ECG782: Multidimensional Digital Signal Processing

Motion

http://www.ee.unlv.edu/~b1morris/ecg782/
Outline

- Motion Analysis Motivation
- Differential Motion
- Optical Flow
Dense Motion Estimation

• Motion is extremely important in vision
• Biologically: motion indicates what is food and when to run away
 ▫ We have evolved to be very sensitive to motion cues (peripheral vision)
• Alignment of images and motion estimation is widely used in computer vision
 ▫ Optical flow
 ▫ Motion compensation for video compression
 ▫ Image stabilization
 ▫ Video summarization
Biological Motion

- Even limited motion information is perceptually meaningful

- http://www.biomotionlab.ca/Demos/BMLwalker.html
Motion Estimation

- **Input:** sequence of images
- **Output:** point correspondence
- **Prior knowledge:** decrease problem complexity
 - E.g. camera motion (static or mobile), time interval between images, etc.

- **Motion detection**
 - Simple problem to recognize any motion (security)
- **Moving object detection and location**
 - Feature correspondence: “Feature Tracking”
 - We will see more of this when we examine SIFT
 - Pixel (dense) correspondence: “Optical Flow”
Dynamic Image Analysis

- **Motion description**
 - Motion/velocity field – velocity vector associated with corresponding keypoints
 - Optical flow – dense correspondence that requires small time distance between images

- **Motion assumptions**
 - Maximum velocity – object must be located in an circle defined by max velocity
 - Small acceleration – limited acceleration
 - Common motion – all object points move similarly
 - Mutual correspondence – rigid objects with stable points

Figure 16.1: Object motion assumptions. (a) Maximum velocity (shaded circle represents area of possible object location). (b) Small acceleration (shaded circle represents area of possible object location at time t_2). (c) Common motion and mutual correspondence (rigid objects).
General Motion Analysis and Tracking

- Two interrelated components:

- Localization and representation of object of interest (target)
 - Bottom-up process: deal with appearance, orientation, illumination, scale, etc.

- Trajectory filtering and data association
 - Top-down process: consider object dynamics to infer motion (motion models)
Differential Motion Analysis

- Simple motion detection possible with image subtraction
 - Requires a stationary camera and constant illumination
 - Also known as change detection

- Difference image
 - \[d(i, j) = \begin{cases} 1 & |f_1(i, j) - f_2(i, j)| > \epsilon \\ 0 & \text{else} \end{cases} \]
 - Binary image that highlights moving pixels

- What are the various “detections” from this method?
 - See book

Figure 16.2: Motion detection. (a) First frame of the image sequence. (b) Frame 2 of the sequence. (c) Last frame (frame 5). (d) Differential motion image constructed from image frames 1 and 2 (inverted to improve visualization). © M. Soska 2015.
Background Subtraction

- Motion is an important
 - Indicates an object of interest

- Background subtraction
 - Given an image (usually a video frame), identify the **foreground objects** in that image
 - Assume that foreground objects are moving
 - Typically, moving objects more interesting than the scene
 - Simplifies processing – less processing cost and less room for error
Background Subtraction Example

- Often used in traffic monitoring applications
 - Vehicles are objects of interest (counting vehicles)
- Human action recognition (run, walk, jump, ...)
- Human-computer interaction ("human as interface")
- Object tracking
Requirements

- A reliable and robust background subtraction algorithm should handle:
 - Sudden or gradual illumination changes
 - Light turning on/off, cast shadows through a day
 - High frequency, repetitive motion in the background
 - Tree leaves blowing in the wind, flag, etc.
 - Long-term scene changes
 - A car parks in a parking spot
Basic Approach

• Estimate the background at time t
• Subtract the estimated background from the current input frame
• Apply a threshold, Th, to the absolute difference to get the foreground mask.
 - $|I(x, y, t) - B(x, y, t)| > Th = F(x, y, t)$

How can we estimate the background?
Frame Differencing

- Background is estimated to be the previous frame
 - $B(x, y, t) = I(x, y, t - 1)$
- Depending on the object structure, speed, frame rate, and global threshold, may or may not be useful
 - Usually not useful – generates impartial objects and ghosts
Frame Differencing Example

$Th = 25$

$Th = 50$

$Th = 100$

$Th = 200$
Mean Filter

- Background is the mean of the previous N frames
 - $B(x, y, t) = \frac{1}{N} \sum_{i=0}^{N-1} I(x, y, t - i)$
 - Produces a background that is a temporal smoothing or "blur"
- $N = 10$
Mean Filter

- $N = 20$

- $N = 50$
Median Filter

- Assume the background is more likely to appear than foreground objects
 - $B(x, y, t) = \text{median}(I(x, y, t - i)), \ i \in \{0, N - 1\}$

- $N = 10$
Median Filter

- $N = 20$

- $N = 50$
Frame Difference Advantages

• Extremely easy to implement and use
• All the described variants are pretty fast
• The background models are not constant
 ▫ Background changes over time
Frame Differencing Shortcomings

- Accuracy depends on object speed/frame rate
- Mean and median require large memory
 - Can use a running average
 \[B(x, y, t) = (1 - \alpha)B(x, y, t - 1) + \alpha I(x, y, t) \]
 - \(\alpha \) – is the learning rate
- Use of a global threshold
 - Same for all pixels and does not change with time
 - Will give poor results when the:
 - Background is bimodal
 - Scene has many slow moving objects (mean, median)
 - Objects are fast and low frame rate (frame diff)
 - Lighting conditions change with time
Improving Background Subtraction

• Adaptive Background Mixture Models for Real-Time Tracking
 ▫ Chris Stauffer and W.E.L. Grimson

• “The” paper on background subtraction
 ▫ Over 4000 citations since 1999

 ▫ Will read this and see more next time
Optical flow

- Dense pixel correspondence
Optical Flow

- Dense pixel correspondence
 - Hamburg Taxi Sequence
Translational Alignment

- Motion estimation between images requires an error metric for comparison
- Sum of squared differences (SSD)
 \[E_{SSD}(u) = \sum_i [I_1(x_i + u) - I_0(x_i)]^2 = \sum_i e_i^2 \]
 - \(u = (u, v) \) – is a displacement vector (can be subpixel)
 - \(e_i \) - residual error
- Brightness constancy constraint
 - Assumption that corresponding pixels will retain the same value in two images
 - Objects tend to maintain the perceived brightness under varying illumination conditions [Horn 1974]
- Color images processed by channels and summed or converted to colorspace that considers only luminance
SSD Improvements

• As we have seen, SSD is the simplest approach and can be improved
• Robust error metrics
 ▫ L_1 norm (sum absolute differences)
 • Better outlier resilience
• Spatially varying weights
 ▫ Weighted SSD to weight contribution of each pixel during matching
 • Ignore certain parts of the image (e.g. foreground), down-weight objects during images stabilization
• Bias and gain
 ▫ Normalize exposure between images
 • Address brightness constancy
Correlation

- Instead of minimizing pixel differences, maximize correlation
- Normalized cross-correlation

\[
E_{\text{NCC}}(u) = \frac{\sum_i[I_0(x_i) - \bar{I}_0][I_1(x_i + u) - \bar{I}_1]}{\sqrt{\sum_i[I_0(x_i) - \bar{I}_0]^2} \sqrt{\sum_i[I_1(x_i + u) - \bar{I}_1]^2}},
\]

- Normalize by the patch intensities
- Value is between [-1, 1] which makes it easy to use results (e.g. threshold to find matching pixels)
Problem definition: optical flow

How to estimate pixel motion from image H to image I?

- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- **color constancy**: a point in H looks the same in I
 - For grayscale images, this is **brightness constancy**
- **small motion**: points do not move very far

This is called the **optical flow** problem
Optical flow constraints (grayscale images)

- Let’s look at these constraints more closely
 - brightness constancy: Q: what’s the equation?
 - \(H(x, y) = I(x + u, y + v) \)
 - small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:
 \[
 I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}
 \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v
 \]
Optical flow equation

• Combining these two equations

\[
0 = I(x + u, y + v) - H(x, y)
\]

\[
\approx I(x, y) + I_x u + I_y v - H(x, y)
\]

\[
\approx (I(x, y) - H(x, y)) + I_x u + I_y v
\]

\[
\approx I_t + I_x u + I_y v
\]

\[
\approx I_t + \nabla I \cdot [u \ v]
\]

In the limit as \(u\) and \(v\) go to zero, this becomes exact

\[
0 = I_t + \nabla I \cdot [\frac{\partial x}{\partial t} \frac{\partial y}{\partial t}]
\]

shorthand: \(I_x = \frac{\partial I}{\partial x}\)
Optical flow equation

\[0 = I_t + \nabla I \cdot [u \ v] \]

- **Q**: how many unknowns and equations per pixel?
 - \(u \) and \(v \) are unknown - 1 equation, 2 unknowns

- Intuitively, what does this constraint mean?
 - The component of the flow in the gradient direction is determined
 - The component of the flow parallel to an edge is unknown

- This explains the Barber Pole illusion
 - [Link](http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm)

If \((u, v)\) satisfies the equation, so does \((u + u', v + v')\) if \(\nabla I \cdot [u' \ v'] = 0\)
Aperture problem

Actual Motion
Aperture problem

Perceived Motion
Solving the aperture problem

- Basic idea: assume motion field is smooth

- Horn & Schunk: add smoothness term

\[\int \int (I_t + \nabla I \cdot [u \ v])^2 + \lambda^2 (\|\nabla u\|^2 + \|\nabla v\|^2) \, dx \, dy \]

- Lucas & Kanade: assume locally constant motion
 - pretend the pixel’s neighbors have the same \((u,v)\)

- Many other methods exist. Here’s an overview:
 - http://vision.middlebury.edu/flow/
Lucas-Kanade flow

• How to get more equations for a pixel?
 ▫ Basic idea: impose additional constraints
 ▪ most common is to assume that the flow field is smooth locally
 ▪ one method: pretend the pixel’s neighbors have the same (u,v)
 ▪ If we use a 5x5 window, that gives us 25 equations per pixel!

\[0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v] \]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

\[
A^{25 \times 2} \quad d^{2 \times 1} \quad b^{25 \times 1}
\]
How to get more equations for a pixel?
- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same \((u,v)\)
 - If we use a 5x5 window, that gives us 25*3 equations per pixel!

\[
0 = I_t(p_i)[0, 1, 2] + \nabla I(p_i)[0, 1, 2] \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1)[0] & I_y(p_1)[0] \\
I_x(p_1)[1] & I_y(p_1)[1] \\
I_x(p_1)[2] & I_y(p_1)[2] \\
\vdots & \vdots \\
I_x(p_{25})[0] & I_y(p_{25})[0] \\
I_x(p_{25})[1] & I_y(p_{25})[1] \\
I_x(p_{25})[2] & I_y(p_{25})[2]
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1)[0] \\
I_t(p_1)[1] \\
I_t(p_1)[2] \\
\vdots \\
I_t(p_{25})[0] \\
I_t(p_{25})[1] \\
I_t(p_{25})[2]
\end{bmatrix}
\]

\[
A
\]
\[
de
\]
\[
b
\]
Lucas-Kanade flow

Prob: we have more equations than unknowns

\[A \begin{bmatrix} d \end{bmatrix}_{25x2} = b_{2x1} \quad \text{minimize} \quad \| Ad - b \|^2_{25x1} \]

Solution: solve least squares problem

- minimum least squares solution given by solution (in d) of:

\[\begin{align*}
(A^T A) & \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} d \end{bmatrix}_{2x1} = A^T b_{2x1} \\
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{align*}
\]

\[
\begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix} = A^T b
\]

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
Conditions for solvability

• Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[A^T A \quad A^T b\]

• When is This Solvable?
 • \(A^T A\) should be invertible
 • \(A^T A\) should not be too small due to noise
 – eigenvalues \(l_1\) and \(l_2\) of \(A^T A\) should not be too small
 • \(A^T A\) should be well-conditioned
 – \(l_1 / l_2\) should not be too large (\(l_1 =\) larger eigenvalue)

• Does this look familiar?
 • \(A^T A\) is the Harris matrix
Observation

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!
 - This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking...
Aperture problem

Actual Motion
Aperture problem

Perceived Motion
Errors in Lucas-Kanade

• What are the potential causes of errors in this procedure?
 ▫ Suppose $A^T A$ is easily invertible
 ▫ Suppose there is not much noise in the image

• When our assumptions are violated
 • Brightness constancy is not satisfied
 • The motion is not small
 • A point does not move like its neighbors
 – window size is too large
 – what is the ideal window size?
Improving accuracy

• Recall our small motion assumption
 \[0 = I(x + u, y + v) - H(x, y) \]
 \[\approx I(x, y) + I_x u + I_y v - H(x, y) \]

• Not exact, need higher order terms to do better
 \[= I(x, y) + I_x u + I_y v + \text{higher order terms} - H(x, y) \]

• Results in polynomial root finding problem
 ▫ Can be solved using Newton’s method
 • Also known as Newton-Raphson
 ▫ Lucas-Kanade method does a single iteration of Newton’s method
 ▫ Better results are obtained with more iterations
Iterative Refinement

- **Iterative Lucas-Kanade Algorithm**
 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 2. Warp H towards I using the estimated flow field
 - *use image warping techniques*
 3. Repeat until convergence
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it’s much larger than one pixel (2^{nd} order terms dominate)
 - How might we solve this problem?
Reduce the resolution!
Coarse-to-fine optical flow estimation

Gaussian pyramid of image H

Gaussian pyramid of image I
Coarse-to-fine optical flow estimation

- Gaussian pyramid of image H
- Gaussian pyramid of image I

- run iterative L-K
- warp & upsample
- run iterative L-K

image H

image I
Optical Flow Results

Lucas-Kanade without pyramids

Fails in areas of large motion
Optical Flow Results

Lucas-Kanade with Pyramids
Robust methods

- L-K minimizes a sum-of-squares error metric
 - least squares techniques overly sensitive to outliers

Error metrics

- Quadratic: \(\rho(x) = x^2 \)
- Truncated quadratic: \(\rho_{\alpha,\lambda}(x) = \begin{cases} \frac{\lambda x^2}{\alpha} & \text{if } |x| < \frac{\sqrt{\alpha}}{\sqrt{\lambda}} \\ \alpha & \text{otherwise} \end{cases} \)
- Lorentzian: \(\rho_{\sigma}(x) = \log \left(1 + \frac{1}{2} \left(\frac{x}{\sigma} \right)^2 \right) \)
Robust optical flow

- **Robust Horn & Schunk**
 \[\int \int \rho(I_t + \nabla I \cdot [u \ v]) + \lambda^2 \rho(||\nabla u||^2 + ||\nabla v||^2) \, dx \, dy \]

- **Robust Lucas-Kanade**
 \[\sum_{(x,y) \in W} \rho(I_t + \nabla I \cdot [u \ v]) \]

Benchmarking optical flow algorithms

- Middlebury flow page
 - http://vision.middlebury.edu/flow/
Flow quality evaluation
Flow quality evaluation
Flow quality evaluation

Middlebury flow page

- http://vision.middlebury.edu/flow/

Ground Truth

Color encoding of flow vectors
Flow quality evaluation

Middlebury flow page

- http://vision.middlebury.edu/flow/

Lucas-Kanade flow

Ground Truth

Color encoding of flow vectors
Flow quality evaluation

Middlebury flow page

- http://vision.middlebury.edu/flow/

Best-in-class alg (as of 2/26/12)

Ground Truth
Discussion: features vs. flow?

- Features are better for:

- Flow is better for:
Advanced topics

- Particles: combining features and flow
 - Peter Sand et al.

- State-of-the-art feature tracking/SLAM
 - Georg Klein et al.
 - http://www.robots.ox.ac.uk/~gk/