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OUTLINE

Motion Analysis Motivation

Differential Motion 

Optical Flow

Note: most of the content comes from Sonka
Chapter 16
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DENSE MOTION ESTIMATION

 Motion is extremely important in vision
 Biologically: motion indicates what is food and when to 

run away
 We have evolved to be very sensitive to motion cues 

(peripheral vision)
 Alignment of images and motion estimation is widely 

used in computer vision
 Optical flow
 Motion compensation for video compression
 Image stabilization
 Video summarization
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 Even limited motion information is perceptually meaningful

 http://www.biomotionlab.ca/Demos/BMLwalker.html
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BIOLOGICAL MOTION

http://www.biomotionlab.ca/Demos/BMLwalker.html


MOTION ESTIMATION

 Input:  sequence of images
 Output:  point correspondence
 Prior knowledge: decrease problem complexity
 E.g. camera motion (static or mobile), time interval between 

images, etc.

 Motion detection
 Simple problem to recognize any motion (e.g. security)

 Moving object detection and location
 Feature correspondence:  “Feature Tracking”
 Pixel (dense) correspondence:  “Optical Flow”
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 Motion description

 Motion/velocity field – velocity 
vector associated with 
corresponding keypoints

 Optical flow – dense 
correspondence that requires 
small time distance between 
images

 Motion assumptions

 Maximum velocity – object must be located 
in an circle defined by max velocity

 Small acceleration – limited acceleration

 Common motion – all object points move 
similarly

 Mutual correspondence – rigid objects with 
stable points
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DYNAMIC IMAGE ANALYSIS



Two interrelated components:

Localization and representation of object of interest 
(target)

 Bottom-up process: deal with appearance, orientation, 
illumination, scale, etc.

Trajectory filtering and data association

 Top-down process: consider object dynamics to infer 
motion (motion models)
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GENERAL MOTION ANALYSIS AND TRACKING



OUTLINE

Motion Analysis Motivation

Differential Motion 

Optical Flow

Note: most of the content comes from Sonka
Chapter 16
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DIFFERENTIAL MOTION ANALYSIS

 Simple motion detection possible 
with image subtraction
 Requires a stationary camera and 

constant illumination

 Also known as change detection

 Difference image

 𝑑 𝑖, 𝑗 = ቊ
1 𝑓1 𝑖, 𝑗 − 𝑓2 𝑖, 𝑗 > 𝜖
0 𝑒𝑙𝑠𝑒

 Binary image that highlights moving 
pixels

 What are the various “detections” 
from this method?
 Chapter 16.1
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BACKGROUND SUBTRACTION

Motion is quite important
 Indicates an object of interest

Background subtraction:
Given an image (usually a video frame), identify the 
foreground objects in that image
 Assume that foreground objects are moving

 Typically, moving objects more interesting than the scene

 Simplifies processing – less processing cost and less room for 
error
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 Often used in traffic monitoring applications
 Vehicles are objects of interest (counting vehicles)

 Human action recognition (run, walk, jump, …)
 Human-computer interaction (“human as interface”)
 Object tracking
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BACKGROUND SUBTRACTION EXAMPLE

⟹



REQUIREMENTS

A reliable and robust background subtraction 
algorithm should handle:

 Sudden or gradual illumination changes

 Light turning on/off, cast shadows through a day

 High frequency, repetitive motion in the background

 Tree leaves blowing in the wind, flag, etc.

 Long-term scene changes

 A car parks in a parking spot
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BASIC APPROACH

 Estimate the background at time 𝑡

 Subtract the estimated background from the current input frame

 Apply a threshold, 𝑇ℎ, to the absolute difference to get the 
foreground mask.

 |𝐼 𝑥, 𝑦, 𝑡 − 𝐵(𝑥, 𝑦, 𝑡)| > 𝑇ℎ = 𝐹(𝑥, 𝑦, 𝑡)

− > 𝑇ℎ =

𝐼(𝑥, 𝑦, 𝑡) 𝐵(𝑥, 𝑦, 𝑡) 𝐹(𝑥, 𝑦, 𝑡)

How can we estimate the background?
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Background is estimated to be the previous frame

 𝐵 𝑥, 𝑦, 𝑡 = 𝐼(𝑥, 𝑦, 𝑡 − 1)

Depending on the object structure, speed, frame 
rate, and global threshold, may or may not be 
useful

 Usually not useful – generates impartial objects and 
ghosts
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FRAME DIFFERENCING

𝑡 − 1
𝑡

𝑡 − 1
𝑡

Incomplete object ghosts



FRAME DIFFERENCING EXAMPLE
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MEAN FILTER

Background is the mean of the previous 𝑁 frames

 𝐵 𝑥, 𝑦, 𝑡 =
1

𝑁
σ𝑖=0
𝑁−1 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)

 Produces a background that is a temporal smoothing or 
“blur”

𝑁 = 10
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MEAN FILTER

𝑁 = 20

𝑁 = 50
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MEDIAN FILTER

Assume the background is more likely to appear 
than foreground objects

 𝐵 𝑥, 𝑦, 𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐼 𝑥, 𝑦, 𝑡 − 𝑖 , 𝑖 ∈ {0, 𝑁 − 1}

𝑁 = 10
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MEDIAN FILTER

𝑁 = 20

𝑁 = 50
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FRAME DIFFERENCE ADVANTAGES

Extremely easy to implement and use

All the described variants are pretty fast

The background models are not constant

 Background changes over time
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FRAME DIFFERENCING SHORTCOMINGS

 Accuracy depends on object speed/frame rate
 Mean and median require large memory
 Can use a running average

 𝐵 𝑥, 𝑦, 𝑡 = 1 − 𝛼 𝐵 𝑥, 𝑦, 𝑡 − 1 + 𝛼𝐼 𝑥, 𝑦, 𝑡
 𝛼 – is the learning rate

 Use of a global threshold
 Same for all pixels and does not change with time
 Will give poor results when the:

 Background is bimodal 
 Scene has many slow moving objects (mean, median)
 Objects are fast and low frame rate (frame diff)
 Lighting conditions change with time
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IMPROVING BACKGROUND SUBTRACTION

Adaptive Background Mixture Models for Real-
Time Tracking 

 Chris Stauffer and W.E.L. Grimson

 “The” paper on background subtraction

 Over 10k citations since 1999

Will read this and see more later

 Example of paper presentation
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OUTLINE

Motion Analysis Motivation

Differential Motion 

Optical Flow

Note: most of the content comes from Sonka
Chapter 16
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OPTICAL FLOW

Dense pixel correspondence
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OPTICAL FLOW

Dense pixel correspondence

 Hamburg Taxi Sequence
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TRANSLATIONAL ALIGNMENT

 Motion estimation between images requires a error metric for 
comparison

 Sum of squared differences (SSD)

 𝐸𝑆𝑆𝐷 𝑢 = σ𝑖[𝐼1 𝑥𝑖 + 𝑢 − 𝐼0 𝑥𝑖 ]
2 = σ𝑖 𝑒𝑖

2

 𝑢 = (𝑢, 𝑣) – is a displacement vector (can be subpixel)

 𝑒𝑖 - residual error

 Brightness constancy constraint
 Assumption that that corresponding pixels will retain the same value in 

two images
 Objects tend to maintain the perceived brightness under varying 

illumination conditions [Horn 1974]

 Color images processed by channels and summed or converted to 
colorspace that considers only luminance
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SSD IMPROVEMENTS

 As we have seen, SSD is the simplest approach and can be 
improved

 Robust error metrics
 𝐿1 norm (sum absolute differences)

 Better outlier resilience 

 Spatially varying weights
 Weighted SSD to weight contribution of each pixel during matching

 Ignore certain parts of the image (e.g. foreground), down-weight objects during 
images stabilization

 Bias and gain
 Normalize exposure between images

 Address brightness constancy
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CORRELATION 

 Instead of minimizing pixel differences, maximize 
correlation

 Normalized cross-correlation

 Normalize by the patch intensities
 Value is between [-1, 1] which makes it easy to use results 

(e.g. threshold to find matching pixels)
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 How to estimate pixel motion from 
image H to image I?

 Solve pixel correspondence problem
 Given a pixel in H, look for nearby pixels 

of the same color in I

 Key assumptions
 Color constancy:  a point in H looks 

the same in I
 For grayscale images, this is brightness 

constancy

 Small motion:  points do not move 
very far

 This is called the optical flow 
problem
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PROBLEM DEFINITION: OPTICAL FLOW



 Let’s look at these constraints 
more closely

 Brightness constancy: 

 𝐻(𝑥, 𝑦) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)

 Small motion 

 𝑢 and 𝑣 are less than 1 pixel

 Take a Taylor series expansion of 
𝐼(𝑥 + 𝑢, 𝑦 + 𝑣)
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OPTICAL FLOW CONSTRAINTS (GRAYSCALE IMAGES)



 Combining these two equations

 In the limit as u and v go to zero, this becomes exact
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OPTICAL FLOW EQUATION



OPTICAL FLOW EQUATION

 How many unknowns and 
equations per pixel?
 𝑢 and 𝑣 are unknown - 1 equation, 2 

unknowns

 Intuitively, what does this 
constraint mean?
 The component of the flow in the 

gradient direction is determined

 The component of the flow parallel to 
an edge is unknown

 This explains the Barber Pole 
illusion
 http://www.sandlotscience.com/Ambiguous/Barb

erpole_Illusion.htm

 If (𝑢, 𝑣) satisfies the equation, so does 
(𝑢 + 𝑢’, 𝑣 + 𝑣’) if 𝛻𝐼 ⋅ 𝑢′ 𝑣′ = 0
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APERTURE PROBLEM

Actual Motion
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APERTURE PROBLEM

Perceived Motion
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 Basic idea:  assume motion field is smooth
 Horn & Schunk:  add smoothness term

 Lucas & Kanade:  assume locally constant motion
 Pretend the pixel’s neighbors have the same (u,v)

 Many other methods exist.  Here’s an overview:
 S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. 

Szeliski. A database and evaluation methodology for optical flow. 
In Proc. ICCV, 2007 

 http://vision.middlebury.edu/flow/
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SOLVING THE APERTURE PROBLEM

http://vision.middlebury.edu/flow/


 How to get more equations for 
a pixel?

 Basic idea:  impose additional 
constraints

 Most common is to assume 
that the flow field is smooth 
locally

 One method:  pretend the pixel’s 
neighbors have the same (u,v)

 If we use a 5x5 window, that 
gives us 25 equations per pixel!
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LUCAS-KANADE FLOW



 How to get more equations for 
a pixel?

 Basic idea:  impose additional 
constraints

 Most common is to assume 
that the flow field is smooth 
locally

 One method:  pretend the pixel’s 
neighbors have the same (u,v)

 If we use a 5x5 window, that 
gives us 25 equations per pixel!
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LUCAS-KANADE FLOW (RGB VERSION)



 Problem:  More equations than unknowns

 Solution:  Solve least squares problem
 Minimum LS solution by finding 𝑑

 The summations are over all pixels in the K x K window

 This technique was first proposed by Lucas & Kanade (1981)
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LUCAS-KANADE FLOW



 Optimal (u, v) satisfies Lucas-Kanade equation

 When is This Solvable?
 𝐴𝑇𝐴 should be invertible 
 𝐴𝑇𝐴 should not be too small due to noise

 Eigenvalues 𝑙1 and 𝑙2 of 𝐴𝑇𝐴 should not be too small

 𝐴𝑇𝐴 should be well-conditioned
 𝑙1/𝑙2 should not be too large (𝑙1 = larger eigenvalue)

 𝐴𝑇𝐴 is the Harris matrix (see Interest Points)
 Finds “corners” (areas of gradient in orthogonal directions)
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CONDITIONS FOR SOLVABILITY



This is a two image problem BUT

 Can measure sensitivity by just looking at one of the 
images!

 This tells us which pixels are easy to track, which are 
hard

 Very useful for feature tracking...
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OBSERVATION



APERTURE PROBLEM

Actual Motion
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APERTURE PROBLEM

Perceived Motion
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 What are the potential causes of errors in this 
procedure?
 Suppose 𝐴𝑇𝐴 is easily invertible
 Suppose there is not much noise in the image

 When our assumptions are violated
 Brightness constancy is not satisfied

 The motion is not small

 A point does not move like its neighbors
 Window size is too large

 What is the ideal window size?
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ERRORS IN LUCAS-KANADE



IMPROVING ACCURACY

 Recall our small motion assumption

 Not exact, need higher order terms to do better

 Results in polynomial root finding problem
 Can be solved using Newton’s method (also known as 

Newton-Raphson)
 Lucas-Kanade method does a single iteration of 

Newton’s method
 Better results are obtained with more iterations
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 Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards I using the estimated flow field

 Use image warping techniques

3. Repeat until convergence
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ITERATIVE REFINEMENT



 Is this motion small enough?

 Probably not—it’s much larger 
than one pixel (2nd order 
terms dominate)

 How might we solve this 
problem?
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REVISITING THE SMALL MOTION ASSUMPTION



REDUCE THE RESOLUTION!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

COARSE-TO-FINE OPTICAL FLOW ESTIMATION
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

COARSE-TO-FINE OPTICAL FLOW ESTIMATION

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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OPTICAL FLOW RESULTS

Khurram Hassan Shafique – CAP5415 UCF  2003 



ROBUST METHODS

L-K minimizes a sum-of-squares error metric

 Least squares techniques overly sensitive to outliers

quadratic truncated quadratic lorentzian

Error metrics
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Avg. position drifts
with outliers



ROBUST OPTICAL FLOW

Robust Horn & Schunk

Robust Lucas-Kanade 

first image quadratic flow lorentzian flow detected outliers

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on 

Computer Vision (ICCV), 1993, pp. 231-236 

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

52

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf


BENCHMARKING OPTICAL FLOW ALGORITHMS

Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION



55

FLOW QUALITY EVALUATION



Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground Truth

http://vision.middlebury.edu/flow/


 Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground TruthLucas-Kanade flow

http://vision.middlebury.edu/flow/


 Middlebury flow page

 http://vision.middlebury.edu/flow/
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FLOW QUALITY EVALUATION

Ground TruthBest-in-class alg. (as of 2/22/21)

[75] NNF-Local: Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. 
Large displacement optical flow from nearest neighbor fields. CVPR 2013.

http://vision.middlebury.edu/flow/


DISCUSSION:  FEATURES VS. FLOW?

Features are better for:

Flow is better for:
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ADVANCED TOPICS

Particles:  combining features and flow
 Peter Sand et al. http://rvsn.csail.mit.edu/pv/

State-of-the-art feature tracking/SLAM
 Georg Klein et al. http://www.robots.ox.ac.uk/~gk/

Deep Motion 
 FlowNet2.0 – CNN architecture to learn flow directly

 DeepFlow – Deep matching 

 Gladh ICPR2016 – combined deep + hand crafted

 Deep Motion – flow + segmentation
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http://rvsn.csail.mit.edu/pv/
http://www.robots.ox.ac.uk/~gk/
https://arxiv.org/abs/1612.01925
https://arxiv.org/abs/1612.06615
https://thoth.inrialpes.fr/src/deepflow/
https://arxiv.org/abs/1612.06615
http://deepmotion.cs.uni-freiburg.de/

