Adaptive Background Mixture Models for Real-Time Tracking

Chris Stauffer and W.E.L Grimson
CVPR 1998

Brendan Morris

http://www.ee.unlv.edu/~b1morris/ecg782/
Motivation

• Video monitoring and surveillance is a challenging task

• Must deal with
 ▫ Cluttered areas, shadows, occlusions, lighting changes, moving elements in scene, slow moving objects, objects (dis)appear
Standard Practice

- Use of adaptive background model

 \[B(x, y, t) = (1 - \alpha)B(x, y, t - 1) + \alpha I(x, y, t) \]

 - \(\alpha \) – is the learning rate

- Strengths: simple and effective of scenes with mostly background and constantly moving objects

- Other techniques try to model the background pixels statistically but cannot deal with bimodal background

 - Kalman filter to track pixel value and has automatic threshold
 - Gaussian distribution for each pixel used to classify as a background or not
Standard Limitations

- Weakness: Poor performance for many slow moving objects, recovers slowly, and uses a single threshold for the entire scene

- Example of a rainy day
 - Pixel intensity values over 16 frames (rain occurs halfway through)
 - 139,140,141,141,138,140,140,139,240,241,243,244,180,141,140,142
 - Model as two different distributions

\[\begin{align*}
\mu_1 &= 139.75, \delta_1 = 1.22 \\
\mu_2 &= 196.37, \delta_2 = 50.43
\end{align*} \]
Contributions

• Develop a computationally efficient background modeling technique

• Pixel intensity distribution modeled using a mixture of Gaussians
 ▫ Able to model arbitrary distributions (e.g. bimodal)

• Designed an online approximation for computationally efficient update of model
Background Distribution

• Single Gaussian distribution is insufficient for real scenes over long periods
 □ Mean background assumes a single distribution with the threshold a variance parameter
• Many scenarios with multiple values for a pixel

Robust Background Subtraction

- Should handle:
 - Lighting changes
 - Adaptive
 - Repetitive motion from clutter
 - Multimodal distribution
 - Long term scene changes
 - Multi-threshold

Differing threshold over time

Bimodal distribution over time

RG plots of a single pixel
Algorithm Overview

- Pixel value is modeled as a mixture of adaptive Gaussian distributions
 - Why a mixture?
 - Multiple surfaces appear in a pixel (mean background assumes a single pixel distribution)
 - Why adaptive?
 - Lighting conditions change
- Gaussians are evaluated to determine which ones are most likely to correspond to the background
 - Based on persistence and variance
- Pixels that do not match the background Gaussians are classified as foreground
Online Mixture Model

- History of a pixel is known up to current time t
 \[\{X_1, \ldots, X_t\} = \{I(x_o, y_o, i) : 1 \leq i \leq t\} \]
- Model the history as a mixture of K Gaussian distributions
 \[P(X_t) = \sum_{i=1}^{K} w_{i,t} \mathcal{N}(X_t | u_{i,t}, \Sigma_{i,t}) \]
 - $w_{i,t}$ - prior probability (weight) of Gaussians i
- Able to represent arbitrary distributions
- Gaussian distribution
 - Univariate
 \[\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
 - Multivariate
 \[\mathcal{N}(x | \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)} \]
Mixture Model Example

- For a grayscale image with $K = 5$
 - Pixel intensity distribution (over time) modeled with five Gaussians
Model Adaption I

- Online K-means approximation is used to update the Gaussians
 - Enables fast and efficient model parameter estimation

- Each pixel is compared with its distribution model
 - New pixel X_{t+1} is compared with each of the existing K Gaussians until a match is found
 - Match is defined as a pixel value within 2.5σ standard deviations of a distribution
Model Adaption II

- Match found:

- Update parameters
 - $\mu_{i,t+1} = (1 - \rho)\mu_{i,t} + \rho X_{t+1}$
 - $\sigma^2_{i,t+1} = (1 - \rho)\sigma^2_{i,t} + \rho (X_{t+1} - \mu_{i,t})^2$
 - $\rho = \alpha \mathcal{N}(X_{t+1} | \mu_{i,t}, \sigma^2_{i,t})$
 - α – is a learning rate

- Update Gaussian weights
 - $w_{i,t+1} = (1 - \alpha)w_{i,t} + \alpha (M_{i,t+1})$
 - $M_{i,t+1} = 1$ for matching Gaussian or $M_{i,t+1} = 0$ for all others
 - Match increases weight
Model Adaption III

• No match found:

• None of the K Gaussians match pixel value X_{t+1}
 ▫ Observed value not well explained by model
• Replace the least probable distribution with a new one
 ▫ Newly created distribution based on current value
 • $\mu_{t+1} = X_{t+1}$
 • Has high variance and low prior weight
 ▫ Least probable in the ω/σ sense (to be explained)
Background Model Estimation

• A background pixel value should be consistent

• Heuristic: Gaussians with the most **supporting evidence** and **least variance** should correspond to the background

• Gaussians are ordered by the value of ω / σ
 ▫ High support ω and smaller variance σ give larger value

• First B distributions are selected as the background model
 ▫ $B = \arg\min_b (\sum_{i=1}^b w_i > T)$
 • T minimum portion of image expected to be background
Background Estimation Example

- After background estimation, red are the background and black are foreground (not background)
Results

- Not much in paper, comparison from homework
Discussion

• Advantages
 ▫ Different threshold for each pixel
 ▫ Pixel-wise thresholds adapt over time
 ▫ Objects are allowed to become part of the background without destroying the existing background model
 ▫ Provides fast recovery

• Disadvantages
 ▫ Cannot handle sudden, drastic lighting changes
 ▫ Must have good Gaussian initialization (median filtering)
 ▫ There are a number of parameters to tune
More Issues?

- Shadows detection
 - [Prati, Mikic, Trivedi, Cucchiara 2003]

- Chen & Aggarwal: The likelihood of a pixel being covered or uncovered is decided by the relative coordinates of optical flow vector vertices in its neighborhood.

- Oliver et al.: “Eigenbackgrounds" and its variations.

- Seki et al.: Image variations at neighboring image blocks have strong correlation.
Simple Improvement

- Incorporate both spatial and temporal information into the background model
- Adaptive background mixture model + 3D connected component analysis [Goo et al.]
 - 3rd dimension is time
Summary

• Simple background subtraction approaches such as fame diff, mean, and median filtering are fast
 ▫ Constant thresholds make them ill-suited for challenging real-world problems
• Adaptive background mixture model approach can handle challenging situations
 ▫ Bimodal backgrounds, long-term scene changes, and repetitive motion
• Improvements include upgrade the approach with temporal information or using region-based techniques
Thank You

- Questions?

Background subtraction implementation using GMM at OpenCV
References

• Reading

• Background Subtraction Datasets
 ▫ https://sites.google.com/site/backgroundsubtraction/test-sequences