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OUTLINE

® Fundamentals
= Point, Line, and Edge Detection
® Thresholding

® Region-Based Segmentation




SEGMENTATION

= Transition toward more high level systems/analysis
= Now: Input = images > output = attributes of regions or objects
» Image processing : input = image =2 output = image
® Important but difficult task as part of image understanding
pipeline
= Best to control system as much as possible (e.g. lighting in a
factory inspection)

® When observation control is limited need to consider sensing
technology (e.g. thermal vs. visual imaging)

= Practically, may not want to limit to just imaging
® Operate using intensity similarity and discontinuity
= Regions vs. edges




FUNDAMENTALS

= Divide image into parts that correlate with objects or “world areas”
= Important step for image analysis and understanding
= Complete segmentation
= Disjoint regions corresponding to objects
" R=ULR;, RNR; =0, i#j
= Typically requires high level domain knowledge
= Partial segmentation

= Regions do not correspond directly to objects
= Divide image based on homogeneity property
= Brightness, color, texture, etc.

= Q(R;) = TRUE and Q(R; U R;) = FALSE
= High-level info can upgrade partial segmentation to complete segmentation
= Main goal is reduction in data volume for higher level processing



FUNDAMENTALS II

" Monochrome segmentation
based on either intensity
discontinuity or similarity

= Discontinuity

= Edge-based segmentation
= Boundaries of regions are distinct

® Similarity
= Region-based segmentation

* Image partitions are formed by

similar areas (based on some — _ .
FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the

Crit eria boundary of the inner region, obtained from intensity discontinuities. (¢) Result of
. segmenting the image into two regions. (d) Image containing a textured region.
(e) Result of edge computations. Note the large number of small edges that are

connected to the original boundary, making it difficult to find a unique boundary using
only edge information. (f) Result of segmentation based on region properties.
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POINT, LINE, AND EDGE DETECTION

® Look for sharp “local” changes in
intensity

= All require the use of derivatives

s L) =fa+1) - f(x)

fx Thick edges
o %:f(x+1)+f(x—1)—2f(x)

= Fine edges (more aggressive)
= Double response
= Sign determines intensity transition

= Edge

= Edge pixels — pixels at which the
intensity function changes abruptly

= FKdges (segments) — are connected edge
pixels
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FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image,
including the isolated noise point. (c) Simplified profile (the points are joined by dashes
for clarity). The image strip corresponds to the intensity profile, and the numbers in the
boxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs. (10.2-1) and (10.2-2).



EDGE DETECTION

" Locate changes in image intensity function
= [idges are abrupt changes

" Very important pre-processing step for many computer
vision techniques

= Object detection, lane tracking, geometry

" FEdges are important neurological and
psychophysical processes

® Part of human image perception loop

® Information reduction but not understanding

" Fldgels — edge element with strong magnitude
» Pixels with large gradient magnitude




INFORMATIVE EDGES

® Fdges arise from various physical phenomena during
image formation

= Trick is to determine which edges are most important

~ surface normal discontinuity ERR

. B

. — depth discontinuity ol
— highlights =

=

— surface color/texture e Al

- 5 e
= A

shadow/illumination discontinuity

Figure 5.15: Origin of edges, i.e., physical phenomena in image formation process which lead to
edges in images. At right, a Canny edge detection (see Section 5.3.5). © Cengage Learning 2015.



ISOLATED POINT DETECTION

® Use of second order derivative

= More aggressive response to
intensity change

= Laplacian

0%f = 0%f
" VY =5at 5

"V y) =fx+Ly) +
fx—Ly)+fxy+1)+
f(x'y_ 1) _4f(x')/)

= OQutput from thresholding
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FIGURE 10.4

(a) Point
detection
(Laplacian) mask.
(b) X-ray image
of turbine blade
with a porosity.
The porosity
contains a single
black pixel.

(c) Result of
convolving the
mask with the
image. (d) Result
of using Eq. (10.2-8)
showing a single
point (the point
was enlarged to
make it easier to
see). (Original
image courtesy of
X-TEK Systems,
Ltd.)



LINE DETECTION

= Again use Laplacian

= [ines are assumed to be thin with
respect to the size of the Laplacian
kernel

= Be aware that Laplacian
produces double response to a
line
® Positive response on one side of line

= Negative response on the other side

= Typically, thin lines are required

= Must appropriately select value (e.g.

positive response)
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FIGURE 10.5

(a) Original image.
(b) Laplacian
image; the
magnified section
shows the
positive/negative
double-line effect
characteristic of the
Laplacian.

(c) Absolute value
of the Laplacian.
(d) Positive values
of the Laplacian.




LINE DETECTION II

= [idges at a particular
orientation can be detected

= Adjust kernel to match desired
direction

-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

2 2 2 —1 2 —1 —1 2 —1 —1 2 —1

-1 -1 -1 -1 -1 2 -1 2 -1 2 —1 -1
Horizontal +45° Vertical —45°

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).
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FIGURE 10.7

(a) Image of a
wire-bond
template.

(b) Result of
processing with
the +45° line
detector mask in
Fig. 10.6.

(¢) Zoomed view
of the top left
region of (b).

(d) Zoomed view
of the bottom
right region of
(b). (e) The image
in (b) with all
negative values
set to zero. (f) All
points (in white)
whose values
satisfied the
conditiong = T,
where g is the
image in (e). (The
points in (f) were
enlarged to make
them easier to
see.)



EDGE MODELS

» (Classified according to intensity
profiles

= Step (ideal) edge — transition between
two (large) intensity levels in a small (1
pixel) distance

= Ramp edge — “real” edge thicker than 1
pixel width due to blurring of ideal edge

= Roof edge — blurred line to have
thickness

FIGURE 10.9 A 1508 x 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

abc
From left to right,

models (ideal
representations) of

a step, a ramp, and
aroof edge, and
their corresponding
intensity profiles.




EDGE DERIVATIVES

= First derivative

= Constant along ramp

= Magnitude used to detect edge

® Second derivative

= Dual response to ramp

® Sign used to determine whether
edge pixel is in dark or light side

of edge

= Zero-crossing used to detect
center of a thick edge
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FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.

(b) Detail near
the edge, showing
a horizontal
intensity profile,
together with its
first and second
derivatives.

Horizontal intensity
profile

First

derivative

Second

derivative

Zero crossing J




REAL EDGES WITH NOISE

= Real images will have noise that
corrupt the derivative operation

= Remember this is a high pass filter

» Second derivative very sensitive
to noise

= FEven small amounts of noise make it
impossible to use

= First derivative less sensitive
= Three steps for edge detection

= Image smoothing for noise reduction

= Detection of edge points (15 or 2nd
derivative)

= Edge localization to select only true
edge pixels

FIGURE 10.11 First column: Images and i l nsity pro fl ofa rdmp edge corrupted by
random Gaussmn nois e of zero mean and s d rd dev t f() () 0 1 l () nd 1() ()
intensity levels, p l Sec d olumn: Firs| d ve and inte

pro fl Tl rd ¢ ! ond-derivative ima g and in y prof fl



BASIC EDGE DETECTION

= Image gradient = Magnitude
oF
P — — (42 4 42 o
. Vf = grad(f) = g;] - | " M(xy) =mag(Vf) = |92+ g3 ~ lg<l +
9y |9y ]
= g, - gradient image = Rate of change in the direction of
= Direction of greatest change in intensity gradient vector
= Edge is perpendicular to the - A.ppro.x. only valid in horizontal vertical
directions

gradient direction o
= Direction

y

Gradient vegctor| Gradient vector

9y

X

= a(x,y) =tan!

L
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dge|direction gradient ¥

X

e white 255( /{5

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.
Note that the edge is perpendicular to the direction of the gradient vector at the point
where the gradient is computed. Each square in the figure represents one pixel.

Figure 5.16: Gradient direction and
edge direction ®  edge direction. @ Cengage Learning
2015.



GRADIENT OPERATORS

= Use digital approximations of partial
derivatives = first difference

" ge=flx+1Ly)—f(x,y)
" g, =fly+1D—f(xy)

ab

FIGURE 10.13

One-dimensional

masks used to

1 implement Egs.
(10.2-12) and

(10.2-13).

= (Can consider diagonal edges = Roberts
kernel

= Usually want odd symmetric kernels for
computational efficiency
= Prewitt — centered first difference

= Sobel — weighed centered first difference
(noise suppression)
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FIGURE 10.14

A 3 X 3region of
an image (the z’s
are intensity
values) and
various masks
used to compute
the gradient at
the point labeled
Z5.



EDGE EXAMPLES

» (Gradient images show preference to
edge direction

= Magnitude gives strength of edge

» Gradient thresholding used to
highlight strong edges

= Use smoothing for cleaner gradient
images
= See Fig. 10.18
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FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in

that image.
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FIGURE 10.16

(a) Original image
of size

834 x 1114 pixels,
with intensity
values scaled to
the range [0, 1].
(b) ‘gxl, the
component of the
gradient in the
x-direction,
obtained using
the Sobel mask in

© Fig. 10.14(f) to

filter the image.

= () |8, obtained

using the mask in
Fig. 10.14(g).

- (d) The gradient

image, [&| + [&yl.



MORE ADVANCED EDGE DETECTION

® Simple edge detection
» Filter image with smoothing mask and with gradient kernels
®* Does not account of edge characteristics or noise content

# Advanced detection

" Seeks to leverage image noise properties and edge
classification

= Marr-Hildreth detector
= Canny edge detector
®* Hough transform



MAAR-HILDRETH EDGE DETECTOR

= Insights = Also called Mexican hat
= Fdges (image features) depend on kernel
scale
= Fdge location is from zero-crossing i
(1) Three.

dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
crossings.

x%2+y?-20%1 -
e
(d) 5 X 5 mask

= 726(xy) = [
g approximation to

® ¢ is the space constant — defines circle VG the shape in (a).
0 0 -1 0 0 The negative of

this mask would

radlus be used in

. . 0 -1 -2 ] -1 0 practice.
= (Gaussian blurs the image at scales
much smaller than o

= Laplacian of Gaussian (LoG)
operator

x2+y2
202

= Second derivative Laplacian responds Zero srosing — ||\ - Zero crosing
to edges in all directions ~ . S R A A




MAAR-HILDRETH ALGORITHM

= g(x,y) = |[V26(x, y)| = f(x,y) = Simplification possible using the
= By linearity difference of Gaussians (DoQG)
= g(x,y) =V2[G(x,y) * f(x,9)] ® Similar to human visual process

= Smooth image first then apply
Laplacian
= Follow with zero crossing
detection

= Search a 3 X 3 neighborhood for
changes in sign in opposite pixels

= May consider magnitude threshold to
deal with noise

= Size of LoG filter (n X n) should
be greater than or equal to 6o

ab
|l

~ FIGURE 10.22

(a) Original image

 of size 834 X 1114

pixels, with
intensity values
scaled to the range

il [0, 1]. (b) Results

of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

= o =d4dandn = 25.

(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.



CANNY EDGE DETECTOR

= Three objectives

= Low error rate: find all edges with
minimal false detections

= Edge points localized: should find
center of true edge

= Single edge response: only single
pixel for thick edges

= Key operations

= Non-maxima suppression of groups of
large magnitude 1%' derivative
response

= Hysteresis threshold for long
connected edges

= Canny algorithm Overview

1.

Smooth image with Gaussian
tilter

Compute gradient magnitude
and angle

Apply nonmaxima suppression of
ogradient magnitude

Use hysteresis thresholding and
connectivity analysis to detect
and link edges



CANNY EDGE DETECTION I

= Popular edge detection algorithm = 3) Use non-maximal suppression

that produces a thin lines to get thin edges

= Compare edge value to neighbor
edgels in gradient direction

= 2) Compute gradient
= Determine magnitude and orientation f

(45 degree 8-connected neighborhood)

= 1) Smooth with Gaussian kernel

P+

-
) p_/ ‘m
A .

= 4) Use hysteresis thresholding to
prevent streaking

= High threshold to detect edge pixel,
low threshold to trace the edge

object Sobel Canny
http://homepages.inf.ed.ac.uk/rbf/HIPR2 /canny.htm



CANNY EDGE DETECTION II

Boundary in image

= Optimal edge detection algorithm
= Returns long thin (1 pixel wide)

Connected edges Neighboring pixels (defined
. . by edge direction)

* Non-maximal edge suppression Figure 6.10:
technique to return a single pixel for pixcloiadimoes
all edge Pixel under inspection Learning 2015.
= Examine pixels along gradient direction /\ s !;"*,\
= Only retain pixel if it is larger than gm‘gl‘ezh‘mﬂ“@:‘ : %ﬂ*" TR

neighbors
. Input Level | i é é é ; E ) E § \\\

= Hysteresis threshold to remove 3| i |
spurious responses and maintain B Wthmyt """"""""""
long connected edges pr—
= High threshold used to find definite A A

ed es Open Threshold | } h 7o
ges o pmmme A
® [.ow threshold to track edges F?.'P.S.‘?-'.T.h.rf-'ﬁh!‘?!?'lr.: .................. Rl "ih/ ..... f‘x_;_;....;_f,f’.% .......... '1 .........
B Input Level / i ; - i i ‘\\
% OutputLevel 2 hieessenet hesesses




NONMAXIMA SUPPRESSION

» Gradient produces thick edges
(for Steps/ramps) Edge normal —7 ST

® Consider 4 orientations in 3x3 !
o P1| P2 | P3 P | B2 | P3
neighborhood 7 “y

Ps | ® | Pe P4 |p® | Ps

. . . Edge € norma

" HOTIZOI}tal, Vertl.Ca]., and dlagonals Pr | Hs | Po||P1|Ps| P9 ) K E;llidientvecl:tol')
1. Quantize gradient angle into 8 . ‘b

- . ge norma —225° 22.5° c
dlreCtlonS M " FIGURE 10.24
B o o (a) Two Possible

= d; mapped from a(x,y) 1575 TS sredue Ey)tt”gigfg(

2. Suppress edge pixel if any of s e meighbortood,

(in gray) of a, the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a

it’s gradient neighbors has
greater magnitude

= gyv(p)=0if M(p) < M(d;) or —67.5°
—45°%dge 3 X3

M(d;) |
= gn(p) = M(p) otherwise s i

Horizontal edge direction has two
ranges, shown in

corresponding
shades of gray.

<— Vertical edge

+67.5°



CANNY EDGE EXAMPLES

Figure 6.11: (a) Non-maximal suppression of the data in Figure 6.9b. (b) Hysteresis applied to
(a); high threshold 70, low threshold 10. @ Cengage Learning 2015.

ﬁé\mﬁﬁfﬂ

Figure 5.23: Canny edge detection at two different scales. © Cengage Learning 2015.

Simple Edge Detection

e —

buprpeqorie BT S S .

A S ‘ 5 ‘ e = . 7 ’ /\. |
(c) (d) - 'ng lE E P % ltr ﬁ
Figure 6.9: Edge image thresholding. (a) Original image. (b) Edge image (low contrast edges I

enhanced for display). (c) Edge image thresholded at 30. (d) Edge image thresholded at 10.
© Cengage Learning 2015.




CANNY EDGE EXAMPLES II

FIGURE 10.25
(a) Original image

scaled to the range

[0,1].

smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

FIGURE 10.26

(a) Original head
CT image of size
512 x 512 pixels,

gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.

(d) Image
obtained using
the Canny
algorithm.




HOUGH TRANSFORM

" Segmentation viewed as the problem of finding objects
» Must be of known size and shape

= Typically hard to do because of shape distortions
= Rotation, zoom, occlusion

» Search for parameterized curves in image plane
"mc(x,a) =0
* a — n-dimensional vector of curve parameters

» Each edge pixel “votes” for different parameters and need to
find parameter set with most votes



HOUGH TRANSFORM FOR LINES

" Lines are the original motivation for Hough transform
" Lines in the real-world can be broken, collinear, or occluded
= Combine these collinear line segments into a larger extended line

®* Hough transform creates a parameter space for the line
= Every pixel votes for a family of lines passing through it
= Potential lines are those bins (accumulator cells) with high count

® Uses global rather than local information

® See hough.m, radon.m in Matlab



HOUGH TRANSFORM INSIGHT

= Want to search for all points that | -y

lie on a line \

= This is a large search (take two
points and count the number of

edgels) /\
o(xj-yj)

= Infinite lines pass through a \ b= —waty,

single point (x;, y;) .,

=

m oy = : . . L . FIGURE 10.31
yi = ax; +b = All points on a line will intersect in () 5-plane.
= Select any a, b parameter space space.

" Reparameterize = Divide parameter space into cells/bins and
accumulate votes across all a and b values

" h=—x;a+y; for a particular point

= gb-space representation has single = (Cells with high count are indicative of

many points voting for the same line
parameters (a, b)

line defined by point (x;,y;)



HOUGH TRANSFORM IN PRACTICE

= Use a polar parameterization of a line — why?

x;cosf +|y;sinf = p

__________________________

K o[ T
II|' i 1 1 | | I I |

. max | | | | I I |
xicosth + ysinf=p  [TTTTTTToTmo oo oS

\

d ¥
x P p

abc

FIGURE 10.32 (a) (p. #) parameterization of line in the xy-plane. (b) Sinusoidal curves in the pf#-plane; the
point of intersection (p’. #") corresponds to the line passing through points (x;., y;) and (x;, y;) in the xy-plane.
(c) Division of the p#-plane into accumulator cells.

= After finding bins of high count, need to verify edge
= Find the extent of the edge (edges do not go across the whole image)

® This technique can be extended to other shapes like circles



HOUGH TRANSFORM EXAMPLE I

Input image A Gayscale

-90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80

0
Hough space



HOUGH TRANSFORM EXAMPLE II

-300
200 {*

-100

100
200

300

80 -60 40 -20 0 20 40 60 80
9 (degrees) http://www.mathworks.com/help /images/analyzing-images.html



HOUGH TRANSFORM FOR CIRCLES

= Consider equation of circle = FEach edgel votes for a circle of radius r at
center (a, b)

= (x; —a)®>+ (x, — b)?> =717

. : ®» Accumulator array is now 3-dimensional
= (a,b) — center of circle; r — radius

= Usually for fixed radius circle

(a) (b)

o
AT
AN
"’//\\“’
AN
A

() (d)
Figure 6.31: Hough transform—example of circle detection. (a) Image of a dark circle, of
known radius r, on a bright background. (b) For each dark pixel, a potential circle-center locus
is defined by a circle with radius r and center at that pixel. (c¢) The frequency with which

image pixels occur On circle-center loci is determined-—the highest-frequency pixel represents (©) (@)
the center of the circle (marked by e). (d) The Hough transform correctly detects the circle Figure 6.32: Hough transform—circle detection. (a) Original image. (b) Edge image (note that
(marked by e) in the presence of incomplete circle information and overlapping structures. (See the edge information is far from perfect). (c) Parameter space. (d) Detected circles. ® Cengage

Figure 6.32 for a real-life example.) @ Cengage Learning 2015. Learning 2015.



HOUGH TRANSFORM CONSIDERATIONS

® Practical only for up to 3-dimensions
= Exponential growth of accumulator array

» Use gradient information to simplify process
®* Only accumulate limited number of bins

= Accounts for local consistency constraints
= Line pixels should be in edge direction (orthogonal to gradient direction)

" Weight accumulator by edge magnitude
® Consider only the strongest edges

= “Back project” strongest accumulator cells of each pixel to remove
other votes

® Sharpen accumulator response
= Line tracing
* Find endpoints of line



MULTISPECTRAL EDGES

= Pixel (i,j) has n-dimensional vector representation
= Trivial edge detection

= Operate on each spectral band separately

» Combine all bands to form single edge image
= Multiband (Roberts-like) edge operator

m2 X 2 Xn - neighborhood

>oroy [d(5)] [dG+1,5 +1)] >orey A +1,5)] [d(i,j +1)]

Vi [0 Sy [+ 1,5+ 0] /S0, [d6+1,9)° Sz [, + 0]
where d(k,1) = f.(k,1) — f(k,I).

(5.60)



THRESHOLDING

= Segment object from background = Requires the correct threshold of this to
g(i,j) = 0 fGH<T = Difficulty to use a single global threshold
= T threshold AL
= More often want adaptive threshold

= 1 object and 0 background
= T=T.1)

= f. - is smaller image region (e.g. subimage)
= Many simple variants
= Band thresholding - range of values for object

=  Multiband — multiple bands to give grayscale

result
STI 51

(a) (b)

(c) (d)

Figure 6.1: Image thresholding. (a) Original image. (b) Threshold segmentation. (c¢) Threshold Figure 6.2: Image thresholding modification. (a) Original image. (b) Border detection using
too low. (d) Threshold too hl,‘.{ll © Cengage Learning 2015. band-thresholding. © Cengage Learning 2015.



THRESHOLD DETECTION METHODS

= When Objects are Simﬂan the = In practice is difficult to tell if a
resulting histogram is bimodal distribution is bimodal
= Objects one color and background = There can be many local maxima
another = How should the correct one be
: : selected?
= Good threshold is between “peaks” in less ] ]
probable intensity regions " E.Otlce alSO. th?tbSI?Ce Ehe
= Intuitively the lowest point between peaks IStOgram 15 global, a \ IStOgram
o T for salt and pepper noise could be
! " | the same as for objects on
} | ‘ background
R = Should consider some local
o et neighborhood when building the
o N histogram
She i it laaly il () A, il O ioes Al bliodl A = Account for edges

(see top-left of Figure 6.5 for original image, in which the distinction between foreground and
background has been deliberately perturbed). Note a wide, shallow peak whose distribution
reaches from 0 to approximately 140, and a higher one more easily visible to the right. The
distributions overlap in the gray-levels 100-160. © Cengage Learning 2015.



OPTIMAL THRESHOLDING

= Model the histogram as a
weighted sum of normal
probability densities

(a)

Optimal Optimal Optimal
j/ - A\LR m
]
—

!Distribution of objects
Distribution of background

= Threshold selected to minimize
segmentation error (minimum

. . (b) Opmal | Optimal Conventional

number of mislabeled pixels) u%"""ﬁ"l‘é"“‘ Ml N

» Gray level closest to minimum i Optimal
probability between normal maxima Figure 6.4: Gray-level histograms approximated by two normal distributions—the threshold is

set to give minimum probability of segmentation error. (a) Probability distributions of back-
ground and objects. (b) Corresponding histograms and optimal threshold. @ Cengage Learning
2015.

= Difficulties

" Normal distribution assumption does
not always hold

= Useful tools:

= Maximum-likelihood classification

= Fxpectation maximization
u Hal“d to eStimate nOI‘mal pal‘ameteI‘S B (Faussian mixture mode]ing



OTSU’S ALGORITHM

= Automatic threshold detection
= Test all possible thresholds and find that which minimizes foreground /background variance
= “Tightest” distributions

1. Compute histogram H of image and normalize to make a probability
Apply thresholding at each gray-level t

= Separate histogram into background B and foreground F
3. Compute the variance o and op
4. Compute probability of pixel being foreground or background

" Wp = §'=0HU)

5. Select optimal threshold as THE ABERYSTWYTH FUNICULAR DISASIER| THE ABERYSTWYTH FUNICULAR DISASTER

DISASTER DISASTER DISASTER

Figure 6.5: Top left, an image with artificially stretched white background-——the image has also

_ been showered with random noise. Top right, thresholded with Otsu’s method: the histogram
O-(t) — Wp0Op (t) + Wr (t) OF (t) is shown in Figure 6.3, and the algorithm delivers ¢ = 130. At bottom, the results of ¢t =
115,130,145 on the trickiest part of the image; segmentation quality degrades very quickly.
© Cengage Learning 2015.

= = min o(t)



MIXTURE MODELING

Volume Volume Volume
% % %

= Assume Gaussian distribution for

12 12 12

each group/object ) S )

4 4 4

Gray matter

White matter

0o+ t t + y ¥ 0 0

= Defined by mean intensity and standard
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

deV1 at 1011 Gray level Gray level Gray level
(a) (b) (c)

— \'n 2 2
u hmo del (g) -_ l: 1 Cll eXp{— (g - l’ll) /2 O-l } Figure 6.6: Segmentation of 3D T1-weighted MR brain image data using optimal thresholding.

(a) Local gray-level histogram. (b) Fitted Gaussian distributions, global 3D image fit. (¢) Gaus-
sian distributions corresponding to WM, GM, and CSF. Courtesy of R. J. Frank, T. J. Grabowski,

= Determine parameters by e i
minimizing mismatch between
model and actual histogram with fit
function

= Match Gaussians to histogram

2
= F = deG (hmodel(g) - hregion(.g))
= Can use Otsu’s as a starting guess

* Limit search " ~
1 lt Searc Space Figure 6.7: Optimal MR brain image segmentation. Left column: original T1-weighted MR

images, two of 120 slices of the 3D volume. Middle left: Partial-volume maps of gray matter.
The brighter the voxel, the higher is the partial volume percentage of gray matter in the voxel.
Middle right: Partial-volume maps of white matter. Right column: Partial-volume maps of
cerebro-spinal fluid. Courtesy of R. J. Frank, T. J. Grabowski, The University of Iowa.



MULTI-SPECTRAL THRESHOLDING

= Compute thresholds in spectral bands independently and combine in a single image

= Used for remote sensing (e.g. satellite images), MRI, etc.
= Algorithm 6.3 (Sonka)

1. Compute histogram and segment between local minima on either side of maximum peak for
each band

2. Combine segmentation regions into multispectral image

3. Repeat on multispectral regions until each region is unimodal

O
D

(a) (b) (c)

Figure 6.8: Recursive multi-spectral thresholding. (a) Band 1 thresholding. (b) Band 2 thresh-
olding. (c¢) Multi-spectral segmentation. @ Cengage Learning 2015.



REGION-BASED SEGMENTATION

= Regions are areas defined inside of borders
® Simple to go back and forth between both
» However, segmentation techniques ditfer

" Region growing techniques are typically better in noisy
1mages
® Borders are ditficult to detect
= A region is defined by a homogeneity constraint
» Gray-level, color, texture, shape, model, etc.
= Fach individual region is homogeneous
" Any two regions together are not homogeneous



REGION MERGING

= Start with each pixel as a region and combine regions
with a merge criterion

= Defined over adjacent regions (neighborhood)

®* Be aware the merging results can be different depending
on the order of the merging

= Prior merges change region relationships

® Simplest merge methods compute statistics over small
regions (e.g. 2 X 2 pixels)
» Gray-level histogram used for matching



REGION MERGING VIA BOUNDARY MELTING

= Utilize crack information (edges between pixels)

= Merge regions if there are weak crack edges between them

Figure 6.40: Region merging segmentation. (a) Original image. (b) Pseudo-color representation
of the original image (in grayscale). (c) Recursive region merging. (d) Region merging via
boundary melting. Courtesy of R. Marik, Czech Technical University.



REGION SPLITTING

= Opposite of region merging

= Start with full image as single region and split to satisfy
homogeneity criterion

" Merging and splitting do not result in the same
regions

®* A homogenous split region may never have been grown
from smaller regions

= Use same homogeneity criteria as in region merging



SPLIT AND MERGE

= Try to obtain advantages of both merging / /
=
~

T Merging

and splitting iiting l
= QOperate on pyramid images // //

u Regions are Squares that COITeSpond to pyramld Figure 6.41: Split-and-merge in a hierarchical data structure. @ Cengage Learning 2015.
level

= Lowest level are pixels 00 | o1

= Regions in a pyramid level that are not
homogeneous are split into four subregions

=  Represent higher resolution a level below

® 4 similar regions are merged into a single
region at higher pyramid level
= Segmentation creates a quadtree

= FEach leaf node represents a homogenous region
= E.g. an element in a pyramid level

=  Number of leaf nodes are number of regions

02 03 L~ 310

30
2 313
32 33

310 311 312 313
Figure 6.42: Segmentation quadtree. @ Cengage Learning 2015.



WATERSHED SEGMENTATION

= Topography concepts

= Watersheds are lines dividing
catchment basins

= Region edges correspond to
high watersheds

= Low gradient areas correspond
to catchment basins

= All pixels in a basin are simply
connected and homogeneous
because they share the same
minimuim

Watersheds

% Catchment
> basins
L

(a) (b)
Figure 6.44: One-dimensional example of watershed segmentation. (a) Gray-level profile of
image data. (b) Watershed segmentation—Ilocal minima of gray-level (altitude) yield catchment
basins, local maxima define the watershed lines. © Cengage Learning 2015.



WATERSHED COMPUTATION

® Can build watersheds by
examining gray-level values
from lowest to highest

= Watersheds form when
catchment basins merge

= Raw watershed results in
oversegmentation

® Use of region markers can
improve performance

m Matlab tutorial

Figure 6.46: Watershed segmentation. (a) Original;. (b) Gradient image, 3 x 3 Sobel edge
detection, histogram equalized. (¢) Raw watershed segmentation. (d) Watershed segmentation
using region markers to control oversegmentation. Courtesy of W. Higgins, Penn State University.


http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html

MATCHING

= Basic approach to segmentation by locating known objects (search for
patterns)

= Generally have a model for object of interest

» Various examples of matching with different levels of sophistication

= Optical character recognition (OCR)
= Template matching when font is known and image carefully aligned
= Font-independent OCR
= Match pattern of character
= Face recognition
= Match pattern of face to image
= More variability in appearance
® Pedestrian behavior matching
= Explain what a pedestrian is doing



TEMPLATE MATCHING

= Try to find template image in larger test image

= Minimize error between image and shifted template

rr Cp
=D ) (Tij = Leptiay+5)* =0, (6.29)
=1 j=1
rr o7
B = Y3 (T~ herinss)
i=1 j=1
Tr Cr T er rr er

= Z Z 1 j — 2 Z Z(Tz ?IEG—|—‘I Ib‘|‘j‘ + Z Z(I:E“-'_i Eb‘|—j‘ 6 30:]

i=1 j=1 i=1 j=1 1 j5=1

= First term is a constant and the last term changes slowly so only the middle
term needs to be maximized

L A =

Corrr(x) =Y ¥ (Tijleotiznts) - (6.31)

i=1 j=1



BINARY FILTERING AS DETECTION

= Filtering (correlation) can
be used as a simple object
detector

" Mask provides a search
template

= “Matched filter” — kernels
look like the effects they are
intended to find

This 1s who I am.
Nobody said
you had to like 1it.

image

Y

template




CORRELATION MASKING

This 1s who I am.
Nobody said
you had to like it.

correlation detected letter

0.9 max threshold 0.5 max threshold



NORMALIZED CROSS-CORRELATION

" Fxtension to intensity values

® Handle variation in template and image brightness

template

scene

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



WHERE’'S WALDO

Detected template correlation map

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



DETECTION OF SIMILAR OBJECTS

= Previous examples are detecting exactly g What to do with different sized

what we want to find .
= Give the perfect template ObJeCtS, Nnew scenes

" What happens with similar objects

Template
Detected template
Figure 6.48: Template matching: A template of the
. . . letter R is sought in an image that has itself, a
[ | s/‘/ Orks flne When Scale’ ()]:‘]_en_ta}tl()l’]_7 and slightly rotated version, and a smaller version. The
. . correlation response (contrast stretched for display)
general OI'leIlt atIOIl are mat Ched illustrates the diffuse response seen for even small ad-
justments to the original. © Cengage Learning 2015.

Adapted from K. Grauman



TEMPLATE MATCHING STRATEGIES

= Detection of parts

= Full “pixel perfect” match may not exist, but smaller subparts may be
matched

= Connect subparts through elastic links
= Search at scale
= Pattern matching is highly correlated in space
= Neighborhoods around match have similar response

= Search at low resolution first and go to higher resolution for refinement
= Less comparisons, much faster

® (Quit sure mismatches quickly
®* Do not compute full correlation when error is too large

= Matches are rare so only spend time on heavy computation when
required (cascade classifier later)



EVALUATING SEGMENTATIONS

" Need to know what is the “right”
segmentation and then measure how
close and algorithm matches

= Supervised approaches

= Use “expert” opinions to specify
segmentation

m bv:
Eva’lua’te Y' Figure 6.53: Border positioning errors. (a) Border positioning errors are computed as directed

distances between the computer-determined and correct borders. (b) If errors are calculated in
u Mutual Overlap the opposite direction (from ground truth to the computer-determined border), a substantially

Figure 6.52: Mutual overlap: machine segmented region
in solid, ground truth in dashed. © Cengage Learning
2015.

Independent standard

Computer-detected border

Border positioning error ()

different answer may result. (¢) Zoomed area showing the difference in calculating directional

= Border position errors (Hausdorff set errors. © Cengage Learning 2015,
distance)

= Unsupervised approaches

= No direct knowledge of true
segmentation

= Avoid label ambiguity

= Define criterion to evaluate region
similarity and inter-region dissimilarity

Figure 6.51: A region from a dynamically enhanced MRI study with partly ambiguous bound-
ary. Two different experts have overlaid their judgments. Courtesy of O. Kubassova, S. Tanner,
Universily of Leeds.



DEEP SEGMENTATION

= Beyond finding regions = semantic

segmentation
= Assign each pixel with a predefined category
label
= Use convolutional neural networks (CNNs) |
to encode image features followed by e —
“decoding” to generate segmented image o

= Highly dependent on data
= Lots of effort to generate large, high quality

(a) Image (b) Semantic segmentation (c) Image classification
datasets

= Survey papers:

m Image Segmentation Using Deep Learning: A
Survey (2020)

m A survey on deep learning techniques for image
and video semantic segementation (2018)

(d) Object detection (e) Instance segmentation (f) Panoptic segmentation

m A Brief Survey on Semantic Segmentation with
Deep Learning (2020)



https://arxiv.org/abs/2001.05566
https://www.sciencedirect.com/science/article/pii/S1568494618302813
https://www.sciencedirect.com/science/article/pii/S0925231220305476

