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OUTLINE

» Motion Analysis Motivation
® Differential Motion

= Optical Flow

= Note: most of the content comes trom Sonka
Chapter 16
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DENSE MOTION ESTIMATION

= Motion is extremely important in vision
= Biologically: motion indicates what is food and when to
run away

= We have evolved to be very sensitive to motion cues
(peripheral vision)

» Alignment of images and motion estimation is widely
used in computer vision
= Optical flow
= Motion compensation for video compression
= [mage stabilization
" Video summarization



4

BIOLOGICAL MOTION

®* Even limited motion information is perceptually meaningful

® http://www.biomotionlab.ca/Demos/BMLwalker.html



http://www.biomotionlab.ca/Demos/BMLwalker.html
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MOTION ESTIMATION

®" Input: sequence of images
= Qutput: point correspondence

= Prior knowledge: decrease problem complexity

= E.g. camera motion (static or mobile), time interval between
images, etc.

= Motion detection
= Simple problem to recognize any motion (e.g. security)
= Moving object detection and location

® Feature correspondence: “Feature Tracking”
= Pixel (dense) correspondence: “Optical Flow”



DYNAMIC IMAGE ANALYSIS

® Motion description = Motion assumptions

= Motion/velocity field — velocity

=  Maximum velocity — object must be located
in an circle defined by max velocity

vector associated with =  Small acceleration — limited acceleration
corresponding keypoints = Common motion — all object points move

= Optical flow — dense
correspondence that requires

similarly

= Mutual correspondence — rigid objects with
stable points

small time distance between

images

P

(a) (b) (c)
Figure 16.1: Object motion assumptions. (a) Maximum velocity (shaded circle represents area
of possible object location). (b) Small acceleration (shaded circle represents area of possible
object location at time ¢»). (¢) Common motion and mutual correspondence (rigid objects).
© Cengage Learning 2015.




GENERAL MOTION ANALYSIS AND TRACKING

" T'wo interrelated components:

» Localization and representation of object of interest
(target)

® Bottom-up process: deal with appearance, orientation,
illumination, scale, etc.

" Trajectory filtering and data association

® Top-down process: consider object dynamics to infer
motion (motion models)
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OUTLINE

» Motion Analysis Motivation
® Differential Motion

= Optical Flow

= Note: most of the content comes trom Sonka
Chapter 16



DIFFERENTIAL MOTION ANALYSIS

= Simple motion detection possible
with image subtraction

= Requires a stationary camera and
constant illumination

= Also known as change detection

= Difference image

. d(i,]) = {1 JAHEIAGHIE:

0 else

" Binary image that highlights moving
pixels

= What are the various “detections’
from this method?

= Chapter 16.1

Y

(b)

(d)

Figure 16.2: Motion detection. (a) First frame of the image sequence. (b) Frame 2 of the
sequence. (c) Last frame (frame 5). (d) Differential motion image constructed from image
frames 1 and 2 (inverted to improve visualization). @ M. Sonka 2015.



BACKGROUND SUBTRACTION

= Motion is quite important
® Indicates an object of interest

® Background subtraction:

= Given an image (usually a video frame), identify the
foreground objects in that image
= Assume that foreground objects are moving

= T'ypically, moving objects more interesting than the scene

= Simplifies processing — less processing cost and less room for
error



BACKGROUND SUBTRACTION EXAMPLE

» Often used in traffic monitoring applications
= Vehicles are objects of interest (counting vehicles)

= Human action recognition (run, walk, jump, ...)
= Human-computer interaction (“human as interface”)
= Object tracking
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REQUIREMENTS

® A reliable and robust background subtraction
algorithm should handle:

® Sudden or gradual illumination changes
= Light turning on/off, cast shadows through a day

» High frequency, repetitive motion in the background

" Tree leaves blowing in the wind, flag, etc.

" Long-term scene changes

= A car parks in a parking spot



BASIC APPROACH

= [istimate the background at time t

= Subtract the estimated background from the current input frame

= Apply a threshold, Th, to the absolute difference to get the
foreground mask.

= |I(x,y,t) —B(x,y,t)| >Th = F(x,y,t)

I(x,y,t) B(x,y,t)

How can we estimate the background?
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FRAME DIFFERENCING

® Background is estimated to be the previous frame
= B(x,y,t) =1(x,y,t — 1)
" Depending on the object structure, speed, frame

rate, and global threshold, may or may not be
usetul

» Usually not usetul — generates impartial objects and

ghosts -
D t

Incomplete object ghosts
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FRAME DIFFERENCING EXAMPLE

Th=25 Th =50

Th = 100 Th = 200
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MEAN FILTER

® Background is the mean of the previous N frames

1 «N— .

- B(X,y, t) — Nzliv=011(x’y't R l)

" Produces a background that is a temporal smoothing or
“blur”

=N =10

Estimated Background Foreground Mask




MEAN FILTER
o N — 2 O Estimated Background Foreground Mask
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MEDIAN FILTER

® Assume the background is more likely to appear
than foreground objects

" B(x,y,t) = median(](x, y,t— i)), i € {O,N — 1}

Estimated Background Foreground Mask

=N =10




MEDIAN FILTER
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FRAME DIFFERENCE ADVANTAGES

" Fixtremely easy to implement and use
® All the described variants are pretty fast

= The background models are not constant
= Background changes over time
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FRAME DIFFERENCING SHORTCOMINGS

= Accuracy depends on object speed/frame rate

" Mean and median require large memory
= Can use a running average
= B(x,y,t) =(1—a)B(x,y,t — 1)+ al(x,y,t)
" o — is the learning rate

® Use of a global threshold

= Same for all pixels and does not change with time

= Will give poor results when the:
= Background is bimodal
= Scene has many slow moving objects (mean, median)
= Objects are fast and low frame rate (frame diff)
= Lighting conditions change with time




IMPROVING BACKGROUND SUBTRACTION

» Adaptive Background Mixture Models for Real-
Time Tracking

® Chris Stauffer and W.E.L. Grimson
=“The” paper on background subtraction
= Over 10k citations since 1999

= Will read this and see more later

» Example of paper presentation
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OUTLINE

» Motion Analysis Motivation
® Differential Motion

= Optical Flow

= Note: most of the content comes trom Sonka
Chapter 16



OPTICAL FLOW

" Dense pixel correspondence
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OPTICAL FLOW

" Dense pixel correspondence

» Hamburg Taxi Sequence
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TRANSLATIONAL ALIGNMENT

= Motion estimation between images requires a error metric for
comparison

= Sum of squared differences (SSD)
= Egsp(u) = X[l (x; +u) = Ig(x)]* = X, €f

= u = (u,v) — is a displacement vector (can be subpixel)
= ¢; - residual error

= Brightness constancy constraint

= Assumption that that corresponding pixels will retain the same value in
two 1mages

= Objects tend to maintain the perceived brightness under varying
illumination conditions [Horn 1974]

® Color images processed by channels and summed or converted to
colorspace that considers only luminance



50D IMPROVEMENTS

= As we have seen, SSD is the simplest approach and can be
improved

= Robust error metrics

= [; norm (sum absolute differences)
® Better outlier resilience
= Spatially varying weights
= Weighted SSD to weight contribution of each pixel during matching

= Jgnore certain parts of the image (e.g. foreground), down-weight objects during
images stabilization

= Bias and gain
= Normalize exposure between images
» Address brightness constancy



CORRELATION

" Instead of minimizing pixel ditferences, maximize
correlation

® Normalized cross-correlation

D [fn(’f} Lih(xi+uw)—L]
\/z To(a;) — Tol? /S, (i +w) = T2

EI\.:.: u

I.[]. = h—TZID{TI) and

1
I, = FZII{@ + u)

= Normalize by the patch intensities

= Value is between |-1, 1| which makes it easy to use results
(e.g. threshold to find matching pixels)



PROBLEM DEFINITION: OPTICAL FLOW

» How to estimate pixel motion from
image H to image I7

= Solve pixel correspondence problem

= (Given H, look for [nearby pixels
of the[same color]in I i

= Key assumptions /" .
= Color constancy: a point in H looks ~
the same in I s o
= For grayscale images, this is brightness v
constancy
= Small motion: points do not move H ( T y)
very far ’

= This is called the optical flow
problem




OPTICAL FLOW CONSTRAINTS (GrRAYSCALE IMAGES)

= Let’s look at these constraints
more closely

= Brightness constancy:
= Hx,y) = I(x+u,y+v)
= Small motion

" y and v are less than 1 pixel

= Take a Taylor series expansion of
I(x+u,y+v)

(-% Y)
\Slisplacement =

H(z,y)

I(x+u, y+v) = I(x, y)—l—%u-l—g—év—l—higher order terms

%I(a:,y)—l—%u—l—g—év

(u,v)

(@)
(z 4+ uw,y+v)

I(z,y)




OPTICAL FLOW EQUATION

» Combining these two equations

O=I(z+u,y+v)— H(z,y)
~ I(x,y) + lpyu+ Iyv — H(x,y)
~ ([(x,y) — H(z,y)) + Lru+ Iyv
~ It + Irxu + Iyv
~ I+ VI-[u v]

shorthand: I,

" In the limit as u and v go to zero, this becomes exact

0=1I+ VI [22 %

— 0l
— Ox



OPTICAL FLOW EQUATION

O0=14+VI-[u v]

= How many unknowns and \va i
equations per pixel? u v Vo
= y and v are unknown - 1 equation, 2 \/
unknowns [’u, ’U]

® Intuitively, what does this
constraint mean?

= The component of the flow in the
gradient direction is determined

gradient

(u.v)

= The component of the flow parallel to , (U+U V+V)
an edge is unknown

®= This explains the Barber Pole

illusion = If (u,v) satisfies the equation, so does

m http://www.sandlotscience.com/Ambiguous/Barb ’ AN . I .17 —
erpole Illusion.htm (u Tu,v+ 'U) it VI [u 4 ] =0

edge



http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
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APERTURE PROBLEM

\ Actual Motion



APERTURE PROBLEM
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SOLVING THE APERTURE PROBLEM

= Basic idea: assume motion field is smooth
® Horn & Schunk: add smoothness term

[ [ 491w oD 402 Vul P+ | Vol?) da dy

® Lucas & Kanade: assume locally constant motion
= Pretend the pixel’s neighbors have the same (u,v)

" Many other methods exist. Here’s an overview:

= S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R.
Szeliski. A database and evaluation methodology for optical flow.
In Proc. ICCV, 2007

m http://vision.middlebury.edu/flow/



http://vision.middlebury.edu/flow/

LUCAS-KANADE FLOW

= How to get more equations for

a pixel? 0 = Ii(p;) + VI(p;) - [u v]

= Basic idea: impose additional 1 7 (p) I,(py) C L(py)
constraints Io(p2)  Iy(p2) w]| | L(pa)

® Most common is to assume 5 i [ v ] - :
that the flow field is smooth | Le(p25) Iy(P25) | 1i(p2s) |
locally A da b

®* One method: pretend the pixel’s
neighbors have the same (u,v)

= If we use a 5x5 window, that
gives us 25 equations per pixel!



LUCAS-KANADE FLOW (RGB VERSION)

= How to get more equations for

a pixel? 0 = I:(pi)[0, 1,21 + VI(pj)[0,1,2] - [u v]
= Basic idea: 1mpose additional [ 1,(p;)[0] I,(p1)[0] C L(p1)[0]
constraints L(p)[1]  Iy(p1)[1] I (p1)[1]
: I:(p1)[2] Iy(p1)[2] I+(p1)[2]
® Most common is to assume ; ; [ u ] — _ ;
that the flow field is smooth I+(p2s)[0] Iy(pas)[O] | L I+(p25)[0]
locally I:(p25)[1] Iy(p2s)[1] I+(p25)[1]
| Ix(p25)[2] Iy(p2s)[2] | I (p2s5)[2]
®* One method: pretend the pixel’s .
neighbors have the same (u,v) 75‘32 Qf(il 75x1

= If we use a 5x5 window, that
gives us 25 equations per pixel!
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LUCAS-KANADE FLOW

" Problem: More equations than unknowns

A d=b ——— minimize ||Ad — b|?
25x2 2x1 25x1

» Solution: Solve least squares problem
®* Minimum LS solution by finding d

(ATA) d = ATb > Izly ZIZBIy U — _ > Iz 1y
2x2  2x1  2x1 Zfchy Zly[y v Zlylt
Al A Alp

®» The summations are over all pixels in the K x K window
= This technique was first proposed by Lucas & Kanade (1981)



CONDITIONS FOR SOLVABILITY

= Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELIy | [u] _ [ S
SLly, SELI; || v] = | S L

AT A Alp
® When is This Solvable?
= AT A should be invertible
= AT A should not be too small due to noise

= Eigenvalues l; and [, of ATA should not be too small
= AT A should be well-conditioned

= [, /1, should not be too large (l; = larger eigenvalue)

s AT A is the Harris matrix (see Interest Points)
= Finds “corners” (areas of gradient in orthogonal directions)
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OBSERVATION

® This is a two image problem BUT

= Can measure sensitivity by just looking at one of the
images!

e

" This tells us which pixels are easy to track, which are
hard

= Very useful for feature tracking...
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APERTURE PROBLEM

\ Actual Motion



APERTURE PROBLEM
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ERRORS IN LUCAS-KANADE

= What are the potential causes of errors in this
procedure?’

= Suppose AT A is easily invertible

" Suppose there is not much noise in the image

" When our assumptions are violated
® Brightness constancy is not satisfied
" The motion is not small

" A point does not move like its neighbors
* Window size is too large
» What is the ideal window size?



44

IMPROVING ACCURACY

" Recall our small motion assumption
O=I(z+u,y+v)— H(z,y)
~ I[(x,y) + Lpu+ Iyv — H(x,y)
® Not exact, need higher order terms to do better
= I(z,y) + Ixu + Iyv + higher order terms — H(z, i)
" Results in polynomial root finding problem

= Can be solved using Newton’s method (also known as
Newton-Raphson)

® Lucas-Kanade method does a single iteration of
Newton’s method

= Better results are obtained with more iterations
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ITERATIVE REFINEMENT

® [terative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards I using the estimated flow field
®» Use image warping techniques

3. Repeat until convergence



REVISITING THE SMALL MOTION ASSUMPTION

® s this motion small enough?

= Probably not—it’s much larger
than one pixel (2nd order
terms dominate)

= How might we solve this
problem?




REDUCE THE RESOLUTION!




COARSE-TO-FINE OPTICAL FLOW ESTIMATION

u=1.25 pixels

u=2.5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |



COARSE-TO-FINE OPTICAL FLOW ESTIMATION
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OPTICAL FLOW RESULTS

[.ucas-Kanade
without pyramids

[Lucas-Kanade with Pyramids

Fails in areas of large
moLion

Khurram Hassan Shafique — CAP5415 UCF 2003



ROBUST METHODS

® [-K minimizes a sum-of-squares error metric

" Least squares techniques overly sensitive to outliers

A.Vg. posi.tion drifts .88 o o °
with outliers o0
Error metrics
quadratic truncated quadratic lorentzian

o

_ 2 2 Vo 1
Pl = MOE { MMl <X @) = tog (14 5(5))
’ a  otherwise o



ROBUST OPTICAL FLOW

® Robust Horn & Schunk [ [ o041t )+ X2 IVl +IVol|?) di dy

= Robust Lucas-Kanade 2. Ut VI-[uo])

(z,y)eW
r.r'n."' . A Lﬂ
y 13 :' -..' :1:_""? 8 & '!.;;‘
a.'.' \-:\-..I*‘;ﬁ% PR T P
first image quadratic flow lorentzian flow detected outliers

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on
Computer Vision (ICCV), 1993, pp. 231-236
http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf



http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf
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BENCHMARKING OPTICAL FLOW ALGORITHMS

= Middlebury flow page
m http://vision.middlebury.edu/flow/



http://vision.middlebury.edu/flow/

FLOW QUALITY EVALUATION




FLOW QUALITY EVALUATION
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FLOW QUALITY EVALUATION

= Middlebury flow page
m http://vision.middlebury.edu/flow/

Color encoding
of flow vectors

Ground Truth


http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

® Middlebury flow page
m http://vision.middlebury.edu/flow/

Army - PyramidLK flow
- - ' -~

; - | e S Color encoding
' . of flow vectors

.

)
’

Lucas-Kanade flow Ground Truth


http://vision.middlebury.edu/flow/

FLOW QUALITY EVALUATION

® Middlebury flow page
m http://vision.middlebury.edu/flow/

Army - NNF-Local flow

Color encoding
of flow vectors

- .
‘ : 3 -~ S-I"!\\W" ; ¥
‘ T,
Best-in-class alg. (as of 2/22/21) Ground Truth

[75] NNF-Local: Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu.
Large displacement optical flow from nearest neighbor fields. CVPR 2013.



http://vision.middlebury.edu/flow/

DISCUSSION: FEATURES VS. FLOW?

® Features are better for:

= Flow is better for:
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ADVANCED TOPICS

® Particles: combining features and tlow
= Peter Sand et al. http://rvsn.csail.mit.edu/pv/
= State-of-the-art feature tracking/SLAM
= Georg Klein et al. http://www.robots.ox.ac.uk/ gk/
" Deep Motion
® FlowNet2.0 — CNN architecture to learn flow directly
® Deepllow — Deep matching
® Gladh ICPR2016 — combined deep + hand crafted
® Deep Motion — tflow + segmentation



http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/
https://arxiv.org/abs/1612.01925
https://arxiv.org/abs/1612.06615
https://thoth.inrialpes.fr/src/deepflow/
https://arxiv.org/abs/1612.06615
http://deepmotion.cs.uni-freiburg.de/

