
http://www.ee.unlv.edu/~b1morris/ecg782

ECG782: MULTIDIMENSIONAL
DIGITAL SIGNAL PROCESSING
IMAGE SEGMENTATION

1

http://www.ee.unlv.edu/~b1morris/ecg782

OUTLINE

Fundamentals

Point, Line, and Edge Detection

Thresholding

Region-Based Segmentation

SEGMENTATION

 Transition toward more high level systems/analysis
 Now: Input = images  output = attributes of regions or objects
 Image processing : input = image  output = image

 Important but difficult task as part of image understanding
pipeline
 Best to control system as much as possible (e.g. lighting in a

factory inspection)
 When observation control is limited need to consider sensing

technology (e.g. thermal vs. visual imaging)
 Practically, may not want to limit to just imaging

 Operate using intensity similarity and discontinuity
 Regions vs. edges

FUNDAMENTALS

 Divide image into parts that correlate with objects or “world areas”
 Important step for image analysis and understanding

 Complete segmentation
 Disjoint regions corresponding to objects

 𝑅 = 𝑖=1ڂ
𝑛 𝑅𝑖 , 𝑅𝑖 ∩ 𝑅𝑗 = ∅, 𝑖 ≠ 𝑗

 Typically requires high level domain knowledge

 Partial segmentation
 Regions do not correspond directly to objects
 Divide image based on homogeneity property

 Brightness, color, texture, etc.

 𝑄 𝑅𝑖 = TRUE and 𝑄 𝑅𝑖 ∪ 𝑅𝑗 = FALSE

 High-level info can upgrade partial segmentation to complete segmentation

 Main goal is reduction in data volume for higher level processing

FUNDAMENTALS II

 Monochrome segmentation
based on either intensity
discontinuity or similarity

 Discontinuity
 Edge-based segmentation

 Boundaries of regions are distinct

 Similarity
 Region-based segmentation

 Image partitions are formed by
similar areas (based on some
criteria 𝑄(.))

POINT, LINE, AND EDGE DETECTION

 Look for sharp “local” changes in
intensity

 All require the use of derivatives


𝜕𝑓

𝜕𝑥
= 𝑓′ 𝑥 = 𝑓 𝑥 + 1 − 𝑓 𝑥

 Thick edges


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓 𝑥

 Fine edges (more aggressive)

 Double response

 Sign determines intensity transition

 Edge
 Edge pixels – pixels at which the

intensity function changes abruptly

 Edges (segments) – are connected edge
pixels

EDGE DETECTION

 Locate changes in image intensity function
 Edges are abrupt changes

 Very important pre-processing step for many computer
vision techniques
 Object detection, lane tracking, geometry

 Edges are important neurological and
psychophysical processes
 Part of human image perception loop
 Information reduction but not understanding

 Edgels – edge element with strong magnitude
 Pixels with large gradient magnitude

INFORMATIVE EDGES

Edges arise from various physical phenomena during
image formation

 Trick is to determine which edges are most important

ISOLATED POINT DETECTION

 Use of second order derivative

 More aggressive response to
intensity change

 Laplacian

 𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2

 𝛻2𝑓 𝑥, 𝑦 = 𝑓 𝑥 + 1, 𝑦 +
𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 +
𝑓 𝑥, 𝑦 − 1 − 4𝑓(𝑥, 𝑦)

 Output from thresholding

LINE DETECTION

 Again use Laplacian

 Lines are assumed to be thin with
respect to the size of the Laplacian
kernel

 Be aware that Laplacian
produces double response to a
line

 Positive response on one side of line

 Negative response on the other side

 Typically, thin lines are required

 Must appropriately select value (e.g.
positive response)

 Edges at a particular
orientation can be detected

 Adjust kernel to match desired
direction

LINE DETECTION II

 Classified according to intensity
profiles

 Step (ideal) edge – transition between
two (large) intensity levels in a small (1
pixel) distance

 Ramp edge – “real” edge thicker than 1
pixel width due to blurring of ideal edge

 Roof edge – blurred line to have
thickness

EDGE MODELS

Real Edges

EDGE DERIVATIVES

 First derivative

 Constant along ramp

 Magnitude used to detect edge

 Second derivative

 Dual response to ramp

 Sign used to determine whether
edge pixel is in dark or light side
of edge

 Zero-crossing used to detect
center of a thick edge

REAL EDGES WITH NOISE

 Real images will have noise that
corrupt the derivative operation
 Remember this is a high pass filter

 Second derivative very sensitive
to noise
 Even small amounts of noise make it

impossible to use

 First derivative less sensitive
 Three steps for edge detection

 Image smoothing for noise reduction
 Detection of edge points (1st or 2nd

derivative)
 Edge localization to select only true

edge pixels

BASIC EDGE DETECTION

 Image gradient

 𝛻𝑓 = 𝑔𝑟𝑎𝑑 𝑓 =
𝑔𝑥
𝑔𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

 𝑔𝑥 - gradient image

 Direction of greatest change in intensity

 Edge is perpendicular to the
gradient direction

 Magnitude

 𝑀 𝑥, 𝑦 = 𝑚𝑎𝑔 𝛻𝑓 = 𝑔𝑥
2 + 𝑔𝑦

2 ≈ 𝑔𝑥 +

𝑔𝑦

 Rate of change in the direction of
gradient vector

 Approx. only valid in horizontal vertical
directions

 Direction

 𝛼 𝑥, 𝑦 = tan−1
𝑔𝑦

𝑔𝑥

GRADIENT OPERATORS

 Use digital approximations of partial
derivatives  first difference

 𝑔𝑥 = 𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦

 𝑔𝑦 = 𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥, 𝑦

 Can consider diagonal edges  Roberts
kernel

 Usually want odd symmetric kernels for
computational efficiency
 Prewitt – centered first difference

 Sobel – weighed centered first difference
(noise suppression)

 Gradient images show preference to
edge direction

 Magnitude gives strength of edge

 Gradient thresholding used to
highlight strong edges

 Use smoothing for cleaner gradient
images

 See Fig. 10.18

EDGE EXAMPLES

MORE ADVANCED EDGE DETECTION

 Simple edge detection

 Filter image with smoothing mask and with gradient kernels

 Does not account of edge characteristics or noise content

 Advanced detection

 Seeks to leverage image noise properties and edge
classification

 Marr-Hildreth detector

 Canny edge detector

 Hough transform

MAAR-HILDRETH EDGE DETECTOR

 Insights
 Edges (image features) depend on

scale

 Edge location is from zero-crossing

 Laplacian of Gaussian (LoG)
operator

 𝛻2𝐺 𝑥, 𝑦 =
𝑥2+𝑦2−2𝜎2

𝜎4
𝑒
−
𝑥2+𝑦2

2𝜎2

 𝜎 is the space constant – defines circle
radius

 Gaussian blurs the image at scales
much smaller than 𝜎

 Second derivative Laplacian responds
to edges in all directions

 Also called Mexican hat
kernel

 𝑔 𝑥, 𝑦 = 𝛻2𝐺 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦

 By linearity

 𝑔 𝑥, 𝑦 = 𝛻2[𝐺 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦]

 Smooth image first then apply
Laplacian

 Follow with zero crossing
detection
 Search a 3 × 3 neighborhood for

changes in sign in opposite pixels

 May consider magnitude threshold to
deal with noise

 Size of LoG filter (𝑛 × 𝑛) should
be greater than or equal to 6𝜎

 Simplification possible using the
difference of Gaussians (DoG)

 Similar to human visual process

MAAR-HILDRETH ALGORITHM

CANNY EDGE DETECTOR

 Three objectives
 Low error rate: find all edges with

minimal false detections

 Edge points localized: should find
center of true edge

 Single edge response: only single
pixel for thick edges

 Key operations
 Non-maxima suppression of groups of

large magnitude 1st derivative
response

 Hysteresis threshold for long
connected edges

 Canny algorithm Overview

1. Smooth image with Gaussian
filter

2. Compute gradient magnitude
and angle

3. Apply nonmaxima suppression of
gradient magnitude

4. Use hysteresis thresholding and
connectivity analysis to detect
and link edges

CANNY EDGE DETECTION I

 Popular edge detection algorithm
that produces a thin lines

 1) Smooth with Gaussian kernel

 2) Compute gradient

 Determine magnitude and orientation
(45 degree 8-connected neighborhood)

 3) Use non-maximal suppression
to get thin edges
 Compare edge value to neighbor

edgels in gradient direction

 4) Use hysteresis thresholding to
prevent streaking
 High threshold to detect edge pixel,

low threshold to trace the edge

𝑝

𝑝−

𝑝+ 𝑝

𝑝−

𝑝+
𝑡ℎ

𝑡𝑙

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

object Sobel Canny

 Optimal edge detection algorithm
 Returns long thin (1 pixel wide)

connected edges

 Non-maximal edge suppression
technique to return a single pixel for
an edge
 Examine pixels along gradient direction

 Only retain pixel if it is larger than
neighbors

 Hysteresis threshold to remove
spurious responses and maintain
long connected edges
 High threshold used to find definite

edges

 Low threshold to track edges

CANNY EDGE DETECTION II

NONMAXIMA SUPPRESSION

 Gradient produces thick edges
(for steps/ramps)

 Consider 4 orientations in 3x3
neighborhood
 Horizontal, vertical, and diagonals

1. Quantize gradient angle into 8
directions

 𝑑𝑘 mapped from 𝛼(𝑥, 𝑦)

2. Suppress edge pixel if any of
it’s gradient neighbors has
greater magnitude

 𝑔𝑁 𝑝 = 0 if 𝑀 𝑝 < 𝑀(𝑑𝑘
+) or

𝑀(𝑑𝑘
−)

 𝑔𝑁 𝑝 = 𝑀(𝑝) otherwise

CANNY EDGE EXAMPLES
S
im

p
le

 E
d
ge

 D
et

ec
ti
on

CANNY EDGE EXAMPLES II

HOUGH TRANSFORM

 Segmentation viewed as the problem of finding objects

 Must be of known size and shape

 Typically hard to do because of shape distortions

 Rotation, zoom, occlusion

 Search for parameterized curves in image plane

 𝑐 𝑥, 𝑎 = 0

 𝑎 – n-dimensional vector of curve parameters

 Each edge pixel “votes” for different parameters and need to
find parameter set with most votes

HOUGH TRANSFORM FOR LINES

 Lines are the original motivation for Hough transform

 Lines in the real-world can be broken, collinear, or occluded
 Combine these collinear line segments into a larger extended line

 Hough transform creates a parameter space for the line
 Every pixel votes for a family of lines passing through it

 Potential lines are those bins (accumulator cells) with high count

 Uses global rather than local information

 See hough.m, radon.m in Matlab

 Want to search for all points that
lie on a line
 This is a large search (take two

points and count the number of
edgels)

 Infinite lines pass through a
single point (𝑥𝑖 , 𝑦𝑖)

 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏

 Select any 𝑎, 𝑏

 Reparameterize

 𝑏 = −𝑥𝑖𝑎 + 𝑦𝑖
 𝑎𝑏-space representation has single

line defined by point (𝑥𝑖 , 𝑦𝑖)

 All points on a line will intersect in
parameter space
 Divide parameter space into cells/bins and

accumulate votes across all 𝑎 and 𝑏 values
for a particular point

 Cells with high count are indicative of
many points voting for the same line
parameters (𝑎, 𝑏)

HOUGH TRANSFORM INSIGHT

HOUGH TRANSFORM IN PRACTICE

 Use a polar parameterization of a line – why?

 After finding bins of high count, need to verify edge
 Find the extent of the edge (edges do not go across the whole image)

 This technique can be extended to other shapes like circles

HOUGH TRANSFORM EXAMPLE I

Input image Grayscale Canny edge image





-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

-499

-399

-299

-199

-99

1

101

201

301

401

Hough space Top edges

HOUGH TRANSFORM EXAMPLE II

http://www.mathworks.com/help/images/analyzing-images.html

HOUGH TRANSFORM FOR CIRCLES

 Consider equation of circle

 𝑥1 − 𝑎 2 + 𝑥2 − 𝑏 2 = 𝑟2

 (𝑎, 𝑏) – center of circle; 𝑟 – radius

 Each edgel votes for a circle of radius 𝑟 at
center (𝑎, 𝑏)

 Accumulator array is now 3-dimensional

 Usually for fixed radius circle

HOUGH TRANSFORM CONSIDERATIONS

 Practical only for up to 3-dimensions
 Exponential growth of accumulator array

 Use gradient information to simplify process
 Only accumulate limited number of bins
 Accounts for local consistency constraints

 Line pixels should be in edge direction (orthogonal to gradient direction)

 Weight accumulator by edge magnitude
 Consider only the strongest edges

 “Back project” strongest accumulator cells of each pixel to remove
other votes
 Sharpen accumulator response

 Line tracing
 Find endpoints of line

MULTISPECTRAL EDGES

Pixel (𝑖, 𝑗) has 𝑛-dimensional vector representation

Trivial edge detection

 Operate on each spectral band separately

 Combine all bands to form single edge image

Multiband (Roberts-like) edge operator

 2 × 2 × 𝑛 - neighborhood

 Segment object from background

 𝑔 𝑖, 𝑗 = ቊ
1 𝑓 𝑖, 𝑗 > 𝑇

0 𝑓 𝑖, 𝑗 ≤ 𝑇

 𝑇 – threshold

 1 object and 0 background

 Requires the correct threshold of this to
work

 Difficulty to use a single global threshold

 𝑇 = 𝒯(𝑓)

 More often want adaptive threshold

 𝑇 = 𝒯(𝑓, 𝑓𝑐)

 𝑓𝑐 - is smaller image region (e.g. subimage)

 Many simple variants

 Band thresholding - range of values for object

 Multiband – multiple bands to give grayscale
result

THRESHOLDING

 When objects are similar, the
resulting histogram is bimodal

 Objects one color and background
another

 Good threshold is between “peaks” in less
probable intensity regions

 Intuitively the lowest point between peaks

 In practice is difficult to tell if a
distribution is bimodal

 There can be many local maxima
 How should the correct one be

selected?

 Notice also that since the
histogram is global, a histogram
for salt and pepper noise could be
the same as for objects on
background

 Should consider some local
neighborhood when building the
histogram
 Account for edges

THRESHOLD DETECTION METHODS

 Model the histogram as a
weighted sum of normal
probability densities

 Threshold selected to minimize
segmentation error (minimum
number of mislabeled pixels)
 Gray level closest to minimum

probability between normal maxima

 Difficulties
 Normal distribution assumption does

not always hold

 Hard to estimate normal parameters

 Useful tools:
 Maximum-likelihood classification
 Expectation maximization

 Gaussian mixture modeling

OPTIMAL THRESHOLDING

 Automatic threshold detection
 Test all possible thresholds and find that which minimizes foreground/background variance

 “Tightest” distributions

1. Compute histogram 𝐻 of image and normalize to make a probability
2. Apply thresholding at each gray-level 𝑡
 Separate histogram into background 𝐵 and foreground 𝐹

3. Compute the variance 𝜎𝐵 and 𝜎𝐹
4. Compute probability of pixel being foreground or background

 𝑤𝐵 = σ𝑗=0
𝑡 𝐻(𝑗)

5. Select optimal threshold as

 Ƹ𝑡 = min
𝑡

𝜎(𝑡)

 𝜎 𝑡 = 𝑤𝐵𝜎𝐵 𝑡 + 𝑤𝐹 𝑡 𝜎𝐹(𝑡)

OTSU’S ALGORITHM

 Assume Gaussian distribution for
each group/object
 Defined by mean intensity and standard

deviation

 ℎ𝑚𝑜𝑑𝑒𝑙 𝑔 = σ𝑖=1
𝑛 𝑎𝑖 exp{− 𝑔 − 𝜇𝑖

2/2𝜎𝑖
2}

 Determine parameters by
minimizing mismatch between
model and actual histogram with fit
function
 Match Gaussians to histogram

 𝐹 = σ𝑔∈𝐺 ℎ𝑚𝑜𝑑𝑒𝑙 𝑔 − ℎ𝑟𝑒𝑔𝑖𝑜𝑛 𝑔
2

 Can use Otsu’s as a starting guess
 Limit search space

MIXTURE MODELING

MULTI-SPECTRAL THRESHOLDING

 Compute thresholds in spectral bands independently and combine in a single image

 Used for remote sensing (e.g. satellite images), MRI, etc.

 Algorithm 6.3 (Sonka)

1. Compute histogram and segment between local minima on either side of maximum peak for
each band

2. Combine segmentation regions into multispectral image

3. Repeat on multispectral regions until each region is unimodal

REGION-BASED SEGMENTATION

 Regions are areas defined inside of borders
 Simple to go back and forth between both

 However, segmentation techniques differ

 Region growing techniques are typically better in noisy
images
 Borders are difficult to detect

 A region is defined by a homogeneity constraint
 Gray-level, color, texture, shape, model, etc.

 Each individual region is homogeneous

 Any two regions together are not homogeneous

REGION MERGING

 Start with each pixel as a region and combine regions
with a merge criterion
 Defined over adjacent regions (neighborhood)

 Be aware the merging results can be different depending
on the order of the merging
 Prior merges change region relationships

 Simplest merge methods compute statistics over small
regions (e.g. 2 × 2 pixels)
 Gray-level histogram used for matching

REGION MERGING VIA BOUNDARY MELTING

 Utilize crack information (edges between pixels)

 Merge regions if there are weak crack edges between them

REGION SPLITTING

Opposite of region merging

 Start with full image as single region and split to satisfy
homogeneity criterion

Merging and splitting do not result in the same
regions

 A homogenous split region may never have been grown
from smaller regions

Use same homogeneity criteria as in region merging

 Try to obtain advantages of both merging
and splitting

 Operate on pyramid images
 Regions are squares that correspond to pyramid

level

 Lowest level are pixels

 Regions in a pyramid level that are not
homogeneous are split into four subregions
 Represent higher resolution a level below

 4 similar regions are merged into a single
region at higher pyramid level

 Segmentation creates a quadtree
 Each leaf node represents a homogenous region

 E.g. an element in a pyramid level

 Number of leaf nodes are number of regions

SPLIT AND MERGE

WATERSHED SEGMENTATION

 Topography concepts

 Watersheds are lines dividing
catchment basins

 Region edges correspond to
high watersheds

 Low gradient areas correspond
to catchment basins

 All pixels in a basin are simply
connected and homogeneous
because they share the same
minimum

WATERSHED COMPUTATION

 Can build watersheds by
examining gray-level values
from lowest to highest

 Watersheds form when
catchment basins merge

 Raw watershed results in
oversegmentation

 Use of region markers can
improve performance
 Matlab tutorial

http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html

MATCHING

 Basic approach to segmentation by locating known objects (search for
patterns)
 Generally have a model for object of interest

 Various examples of matching with different levels of sophistication
 Optical character recognition (OCR)

 Template matching when font is known and image carefully aligned

 Font-independent OCR
 Match pattern of character

 Face recognition
 Match pattern of face to image

 More variability in appearance

 Pedestrian behavior matching
 Explain what a pedestrian is doing

TEMPLATE MATCHING

 Try to find template image in larger test image

 Minimize error between image and shifted template

 First term is a constant and the last term changes slowly so only the middle
term needs to be maximized

 Filtering (correlation) can
be used as a simple object
detector

 Mask provides a search
template

 “Matched filter” – kernels
look like the effects they are
intended to find

BINARY FILTERING AS DETECTION

image

template

CORRELATION MASKING

correlation

0.9 max threshold 0.5 max threshold

detected letter

NORMALIZED CROSS-CORRELATION

Extension to intensity values

 Handle variation in template and image brightness

scene

template

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/

WHERE’S WALDO

Detected template correlation map

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/

DETECTION OF SIMILAR OBJECTS

 Previous examples are detecting exactly
what we want to find
 Give the perfect template

 What happens with similar objects

 Works fine when scale, orientation, and
general orientation are matched

 What to do with different sized
objects, new scenes

Adapted from K. Grauman

TEMPLATE MATCHING STRATEGIES

 Detection of parts
 Full “pixel perfect” match may not exist, but smaller subparts may be

matched
 Connect subparts through elastic links

 Search at scale
 Pattern matching is highly correlated in space

 Neighborhoods around match have similar response

 Search at low resolution first and go to higher resolution for refinement
 Less comparisons, much faster

 Quit sure mismatches quickly
 Do not compute full correlation when error is too large
 Matches are rare so only spend time on heavy computation when

required (cascade classifier later)

EVALUATING SEGMENTATIONS

 Need to know what is the “right”
segmentation and then measure how
close and algorithm matches

 Supervised approaches
 Use “expert” opinions to specify

segmentation

 Evaluate by:
 Mutual overlap

 Border position errors (Hausdorff set
distance)

 Unsupervised approaches
 No direct knowledge of true

segmentation
 Avoid label ambiguity

 Define criterion to evaluate region
similarity and inter-region dissimilarity

 Beyond finding regions  semantic
segmentation
 Assign each pixel with a predefined category

label

 Use convolutional neural networks (CNNs)
to encode image features followed by
“decoding” to generate segmented image

 Highly dependent on data
 Lots of effort to generate large, high quality

datasets

 Survey papers:
 Image Segmentation Using Deep Learning: A

Survey (2020)

 A survey on deep learning techniques for image
and video semantic segmentation (2018)

 A Brief Survey on Semantic Segmentation with
Deep Learning (2020)

58

DEEP SEGMENTATION

https://arxiv.org/abs/2001.05566
https://www.sciencedirect.com/science/article/pii/S1568494618302813
https://www.sciencedirect.com/science/article/pii/S0925231220305476

