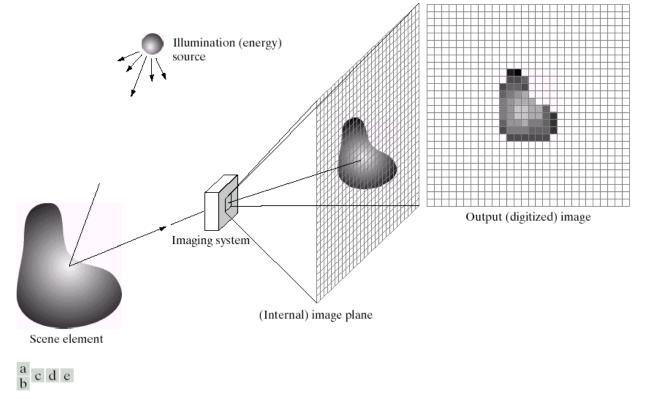
ECG782: MULTIDIMENSIONAL DIGITAL SIGNAL PROCESSING DIGITAL IMAGE FUNDAMENTALS

<u>http://www.ee.unlv.edu/~b1morris/ecg782</u>

OUTLINE


- Image Formation and Models
- Pixels
- Pixel Processing
- Color

M-D SIGNALS

- Use mathematical models to describe signals
 - A function depending on some variable with a physical meaning
- ID signal
 - E.g. speech, audio, voltage, current
 - Dependent on "time"
- 2D signal
 - E.g. image
 - Dependent on spatial coordinates in a plane
- 3D signal
 - E.g. volume in space, video
- M-D signal
 - E.g. ???

IMAGE FORMATION

Incoming light energy is focused and collected onto an image plane

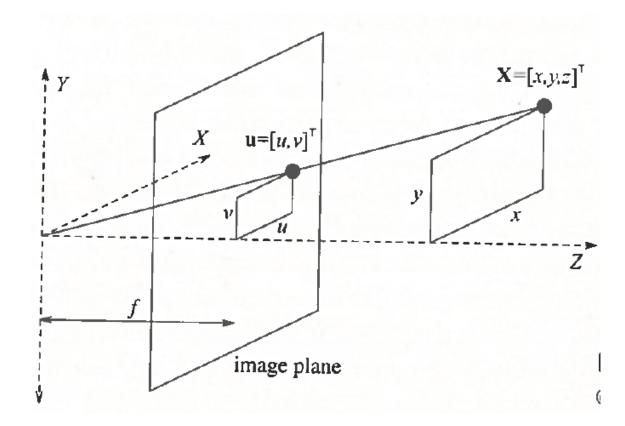
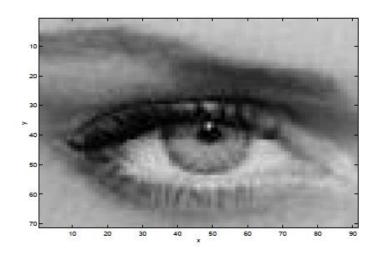


FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

IMAGE FORMATION MODEL

- Imaging takes the 3D world and projects it onto a 2D image
- Simple model for the process is called the pinhole camera
- $X = [x, y, z]^T$
 - represents point in world 3D space
- $u = [u, v]^T$
 - represents a 2D point on image plane
- f focal length of camera
- World-image relationship

•
$$u = \frac{xf}{z}$$
 $v = \frac{yf}{z}$


PERSPECTIVE PROJECTION

- Pinhole camera causes perspective distortion
 - Loss of information from perspective projection
 - The transform is not one-to-one
 - A line in space gets mapped to the same point
 - Need depth information to resolve ambiguity
- Orthographic (parallel) projection
 - \blacksquare Linear approximation with $f \to \infty$
 - \blacksquare This is how far away objects $z \to \infty$ are mapped onto image plane

IMAGE REPRESENTATION

Multiple equivalent representations

Image

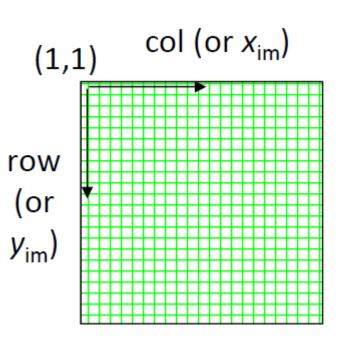
Surface

Matrix

188 186 188 187				3 153 156 158 156 153
189 189 188 181	163 135 109 104	$113 \ 113 \ 110$	109 117 134 147	$7 \ 152 \ 156 \ 163 \ 160 \ 156$
190 190 188 176	159 139 115 106	$114 \ 123 \ 114$	111 119 130 141	154 165 160 156 151
190 188 188 175		$113 \ 126 \ 112$	113 127 133 137	$7\ 151\ 165\ 156\ 152\ 145$
191 185 189 177	158 138 110 99	$112 \ 119 \ 107$	115 137 140 135	$5\ 144\ 157\ 163\ 158\ 150$
193 183 178 164	$148 \ 134 \ 118 \ 112$	119 117 118	106 122 139 140	$0\ 152\ 154\ 160\ 155\ 147$
185 181 178 165	149 135 121 116	$124 \ 120 \ 122$	109 123 139 141	154 156 159 154 147
175 176 176 163	145 131 120 118	$125 \ 123 \ 125$	112 124 139 142	2 155 158 158 155 148
170 170 172 159	137 123 116 114	119 122 126	113 123 137 141	156 158 159 157 150
171 171 173 157	$131 \ 119 \ 116 \ 113$	$114 \ 118 \ 125$	113 122 135 140) 155 156 160 160 152
174 175 176 156				155 155 158 159 152
176 174 174 151	123 119 126 121	$112 \ 108 \ 122$	115 123 137 143	$3\ 156\ 155\ 152\ 155\ 150$
175 169 168 144		$109 \ 106 \ 122$		
179 179 180 155	127 121 118 109	$107 \ 113 \ 125$	133 130 129 139	$9\ 153\ 161\ 148\ 155\ 157$
176 183 181 153	122 115 113 106	$105 \ 109 \ 123$	132 131 131 140) 151 157 149 156 159
180 181 177 147	115 110 111 107	$107 \ 105 \ 120$	132 133 133 141	150 154 148 155 157
181 174 170 141	113 111 115 112			
180 172 168 140	114 114 118 113			$5\ 157\ 162\ 153\ 153\ 148$
186 176 171 142	$114 \ 114 \ 116 \ 110$	$108 \ 104 \ 116$	125 128 134 148	$8\ 161\ 165\ 159\ 157\ 149$
185 178 171 138	109 110 114 110	$109 \ 97 \ 110$	121 127 136 150	$0\ 160\ 163\ 158\ 156\ 150$

IMAGE REPRESENTATION

- Image f(x, y) is a 2D function
 - f amplitude, gray level, or brightness
 - (x, y) spatial coordinates
 - Conceptually, (x, y) are continuous but are discrete in practice
- In general, the function can be vector-valued
 - E.g. color images represented by (red, green, blue)
 - $f(x,y) = [r,g,b]^T$
- The image function can be M-dimensional
 - E.g. computed tomography (CT) images are 3D
 f(x, y, z) represents x-ray absorption at point (x, y, z)

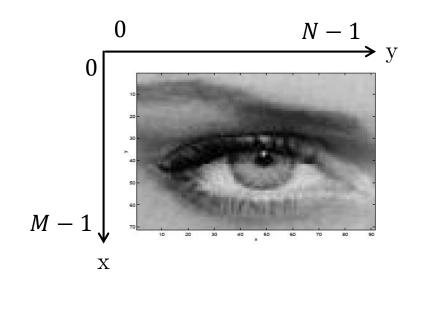

IMAGE AS FUNCTION

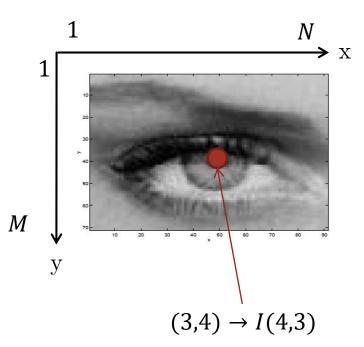
- Think of an image as a function, f, that maps from \mathbb{R}^2 to \mathbb{R}
 - $0 < f(x, y) < \infty$ is the intensity at a point (x, y)
- In reality, an image is defined over a rectangle with a finite range of values
 - $f:[a,b] \times [c,d] \rightarrow [0,1]$
- Computationally, [0,1] range is convenient but usually we have an 8-bit quantized representation
 - 0 < f(x, y) < 255
- Color image is just three separate functions pasted together

•
$$f(x,y) = [r(x,y); g(x,y); b(x,y)]$$

IMAGE AS MATRIX

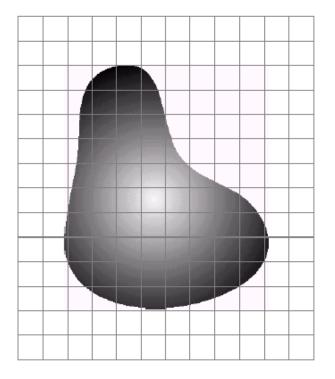
- Images are usually represented by matrices
 - $M \times N$ dimension
- Be aware that images can have different origin definitions
 - Bottom left typical Cartesian coordinates
 - Upper left typical image definition (matrix or table notation)
 - Matlab uses (1,1) for origin not (0,0)

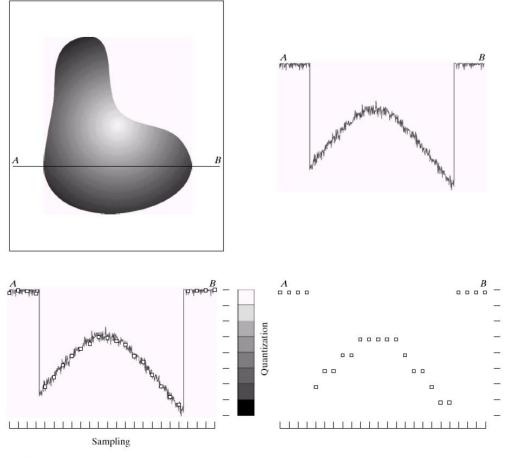

- Index an element either by
 - (*x*, *y*)
 - (row, col)


MATRIX NOTATION

- Mathematical
- Notation starts with f(0,0)

Matlab


- Notation starts with I(1,1)
 - No zero indexing
 - Swapped axis


IMAGE SAMPLING

• A continuous image is sampled and ordered into a image grid

- Each grid element is known as a pixel
 - Voxel for volume element
- Consider the pixel as the smallest unit in an image
 - This is not quite a delta because it has a finite size on the CMOS sensor
 - It is possible to do sub-pixel processing (e.g. corner detection)

QUANTIZATION

a b c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

- Quantization gives the number of output levels L
- a) Continuous image
- b) Scan line from A to B
- c) Sampling (horizontal bar) and quantization (vertical bar)
- d) Digital scan line resulting effect of sampling and quantization

QUANTIZATION LEVELS

- L = number of output levels
- k = number of bits per pixel
- Output range of image
 - $[0, L 1] = [0, 2^k 1]$
- Image storage size
 - $b = M \times N \times k$
 - Number of bits to store image with dimensions $M \times N$
- 8-bits per channel is typical
 - Provide enough resolution to provide quality visual reproduction

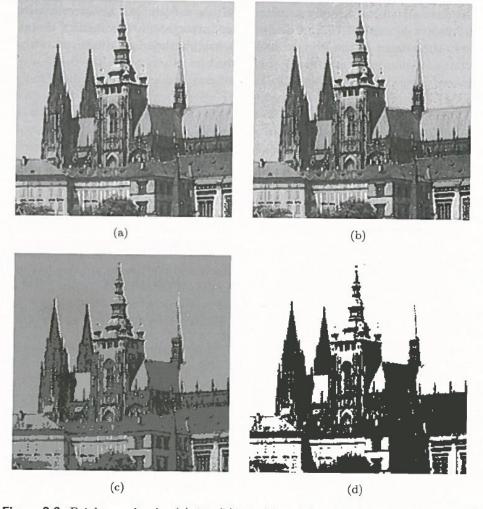
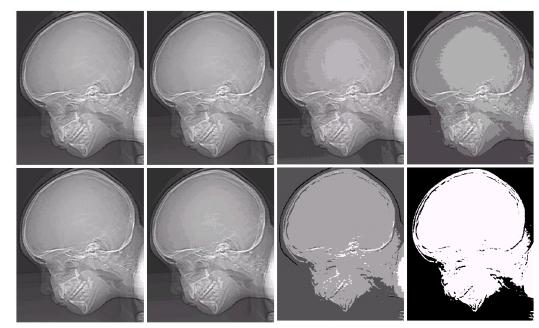


Figure 2.3: Brightness levels. (a) 64. (b) 16. (c) 4. (d) 2. © Cengage Learning 2015.


RESOLUTION

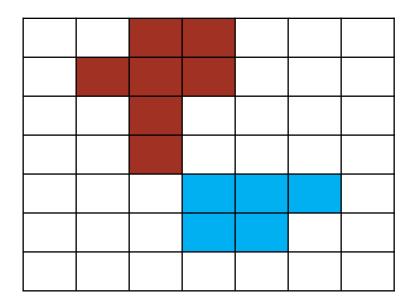
- Spatial resolution → smallest discernible detail in an image
- Controlled by the sampling factor (the size

 $M \times N$ of the CMOS sensor)

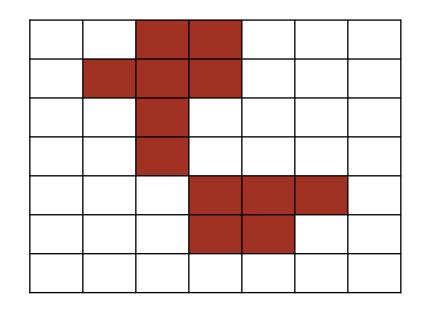
- Gray-level resolution → smallest discernible change in gray level
 - Based on number of bits for representation

PIXEL NEIGHBORHOOD

 The pixel neighborhood corresponds to nearby pixels


(x-1, y-1)	(x, y-1)	(x+1, y-1)
(x-1, y)	(x, y)	(x+1, y)
(x-1, y+1)	(x, y+1)	(x+1, y+1)

4-neighbors


- Horizontal and vertical neighbors
- 8-neighbors
 - Include 4-neighbors and the diagonal pixels

CONNECTIVITY

- Path exists between pixels
- 4-connected

8-connected

IMAGE PROCESSING

- Usually the first stage of computer vision applications
 - Pre-process an image to ensure it is in a suitable form for further analysis
- Typical operations include:
 - Exposure correction, color balancing, reduction in image noise, increasing sharpness, rotation of an image to straighten

2D SIGNAL PROCESSING

- Image processing is an extension of signal processing to two independent variables
 - Input signal \rightarrow output signal
- General system

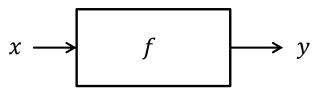
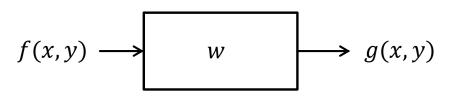



Image processing

- Linear operators
 - H(af + bg) = aH(f) + bH(g)
 - Input is an image, output is an image
- Important class of operators for image processing because of the wealth of theoretical and practical results
 - E.g. signal processing
- However, non-linear operations can provide better performance but not always in predictable ways.

POINT OPERATORS/PROCESSES

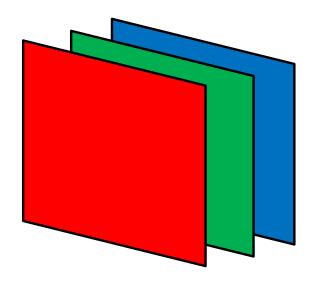
 Output pixel value only depends on the corresponding input pixel value

- Often times we will see operations like dividing one image by another
 - Matrix division is not defined
 - The operation is carried out between corresponding pixels in the two image
 - Element-by-element dot operation in Matlab
 - >> I3 = I1./I2
 - Where I1 and I2 are the same size

PIXEL TRANSFORMS

Gain and bias (Multiplication and addition of constant)

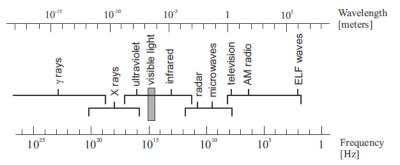
- g(x,y) = a(x,y)f(x,y) + b(x,y)
- a (gain) controls contrast
- **b** (bias) controls brightness


Notice parameters can vary spatially (think gradients)

Linear blend

- $g(x) = (1 \alpha)f_0(x) + \alpha f_1(x)$
- We will see this used later for motion detection in video processing

COLOR TRANSFORMS


- Usually we think of a color image as three images concatenated together
 - Have a red, green, blue slice corresponding to the notion of primary colors

- Manipulations of these color channels may not correspond directly with desired perceptual response
 - Adding bias to all channels may actually change the apparent color instead of increasing brightness
- Need other representations of color for mathematical manipulation

COLOR IMAGES

- Color comes from underlying physical properties
- However, humans do not perceive color in the same physical process
 - There is some subjectivity (e.g. color similarity)

Figure 2.23: Division of the electromagnetic spectrum (ELF is Extremely Low Frequencies). © Cengage Learning 2015.

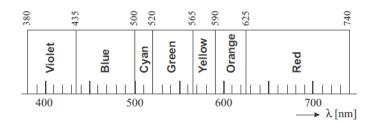


Figure 2.24: Wavelength λ of the spectrum visible to humans. © Cengage Learning 2015.

HUMAN COLOR PERCEPTION

• Cones in human retina are sensitive to color

- In the center of eye
- 3 different types for different EM frequency sensitivity
- Rods are monochromatic
 - On outside of the eye and good for low lighting and motion sensing

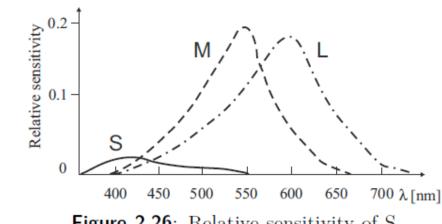


Figure 2.26: Relative sensitivity of S, M, L cones of the human eye to wavelength. © Cengage Learning 2015.

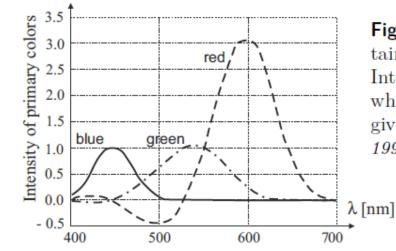
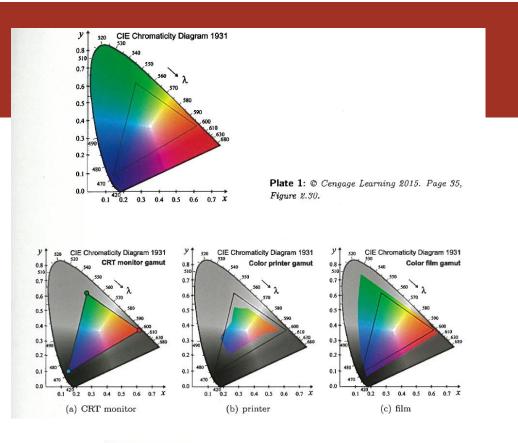
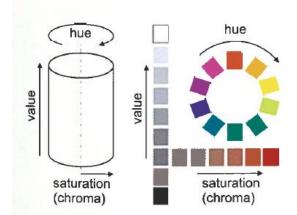




Figure 2.27: Color matching functions obtained in the color matching experiment. Intensities of the selected primary colors which perceptually match spectral color of given wavelength λ . Based on [Wandell, 1995].

COLORSPACES

- Uniform method for defining colors
- Can transform from one to another
 - Want to take advantage of properties and color gamut
- XYZ
 - International absolute color standard
 - No negative mixing
- RGB
 - Additive color mixing for red, green, and blue
 - Widely used in computers
- CMYK
 - Cyan, magenta, yellow, black
 - Used for printers and based off of reflectivity
- HSV
 - Hue, saturation, and value = color, amount, brightness
 - Closer to human perception

