾}

 Assign points to closest 𝑣𝑖 using distance metric 𝑑
 Recompute 𝑣𝑖 as centroid of associated data 𝑉𝑖
 Repeat until convergence

22

K-MEANS DEMO

https://stanford.edu/class/engr108/visualizations/k
means/kmeans.html

http://alekseynp.com/viz/k-means.html

23

https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html
http://alekseynp.com/viz/k-means.html

NEURAL NETWORKS

 Early success on difficult
problems
 Renewed interest with deep learning

 Motivated by human brain and
neurons
 Neuron is elementary processor

which takes a number of inputs and
generates a single output

 Each input has associated weight
and output is a weighted sum of
inputs

 The network is formed by
interconnecting neurons
 Outputs of neurons as inputs to others

 May have many inputs and many
outputs

 NN tasks:
 Classification – binary output

 Auto-association – re-generate input to
learn network representation

 General association – associations
between patterns in different domains

24

https://www.fast.ai/

NN VARIANTS

 Feed-forward networks

 Include “hidden” layers between input and
output

 Can handle more complicated problems
 Networks “taught” using back-

propagation
 Compare network output to expected

(truth) output

 Minimize SSD error by adjusting neuron
weight

 Kohonen feature maps
 Unsupervised learning that organizes

network to recognize patterns

 Performs clustering
 Neighborhood neurons are related

 Network lies on a 2D layer
 Fully connect neurons to all inputs

 Neuron with highest input

 𝑥 = σ𝑖=1
𝑛 𝑣𝑖𝑤𝑖

 is the winner (cluster label)

25

BOOSTING
 Generally, a single classifier does not solve

problem well enough
 Is it possible to improve performance by using

more classifiers (e.g. experts)?

 Boosting – intelligent combination of weak
classifiers to generate a strong classifier
 Weak classifier works a little better than chance

(50% for binary problem)

 Final decision rule combines each weak classifier
output by weighted confidence majority vote

 𝐶 𝑥 = 𝑠𝑖𝑔𝑛 σ𝑖 𝛼𝑖𝐶𝑖 𝑥

 𝛼𝑖 - confidence in classifier 𝐶𝑖(.)

 Training
 Sequentially train classifiers to focus

classification effort on “hard” examples

 After each training round, re-weight
misclassified examples

 Advantages:
 Generally, does not overfit but is able to

achieve high accuracy
 Training rounds increase margin

 Many modification exist to improve
performance
 Gentle and BrownBoost for outlier

robustness

 Strong theoretical background

 Flexible with only “weak” classifier
requirement
 Can use any type of classifier (statistical,

rule-based, of different type, etc.)

26

Classifier well suited for problems with many classes
and large training datasets
 Handle multiple classes, probabilistic output,

generalizable, etc.

Extension of decision tree to multiple trees in
random fashion

Two tasks
 Classification – output nodes are class labels

 Regression – output node gives continuous numeric value

27

RANDOM FORESTS I

 Decision tree structure
(classification)
 Simple sequential decision making

 Input at the tree root (top
node)

 Split node – divide dataset
based on one input feature

 Leaf node – output final class
label

 Similar to boosting weak
predictors for strong classifier

28

RANDOM FORESTS II

29

RANDOM FORESTS III

https://victorzhou.com/blog/intro-to-random-forests/

https://victorzhou.com/blog/intro-to-random-forests/

 Collect multiple decision trees
and rely on majority vote for
output class (ensemble model)

 Relies on randomness to have
diverse (uncorrelated) trees

 Bagging (bootstrap aggregation) –
random sampling of training data
with replacement

 May use a training sample multiple
times

 DTs are sensitive to training data

 Feature randomness – only use a
subset of features at every split node

30

RANDOM FOREST IV

 Image classification – given an
image, describe what is present
 Single dominant class or multiple

classes

 Object detection – place
bounding box around every
object class in image
 Identification and localization

 Semantic segmentation – class
label for every pixel in image
 Dense classification

 Panoptic segmentation for class and
instance segmentation

31

MODERN RECOGNITION

