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OUTLINE

Fundamentals

Point, Line, and Edge Detection

Thresholding

Region-Based Segmentation



SEGMENTATION

 Transition toward more high level systems/analysis
 Now: Input = images  output = attributes of regions or objects
 Image processing : input = image  output = image

 Important but difficult task as part of image understanding 
pipeline
 Best to control system as much as possible (e.g. lighting in a 

factory inspection)
 When observation control is limited need to consider sensing 

technology (e.g. thermal vs. visual imaging)
 Practically, may not want to limit to just imaging

 Operate using intensity similarity and discontinuity
 Regions vs. edges



FUNDAMENTALS

 Divide image into parts that correlate with objects or “world areas”
 Important step for image analysis and understanding

 Complete segmentation
 Disjoint regions corresponding to objects

 𝑅 = 𝑖=1ڂ
𝑛 𝑅𝑖 , 𝑅𝑖 ∩ 𝑅𝑗 = ∅, 𝑖 ≠ 𝑗

 Typically requires high level domain knowledge

 Partial segmentation
 Regions do not correspond directly to objects
 Divide image based on homogeneity property

 Brightness, color, texture, etc.

 𝑄 𝑅𝑖 = TRUE and 𝑄 𝑅𝑖 ∪ 𝑅𝑗 = FALSE

 High-level info can upgrade partial segmentation to complete segmentation

 Main goal is reduction in data volume for higher level processing



FUNDAMENTALS II

 Monochrome segmentation 
based on either intensity 
discontinuity or similarity 

 Discontinuity
 Edge-based segmentation 

 Boundaries of regions are distinct

 Similarity
 Region-based segmentation

 Image partitions are formed by 
similar areas  (based on some 
criteria 𝑄(. ))



POINT, LINE, AND EDGE DETECTION

 Look for sharp “local” changes in 
intensity

 All require the use of derivatives


𝜕𝑓

𝜕𝑥
= 𝑓′ 𝑥 = 𝑓 𝑥 + 1 − 𝑓 𝑥

 Thick edges


𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓 𝑥

 Fine edges (more aggressive)

 Double response

 Sign determines intensity transition

 Edge
 Edge pixels – pixels at which the 

intensity function changes abruptly

 Edges (segments) – are connected edge 
pixels



EDGE DETECTION

 Locate changes in image intensity function
 Edges are abrupt changes

 Very important pre-processing step for many computer 
vision techniques
 Object detection, lane tracking, geometry

 Edges are important neurological and 
psychophysical processes
 Part of human image perception loop
 Information reduction but not understanding

 Edgels – edge element with strong magnitude
 Pixels with large gradient magnitude



INFORMATIVE EDGES

Edges arise from various physical phenomena during 
image formation

 Trick is to determine which edges are most important



ISOLATED POINT DETECTION

 Use of second order derivative 

 More aggressive response to 
intensity change

 Laplacian

 𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2

 𝛻2𝑓 𝑥, 𝑦 = 𝑓 𝑥 + 1, 𝑦 +
𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 +
𝑓 𝑥, 𝑦 − 1 − 4𝑓(𝑥, 𝑦)

 Output from thresholding



LINE DETECTION

 Again use Laplacian

 Lines are assumed to be thin with 
respect to the size of the Laplacian 
kernel

 Be aware that Laplacian 
produces double response to a 
line

 Positive response on one side of line

 Negative response on the other side

 Typically, thin lines are required

 Must appropriately select value (e.g. 
positive response)



 Edges at a particular 
orientation can be detected

 Adjust kernel to match desired 
direction

LINE DETECTION II



 Classified according to intensity 
profiles

 Step (ideal) edge – transition between 
two (large) intensity levels in a small (1 
pixel) distance

 Ramp edge – “real” edge thicker than 1 
pixel width due to blurring of ideal edge

 Roof edge – blurred line to have 
thickness

EDGE MODELS

Real Edges



EDGE DERIVATIVES

 First derivative 

 Constant along ramp

 Magnitude used to detect edge 

 Second derivative

 Dual response to ramp

 Sign used to determine whether 
edge pixel is in dark or light side 
of edge

 Zero-crossing used to detect 
center of a thick edge



REAL EDGES WITH NOISE

 Real images will have noise that 
corrupt the derivative operation
 Remember this is a high pass filter

 Second derivative very sensitive 
to noise
 Even small amounts of noise make it 

impossible to use

 First derivative less sensitive
 Three steps for edge detection

 Image smoothing for noise reduction
 Detection of edge points (1st or 2nd

derivative)
 Edge localization to select only true 

edge pixels



BASIC EDGE DETECTION

 Image gradient

 𝛻𝑓 = 𝑔𝑟𝑎𝑑 𝑓 =
𝑔𝑥
𝑔𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

 𝑔𝑥 - gradient image

 Direction of greatest change in intensity

 Edge is perpendicular to the 
gradient direction

 Magnitude

 𝑀 𝑥, 𝑦 = 𝑚𝑎𝑔 𝛻𝑓 = 𝑔𝑥
2 + 𝑔𝑦

2 ≈ 𝑔𝑥 +

𝑔𝑦

 Rate of change in the direction of 
gradient vector

 Approx. only valid in horizontal vertical 
directions

 Direction

 𝛼 𝑥, 𝑦 = tan−1
𝑔𝑦

𝑔𝑥



GRADIENT OPERATORS

 Use digital approximations of partial 
derivatives  first difference 

 𝑔𝑥 = 𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦

 𝑔𝑦 = 𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥, 𝑦

 Can consider diagonal edges  Roberts 
kernel

 Usually want odd symmetric kernels for 
computational efficiency 
 Prewitt – centered first difference

 Sobel – weighed centered first difference 
(noise suppression)



 Gradient images show preference to 
edge direction

 Magnitude gives strength of edge

 Gradient thresholding used to 
highlight strong edges

 Use smoothing for cleaner gradient 
images

 See Fig. 10.18

EDGE EXAMPLES



MORE ADVANCED EDGE DETECTION 

 Simple edge detection

 Filter image with smoothing mask and with gradient kernels

 Does not account of edge characteristics or noise content

 Advanced detection

 Seeks to leverage image noise properties and edge 
classification

 Marr-Hildreth detector

 Canny edge detector

 Hough transform



MAAR-HILDRETH EDGE DETECTOR

 Insights
 Edges (image features) depend on 

scale

 Edge location is from zero-crossing

 Laplacian of Gaussian (LoG) 
operator

 𝛻2𝐺 𝑥, 𝑦 =
𝑥2+𝑦2−2𝜎2

𝜎4
𝑒
−
𝑥2+𝑦2

2𝜎2

 𝜎 is the space constant – defines circle 
radius

 Gaussian blurs the image at scales 
much smaller than 𝜎

 Second derivative Laplacian responds 
to edges in all directions

 Also called Mexican hat
kernel



 𝑔 𝑥, 𝑦 = 𝛻2𝐺 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦

 By linearity 

 𝑔 𝑥, 𝑦 = 𝛻2[𝐺 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦 ]

 Smooth image first then apply 
Laplacian

 Follow with zero crossing 
detection
 Search a 3 × 3 neighborhood for 

changes in sign in opposite pixels

 May consider magnitude threshold to 
deal with noise

 Size of LoG filter (𝑛 × 𝑛) should 
be greater than or equal to 6𝜎

 Simplification possible using the 
difference of Gaussians (DoG)

 Similar to human visual process

MAAR-HILDRETH ALGORITHM



CANNY EDGE DETECTOR 

 Three objectives
 Low error rate: find all edges with 

minimal false detections

 Edge points localized: should find 
center of true edge

 Single edge response: only single 
pixel for thick edges

 Key operations
 Non-maxima suppression of groups of 

large magnitude 1st derivative 
response

 Hysteresis threshold for long 
connected edges

 Canny algorithm Overview

1. Smooth image with Gaussian 
filter

2. Compute gradient magnitude 
and angle

3. Apply nonmaxima suppression of 
gradient magnitude 

4. Use hysteresis thresholding and 
connectivity analysis to detect 
and link edges



CANNY EDGE DETECTION I

 Popular edge detection algorithm 
that produces a thin lines

 1) Smooth with Gaussian kernel

 2) Compute gradient

 Determine magnitude and orientation 
(45 degree 8-connected neighborhood)

 3) Use non-maximal suppression 
to get thin edges
 Compare edge value to neighbor 

edgels in gradient direction

 4) Use hysteresis thresholding to 
prevent streaking
 High threshold to detect edge pixel, 

low threshold to trace the edge

𝑝

𝑝−

𝑝+ 𝑝

𝑝−

𝑝+
𝑡ℎ

𝑡𝑙

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

object Sobel Canny



 Optimal edge detection algorithm
 Returns long thin (1 pixel wide) 

connected edges

 Non-maximal edge suppression 
technique to return a single pixel for 
an edge
 Examine pixels along gradient direction

 Only retain pixel if it is larger than 
neighbors

 Hysteresis threshold to remove 
spurious responses and maintain 
long connected edges
 High threshold used to find definite 

edges

 Low threshold to track edges

CANNY EDGE DETECTION II 



NONMAXIMA SUPPRESSION

 Gradient produces thick edges 
(for steps/ramps)

 Consider 4 orientations in 3x3 
neighborhood
 Horizontal, vertical, and diagonals

1. Quantize gradient angle into 8 
directions

 𝑑𝑘 mapped from 𝛼(𝑥, 𝑦)

2. Suppress edge pixel if any of 
it’s gradient neighbors has 
greater magnitude

 𝑔𝑁 𝑝 = 0 if 𝑀 𝑝 < 𝑀(𝑑𝑘
+) or 

𝑀(𝑑𝑘
−)

 𝑔𝑁 𝑝 = 𝑀(𝑝) otherwise



CANNY EDGE EXAMPLES
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CANNY EDGE EXAMPLES II



HOUGH TRANSFORM

 Segmentation viewed as the problem of finding objects

 Must be of known size and shape

 Typically hard to do because of shape distortions

 Rotation, zoom, occlusion

 Search for parameterized curves in image plane

 𝑐 𝑥, 𝑎 = 0

 𝑎 – n-dimensional vector of curve parameters

 Each edge pixel “votes” for different parameters and need to 
find parameter set with most votes



HOUGH TRANSFORM FOR LINES

 Lines are the original motivation for Hough transform

 Lines in the real-world can be broken, collinear, or occluded
 Combine these collinear line segments into a larger extended line

 Hough transform creates a parameter space for the line
 Every pixel votes for a family of lines passing through it

 Potential lines are those bins (accumulator cells) with high count

 Uses global rather than local information

 See hough.m, radon.m in Matlab



 Want to search for all points that 
lie on a line
 This is a large search (take two 

points and count the number of 
edgels)

 Infinite lines pass through a 
single point (𝑥𝑖 , 𝑦𝑖)

 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏

 Select any 𝑎, 𝑏

 Reparameterize

 𝑏 = −𝑥𝑖𝑎 + 𝑦𝑖
 𝑎𝑏-space representation has single 

line defined by point (𝑥𝑖 , 𝑦𝑖)

 All points on a line will intersect in 
parameter space
 Divide parameter space into cells/bins and 

accumulate votes across all 𝑎 and 𝑏 values 
for a particular point

 Cells with high count are indicative of 
many points voting for the same line 
parameters (𝑎, 𝑏)

HOUGH TRANSFORM INSIGHT



HOUGH TRANSFORM IN PRACTICE

 Use a polar parameterization of a line – why?

 After finding bins of high count, need to verify edge
 Find the extent of the edge (edges do not go across the whole image)

 This technique can be extended to other shapes like circles



HOUGH TRANSFORM EXAMPLE I

Input image Grayscale Canny edge image


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HOUGH TRANSFORM EXAMPLE II

http://www.mathworks.com/help/images/analyzing-images.html



HOUGH TRANSFORM FOR CIRCLES

 Consider equation of circle

 𝑥1 − 𝑎 2 + 𝑥2 − 𝑏 2 = 𝑟2

 (𝑎, 𝑏) – center of circle; 𝑟 – radius

 Each edgel votes for a circle of radius  𝑟 at 
center (𝑎, 𝑏)

 Accumulator array is now 3-dimensional

 Usually for fixed radius circle



HOUGH TRANSFORM CONSIDERATIONS

 Practical only for up to 3-dimensions
 Exponential growth of accumulator array

 Use gradient information to simplify process
 Only accumulate limited number of bins
 Accounts for local consistency constraints

 Line pixels should be in edge direction (orthogonal to gradient direction)

 Weight accumulator by edge magnitude
 Consider only the strongest edges

 “Back project” strongest accumulator cells of each pixel to remove 
other votes
 Sharpen accumulator response

 Line tracing
 Find endpoints of line 



MULTISPECTRAL EDGES

Pixel (𝑖, 𝑗) has 𝑛-dimensional vector representation

Trivial edge detection

 Operate on each spectral band separately

 Combine all bands to form single edge image

Multiband (Roberts-like) edge operator

 2 × 2 × 𝑛 - neighborhood



 Segment object from background

 𝑔 𝑖, 𝑗 = ቊ
1 𝑓 𝑖, 𝑗 > 𝑇

0 𝑓 𝑖, 𝑗 ≤ 𝑇

 𝑇 – threshold 

 1 object and 0 background

 Requires the correct threshold of this to 
work

 Difficulty to use a single global threshold

 𝑇 = 𝒯(𝑓)

 More often want adaptive threshold

 𝑇 = 𝒯(𝑓, 𝑓𝑐)

 𝑓𝑐 - is smaller image region (e.g. subimage)

 Many simple variants

 Band thresholding - range of values for object

 Multiband – multiple bands to give grayscale 
result

THRESHOLDING



 When objects are similar, the 
resulting histogram is bimodal

 Objects one color and background 
another

 Good threshold is between “peaks” in less 
probable intensity regions

 Intuitively the lowest point between peaks

 In practice is difficult to tell if a 
distribution is bimodal

 There can be many local maxima
 How should the correct one be 

selected?

 Notice also that since the 
histogram is global, a histogram 
for salt and pepper noise could be 
the same as for objects on 
background

 Should consider some local 
neighborhood when building the 
histogram
 Account for edges

THRESHOLD DETECTION METHODS



 Model the histogram as a 
weighted sum of normal 
probability densities

 Threshold selected to minimize 
segmentation error (minimum 
number of mislabeled pixels)
 Gray level closest to minimum 

probability between normal maxima

 Difficulties
 Normal distribution assumption does 

not always hold

 Hard to estimate normal parameters 

 Useful tools:
 Maximum-likelihood classification
 Expectation maximization 

 Gaussian mixture modeling

OPTIMAL THRESHOLDING



 Automatic threshold detection
 Test all possible thresholds and find that which minimizes foreground/background variance

 “Tightest” distributions

1. Compute histogram 𝐻 of image and normalize to make a probability
2. Apply thresholding at each gray-level 𝑡
 Separate histogram into background 𝐵 and foreground 𝐹

3. Compute the variance 𝜎𝐵 and 𝜎𝐹
4. Compute probability of pixel being foreground or background

 𝑤𝐵 = σ𝑗=0
𝑡 𝐻(𝑗)

5. Select optimal threshold as 

 Ƹ𝑡 = min
𝑡

𝜎(𝑡)

 𝜎 𝑡 = 𝑤𝐵𝜎𝐵 𝑡 + 𝑤𝐹 𝑡 𝜎𝐹(𝑡)

OTSU’S ALGORITHM



 Assume Gaussian distribution for 
each group/object
 Defined by mean intensity and standard 

deviation

 ℎ𝑚𝑜𝑑𝑒𝑙 𝑔 = σ𝑖=1
𝑛 𝑎𝑖 exp{− 𝑔 − 𝜇𝑖

2/2𝜎𝑖
2}

 Determine parameters by 
minimizing mismatch between 
model and actual histogram with fit 
function
 Match Gaussians to histogram

 𝐹 = σ𝑔∈𝐺 ℎ𝑚𝑜𝑑𝑒𝑙 𝑔 − ℎ𝑟𝑒𝑔𝑖𝑜𝑛 𝑔
2

 Can use Otsu’s as a starting guess
 Limit search space

MIXTURE MODELING



MULTI-SPECTRAL THRESHOLDING

 Compute thresholds in spectral bands independently and combine in a single image

 Used for remote sensing (e.g. satellite images), MRI, etc.

 Algorithm 6.3 (Sonka)

1. Compute histogram and segment between local minima on either side of maximum peak for 
each band

2. Combine segmentation regions into multispectral image

3. Repeat on multispectral regions until each region is unimodal



REGION-BASED SEGMENTATION

 Regions are areas defined inside of borders
 Simple to go back and forth between both

 However, segmentation techniques differ

 Region growing techniques are typically better in noisy 
images
 Borders are difficult to detect

 A region is defined by a homogeneity constraint 
 Gray-level, color, texture, shape, model, etc.

 Each individual region is homogeneous

 Any two regions together are not homogeneous



REGION MERGING

 Start with each pixel as a region and combine regions 
with a merge criterion
 Defined over adjacent regions (neighborhood)

 Be aware the merging results can be different depending 
on the order of the merging
 Prior merges change region relationships

 Simplest merge methods compute statistics over small 
regions (e.g. 2 × 2 pixels)
 Gray-level histogram used for matching



REGION MERGING VIA BOUNDARY MELTING

 Utilize crack information (edges between pixels)

 Merge regions if there are weak crack edges between them



REGION SPLITTING

Opposite of region merging

 Start with full image as single region and split to satisfy 
homogeneity criterion

Merging and splitting do not result in the same 
regions

 A homogenous split region may never have been grown 
from smaller regions

Use same homogeneity criteria as in region merging



 Try to obtain advantages of both merging 
and splitting

 Operate on pyramid images
 Regions are squares that correspond to pyramid 

level

 Lowest level are pixels

 Regions in a pyramid level that are not 
homogeneous are split into four subregions
 Represent higher resolution a level below

 4 similar regions are merged into a single 
region at higher pyramid level

 Segmentation creates a quadtree
 Each leaf node represents a homogenous region

 E.g. an element in a pyramid level

 Number of leaf nodes are number of regions

SPLIT AND MERGE



WATERSHED SEGMENTATION

 Topography concepts

 Watersheds are lines dividing 
catchment basins

 Region edges correspond to 
high watersheds

 Low gradient areas correspond 
to catchment basins

 All pixels in a basin are simply 
connected and homogeneous 
because they share the same 
minimum



WATERSHED COMPUTATION

 Can build watersheds by 
examining gray-level values 
from lowest to highest

 Watersheds form when 
catchment basins merge

 Raw watershed results in 
oversegmentation

 Use of region markers can 
improve performance
 Matlab tutorial

http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html


MATCHING

 Basic approach to segmentation by locating known objects (search for 
patterns)
 Generally have a model for object of interest

 Various examples of matching with different levels of sophistication
 Optical character recognition (OCR)

 Template matching when font is known and image carefully aligned

 Font-independent OCR
 Match pattern of character

 Face recognition
 Match pattern of face to image

 More variability in appearance

 Pedestrian behavior matching
 Explain what a pedestrian is doing



TEMPLATE MATCHING

 Try to find template image in larger test image

 Minimize error between image and shifted template

 First term is a constant and the last term changes slowly so only the middle 
term needs to be maximized



 Filtering (correlation) can 
be used as a simple object 
detector

 Mask provides a search 
template

 “Matched  filter” – kernels 
look like the effects they are 
intended to find

BINARY FILTERING AS DETECTION

image

template



CORRELATION MASKING

correlation 

0.9 max threshold 0.5 max threshold 

detected letter 



NORMALIZED CROSS-CORRELATION

Extension to intensity values

 Handle variation in template and image brightness

scene

template

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



WHERE’S WALDO

Detected template correlation map

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



DETECTION OF SIMILAR OBJECTS

 Previous examples are detecting exactly 
what we want to find
 Give the perfect template

 What happens with similar objects

 Works fine when scale, orientation, and 
general orientation  are matched

 What to do with different sized 
objects, new scenes

Adapted from K. Grauman



TEMPLATE MATCHING STRATEGIES

 Detection of parts
 Full “pixel perfect” match may not exist, but smaller subparts may be 

matched
 Connect subparts through elastic links

 Search at scale
 Pattern matching is highly correlated in space

 Neighborhoods around match have similar response

 Search at low resolution first and go to higher resolution for refinement
 Less comparisons, much faster

 Quit sure mismatches quickly
 Do not compute full correlation when error is too large
 Matches are rare so only spend time on heavy computation when 

required (cascade classifier later)



EVALUATING SEGMENTATIONS

 Need to know what is the “right” 
segmentation and then measure how 
close and algorithm matches

 Supervised approaches
 Use “expert” opinions to specify 

segmentation

 Evaluate by:
 Mutual overlap

 Border position errors (Hausdorff set 
distance)

 Unsupervised approaches
 No direct knowledge of true 

segmentation
 Avoid label ambiguity

 Define criterion to evaluate region 
similarity and inter-region dissimilarity 



 Beyond finding regions  semantic 
segmentation
 Assign each pixel with a predefined category 

label

 Use convolutional neural networks (CNNs) 
to encode image features followed by 
“decoding” to generate segmented image

 Highly dependent on data
 Lots of effort to generate large, high quality 

datasets

 Survey papers:
 Image Segmentation Using Deep Learning: A 

Survey (2020)

 A survey on deep learning techniques for image 
and video semantic segmentation (2018)

 A Brief Survey on Semantic Segmentation with 
Deep Learning (2020)
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DEEP SEGMENTATION

https://arxiv.org/abs/2001.05566
https://www.sciencedirect.com/science/article/pii/S1568494618302813
https://www.sciencedirect.com/science/article/pii/S0925231220305476

