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Motivation

- Video monitoring and surveillance is a
challenging task

o

» Must deal with

= Cluttered areas, shadows, occlusions, lighting
changes, moving elements in scene, slow moving
objects, objects (dis)appear
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Standard Practice

- Use of adaptive background model
» B(x,y,t) =(1—a)B(x,y,t —1) + al(x,y,t)
 a — is the learning rate
- Strengths: simple and effective of scenes with mostly
background and constantly moving objects

» Other techniques try to model the background pixels
statistically but cannot deal with bimodal
background

= Kalman filter to track pixel value and has automatic
threshold

= Gaussian distribution for each pixel used to classify as
a background or not
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Standard Limitations

- Weakness: Poor performance
for many slow moving objects,
recovers slowly, and uses a
single threshold for the entire
scene
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Contributions

- Develop a computationally efficient background
modeling technique

- Pixel intensity distribution modeled using a
mixture of Gaussians
= Able to model arbitrary distributions (e.g.
bimodal)
» Designed an online approximation for
computationally efficient update of model



Background Distribution

Single Gaussian distribution is

insufficient for real scenes

over long periods

> Mean background assumes a
single distribution with the
threshold a variance
parameter

- Many scenarios with multiple
values for a pixel
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Robust Background Subtraction

 Should handle:
= Lighting changes
* Adaptive RG plots of a
= Repetitive motion from single pixel

clutter
« Multimodal distribution
> Long term scene changes i o
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« Multi-threshold

i

U

_ (@)
Differing threshold = Q
over time =

Bimodal distribution
over time




Algorithm Overview

- Pixel value is modeled as a mixture of adaptive
Gaussian distributions
> Why a mixture?

- Multiple surfaces appear in a pixel (mean
background assumes a single pixel distribution)

» Why adaptive?
- Lighting conditions change
- Gaussians are evaluated to determine which
ones are most likely to correspond to the
background

» Based on persistence and variance

- Pixels that do not match the background
Gaussians are classified as foreground



Online Mixture Model

- History of a pixel is known up to current time ¢t
o {Xq, o, Xe b ={I(x,,7,,1): 1 <i <t}

- Model the history as a mixture of K Gaussian
distributions
* P(X;) = 1Wz N (Xe|uie Zit)

* Wiy - prlor probability (weight) of Gaussians i

= Able to represent arbitrary distributions

- Gaussian distribution
= Univariate

X
N(x|p, 0?) = \/2;_76_ 202

= Multivariate

iy oNTs=Fe: o
N\, ) = (2750/2 |Z|11/2e L(x—p) TE 7 (x—p)




Mixture Model Example

- For a grayscale image with K = 5

» Pixel intensity distribution (over time) modeled
with five Gaussians
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Model Adaption |

- Online K-means approximation is used to
update the Gaussians

> Enables fast and efficient model parameter
estimation

- Each pixel is compared with its distribution
model

> New pixel X;,, is compared with each of the
existing K Gaussians until a match is found

= Match is defined as a pixel value within 2.5¢
standard deviations of a distribution
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Model Adaption |l

« Match found:

- Update parameters
° Uirer = (L=l + pXiq

” Ul 1 = (1 — P)Ult + P(Xt+1 .ui,t)z
TP = aN(Xt+1|ﬂl,t» l,t)
a — is a learning rate
- Update Gaussian weights
° Wipp1 = (1 —a)w; + “(Mi,t+1)
* M;+1 = 1 for matching Gaussian or M; ., = 0 for all

others
- Match increases weight
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Model Adaption Il

« No match found:

- None of the K Gaussians match pixel value X,
= Observed value not well explained by model

- Replace the least probable distribution with a
new one
= Newly created distribution based on current value

" U1 = X4t
- Has high variance and low prior weight

» Least probable in the w /o sense (to be explained)



o

Background Model Estimation

- A background pixel value should be consistent

- Heuristic: Gaussians with the most supporting
evidence and least variance should correspond
to the background

- Gaussians are ordered by the value of w/o
= High support w and smaller variance o give larger

value

- First B distributions are selected as the background
model
= B = argmin,(C_,w; > T)

- T minimum portion of image expected to be background



Background Estimation Example

- After background estimation, red are the
background and black are foreground (not
background)
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Results

- Not much in paper, comparison from homework

(¢} Frame 92

Figure 1: Background subtraction Left column (raw image). column 2 (frame difference), column
3 (last frame background), column 4 (average backpround), column 5 {adaptive background ), Right
column (Gaussian mixture model detections (top), cleanad (bottom)).
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Discussion

- Advantages
= Different threshold for each pixel
= Pixel-wise thresholds adapt over time

= Objects are allowed to become part of the
background without destroying the existing
background model

= Provides fast recovery
- Disadvantages
» Cannot handle sudden, drastic lighting changes

> Must have good Gaussian initialization (median
filtering)

> There are a number of parameters to tune
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More Issues?

- Shadows detection
» [Prati, Mikic, Trivedi, Cucchiara 2003]
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(a) Raw image (b) SNP result (c) SP result (d) DNM1 result (e) DNM2 result

- Chen & Aggarwal: The likelihood of a pixel being
covered or uncovered is decided by the relative
coordinates of optical flow vector vertices in its
neighborhood.

- Oliver et al.: “Eigenbackgrounds” and its variations.

- Seki et al.: Image variations at neighboring image
blocks have strong correlation.
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Simple Improvement

- Incorporate both spatial and temporal
information into the background model

- Adaptive background mixture model + 3D
connected component analysis [Goo et al.]
= 3'd dimension is time
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Summary

- Simple background subtraction approaches such
as fame diff, mean, and median filtering are fast
= Constant thresholds make them ill-suited for

challenging real-world problems

- Adaptive background mixture model approach
can handle challenging situations
= Bimodal backgrounds, long-term scene changes,

and repetitive motion

- Improvements include upgrade the approach
with temporal information or using region-
based techniques




Thank You

» Questions?

Background subtraction implementation using GMM at OpenCV
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