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Image Segmentation
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Segmentation

- Transition toward more high level systems

= Input = images - output = attributes of regions or
objects

= Image processing : input = image - output = image
- Important but difficult task as part of image
understanding pipeline
= Best to control system as much as possible (e.g.
lighting in a factory inspection)
= When observation control is limited need to consider
sensing technology (e.g. thermal vs. visual imaging)
- Practically, may not want to limit to imaging
- Operate using intensity similarity and discontinuity
= Regions vs. edges
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Fundamentals

Divide image into parts that correlate with objects or
“world areas”
= Important step for image analysis and understanding
Complete segmentation
= Disjoint regions corresponding to objects
- R=U",R;, RNR =0, i#]j
o Typically requires high level domain knowledge
Partial segmentation
= Regions do not correspond directly to objects
= Divide image based on homogeneity property

- Brightness, color, texture, etc.

- Q(R;) = TRUE and Q(R; U R;) = FALSE
= High-level info can take partial segmentation to complete
Main goal is reduction in data volume for higher level
processing



Fundamentals ||

- Monochrome segmentation
based on either intensity
discontinuity or similarity

- Discontinuity
= Edge-based segmentation

> Boundaries of regions are
distinct

- Similarity
= Region-based segmentation

= Image partitions are formed
by similar areas (based on
some criteria Q(.))

FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the
boundary of the inner region, obtained from intensity discontinuities. (¢) Result of
segmenting the image into two regions, (d) Image containing a textured region.
(e) Result of edge computations. Note the large number of small edges that are
connected to the original boundary, making it difficult to find a unique boundary using
only edge information, () Result of segmentation based on region properties,




Point, Line, and Edge Detection

- Look for sharp “local” changes
in intensity
- All require the use of derivatives
d '
L) =fl+1)-F)
- Thick edges

; g=f(x+1)+f(x—1)—

2f (x)

- Fine edges (more aggressive) RN
 Double response O [N
- Sign determines intensity T T O N
transition Sineme 1 L0 § €608 4 132106 6 7008
. Edge Second dechvmiive -1 D 0 0 0.1 0 6-126 00 1 111 00 7700

= Edge pixels — pixels at which e
: : : FIGURE 10.2 (a) Image, (b) Horizontal intensity profile through the center of the image,
the lntenSIty fllIlCthIl ChangeS including the isolated noise point. (¢) Simplified profile (the points are joined by dashes
for clarity), The image strip corresponds to the intensity profile. and the numbers in the
abrllptly boxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs (10.2-1) and (10.2-2),
= Edges (segments) — are
connected edge pixels
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Edge Detection

- Locate changes in image intensity function
> Edges are abrupt changes
- Very important pre-processing step for many
computer vision techniques
= Object detection, lane tracking, geometry
- Edges are important neurological and
psychophysical processes V.
o Part of human image perception loop /8
» Information reduction but not understanding
- Edgels — edge element with strong magnitude
= Pixels with large gradient magnitude




Informative Edges

- Edges arise from various physical phenomena
during image formation

s Trick is to determine which edges are most
important

~ surface normal discontinuity ‘El
— depth discontinuity :z;;,-,.l
s highlights '

- surface color/texture

shadow/illumination discontinuity

Figure 5.15: Origin of edges, i.e., physical phenomena in image formation process which lead to
edges in images. At right, a Canny edge detection (see Section 5.3.5). © Cengage Learning 2015.



|Isolated Point Detection

» Use of second order derivative

= More aggressive response to
intensity change

- Laplacian
L p2 _ 0%*f | 9*f
v f(x’ y)  Ox2 T dy? 1 1
= Vfley) =f(x+1,y) +

fx=1,y)+f(x,y+1)+ | ,

fl,y —1) —4f(x,y)
» Output from thresholding

1 1 1
“ ‘..
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FIGURE 10.4

(a) Point
detection
(Laplacian) mask.
(b) X-ray image
of turbine blade
with a porosity.
The porosity
conlains a single
black pixel.

(c) Result of
convolving the
mask with the
image. (d) Result
of using Eq. (10.2-8)
showing a single
point (the point
was enlarged to
make it easier to
see), (Original
image courtesy of
X-TEK Systems.
Lid.)




Line Detection

cd
FIGURE 10.5
o . (a) Original image.
- Again use Laplacian (b) aplacin
o Lines are assumed to be thin ot
. . positive/negative
with respect to the size of the downleTn efect
. of the Laplacian,
- Be aware that Laplacian l::)‘:?rgl.g;‘;?_:gm
produces double response to a
line
= Positive response on one side
of line

> Negative response on the
other side
- Typically, thin lines are
required
= Must appropriately select
value (e.g. positive response)




Line Detection Il

- Edges at a particular
orientation can be detected

= Adjust kernel to match
desired direction

=1 -1 -1 2 -1 -1

2 2 2 -1 2 -1

=1 =1 =1 =1 =1 2
Horizontal +45°

-1 2 =1 =1 =1 2

—1 2 —1 -1 2 —1

-1 2 -1 2 -1 -1
Vertical —45°
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FIGURE 10.7

() Image of a
wire-band
template,

{h) Result of
processing with
the +457 line
detector mask in
Fig. 10.6,

{c) Zoomed view
of the top left
region of (b},

(d) Zoomed view
of the bottom
right region of
{b).(e) The image
in (b) with all
negative values
set to zero (D) All
points (in white)
whaose values
satisfied the
conditiong = T,
where g is the
image in (¢), (The
points in () were
enlarged to make
them easier to
see.)

E

hS

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).
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Edge Models

- Classified according to intensity profiles

= Step (ideal) edge — transition between two (large)
intensity levels in a small (1 pixel) distance

= Ramp edge — “real” edge thicker than 1 pixel width
due to blurring of ideal edge

= Roof edge — blurred line to have thickness

m le T‘tt ight,
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Edge Derivatives

- First derivative
= Constant along ramp
> Magnitude used to detect
edge
Second derivative
= Dual response to ramp

= Sign used to determine
whether edge pixel is in dark
or light side of edge

» Zero-crossing used to detect
center of a thick edge

Horizontal intensi
profile

FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.

(b) Detail near
the edge, showing
4 horizontal
intensity profile,
together with its
first and second
derivatives.

-

ty

First
dertvative

Second
derivative

Zero crossing —/

i
/




Real Edges with Noise

- Real images will have noise
that corrupt the derivative
operation
> Remember this is a high pass

filter

- Second derivative very
sensitive to noise

o Even small amounts of noise
make it impossible to use

- First derivative less sensitive
- Three steps for edge detection

= Image smoothing for noise
reduction

('!"r"‘.l
> Detection of edge points (1% f | u‘ it WW
or 214 derivative) *Wl W\M iy
= Edge localization to select ‘ o
. FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by
Only true edge plxels random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0

intensity levels, respectively. Second column: First-derivative images and intensity
profiles. Third column: Second-derivative images and intensity profiles.
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Basic Edge Detection

- Image gradient - Magnitude
of ° M(x,y) = mag(Vf) =

o Vf = d = [ x] = Ox
f=grad(f) =g, lg_f g2+ 9% ~ gl + g,
y

> g, - gradient image " Rgte qf change in the
- Direction of greatest change direction of gradient vector
in intensity > Approx. only valid in
- Edge is perpendicular to the .horl.zontal vertical directions
gradient direction - Direction
19
; « a(x,y) =tan 1=
=t [ [ { 1] [Grddicnt \f.‘;.‘t(.\l = {(h.dn:ri vekton X
| | % ¢
- e T . gradient ¥
! al- ofrr fr black 0
' ! ' Hdge|direction white 255( /(&

edge direction ®
abe

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.

Note that the edge is perpendicular to the direction of the gradient vector at the point

where the gradient is computed. Each square in the figure represents one pixel. Figure 5.16: Gradient direction and
edge direction. @ Cengage Learning
2015.



Gradient Operators

- Use digital approximations of

partial derivatives - first .
difference n
n zs z [
> gx=fx+1,y)—f(x,y) FiURE 1018
I7 Ig Ty A ﬁ -\' 3 rl;gi(lxj.(fl
© gy =fly+1) - fxy) o
ab -0 || o | - ioet i
FIGURE 10.13 - us:;ecl t_o (;gmpute
-1 -1 1 One-dimensional 0 : 1 0 :::c ;i::ﬂn 12:::‘:\'1
masks used to s,
1 implement Eqs. Raoberts
(10.2-12) and
(10.2-13). - =1 =1 -1 0
- Can consider diagonal edges > o | o | ol 1] o0

Roberts kernel
 Usually want odd symmetric

kernels for computational 1S _lpl )

efficiency

= Prewitt — centered first o e e | e
difference S T T | R P

> Sobel — weighed centered first Sobel

difference (noise suppression)



- Magnitude gives strength

- Gradient thresholding
used to highlight strong

b

direction

of edge

edges

= Use smoothing for
cleaner gradient images

= See Fig. 10.18

Edge Examples

- Gradient images show
preference to edge

FIGURE 10.20 () Thresholded version of the image in Fig. 10.16(d), with the threshola
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the

image in Fig. 10.18(d), obtained using a threshold equal to 3

that image,

5

il

% of the highest value in
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FIGURE 10.16

(a) Original image
of size

834 x 1114 pixels.
with intensity
values scaled to
the range [0, 1].
(b) &, the
component of the
gradient in the
x-direction,
obtained using
the Sobel mask in
Fig. 10.14(f) to
filter the image,
(c) |8/, obtained
using the mask in
Fig. 10.14(g).

(d) The gradient
image, |8/ + [&l.
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More Advanced Edge Detection

- Simple edge detection

= Filter image with smoothing mask and with
gradient kernels

= Does not account of edge characteristics or noise
content
- Advanced detection

= Seeks to leverage image noise properties and edge
classification

» Marr-Hildreth detector
» Canny edge detector
= Hough transform



Maar-Hildreth Edge Detector

» Also called Mexican hat
kernel

- Insights

- Edges (image features)
depend on scale

= Edge location is from zero-

crossing
- Laplacian of Gaussian (LoG)
operator
= V2G(x,y) =
x%2+y?—-202 _x2+y?
[ ot ] e 2z

- o 1s the space constant —
defines circle radius
= Gaussian blurs the image at
scales much smaller than o
> Second derivative Laplacian

responds to edges in all
directions

Zero crossing —\

/—— Zero crossing

ab
cd

FIGURE 10.21

(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
Crossings.

(d) 5 x 5 mask
approximation 1o
the shape in (a).
The negative ol
this mask would

be used in
practice,

= 22e <2

0 0 =1 0 0
0 = =2 | —1 0
=1 =2 16 -2 | -1
0 —1 =2 | =1 0
0 0 -1 0 0




Maar-Hildreth Algorithm

- glx,y) =[V2G(x,y)] * f(x,y) - Simplification possible

- By linearity using the difference of
© g(x,y) = V?[G(xy) xf(x,y)] ~  Gaussians (DoG)
> Smooth image first then s Similar to human visual
apply Laplacian process
- Follow with zero crossing
detection

» Search a 3 X 3 neighborhood
for changes in sign in
opposite pixels

= May consider magnitude
threshold to deal with noise

- Size of LoG filter (n x n)
should be greater than or

equal to 60

ahb

cd

FIGURE 10.22

(a) Original image
of size 834 x 1114
pixels, with
intensity values
scaled to the range
[0, 1]. (b) Results
of Steps | and 2 of
the Marr-Hildreth
algorithm using

o =4dand n = 25,
(¢) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

() Zero crossings
found using a
threshold equal to
4% ol the
maximum vilue ol
the image in (b).
Note the thin
edges,

20 ||
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Canny Edge Detector

- Three objectives - Canny algorithm
> Low error rate: find all edges > Smooth image with Gaussian
with minimal false detections filter
- Edge points localized: should > Compute gradient magnitude
find center of true edge and angle
= Single edge response: only = Apply nonmaxima
single pixel for thick edges suppression of gradient
magnitude
- Key operations > Use hysteresis thresholding
- Non-maxima suppression of and connec’FiVity analysis to
groups of large magnitude 15t detect and link edges

derivative response

= Hysteresis threshold for long
connected edges



Canny Edge Detection

- Popular edge detection

» 3) Use non-maximal

algorithm that produces a thin suppression to get thin edges
lines = Compare edge value to

+ 1) Smooth with Gaussian
kernel direction

- 2) Compute gradient
> Determine magnitude and

orientation (45 degree 8- P4
connected neighborhood) P

object Sobel Canny the edge
http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

neighbor edgels in gradient

S

| —

o
gV
AN

» 4) Use hysteresis thresholding
to prevent streaking

= High threshold to detect edge
pixel, low threshold to trace



Canny Edge Detection Il

- Optimal edge detection
algorithm

> Returns long thin (1 pixel wide)

connected edges

- Non-maximal edge suppression
technique to return a single
pixel for an edge

- Examine pixels along gradient
direction

= Only retain pixel if it is larger
than neighbors

- Hysteresis threshold to remove
spurious responses and

maintain long connected edges

= High threshold used to find
definite edges

= Low threshold to track edges

Pixel under inspection

Single Thrashold ; /\ *"ﬁ' :5_ _.q

Boundary in image

Neighboring pixels (defined
by edge direction)

Figure 6.10:
pixels adjacen
information a

Learning 2015.
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Nonmaxima Suppression

- Gradient produces thick edges 1575,

Edge normal

(for steps/ramps) : \ | /

» Consider 4 orientations in 3X3 Pi pl': ps || P /l: P
neighborhood R | Fu7 | e

. . Pr B | Po||Pr| Ps| Po /,»" r\ (gradient vector)
= Horizontal, vertical, and 1 /(oW
Edge normal ~22.5¢ +22.5°

diagonals
1. Quantize gradient angle into
8 directions —
> d, mapped from a(x, y)
2. Suppress edge pixel if any of
it’s gradient neighbors has
greater magnitude 25

o gn() =0if M(p) < M(d})

-157.5° : +157.5°

+45%edge

+112.5°
<— Vertical edge

+67.5°

N— —45°

| +22.5°

cdge

\— Horizontal edge

- v
or M(dy) g f.- . 2g s ;
Ve o TSSO RS, D = =
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7 o Q% S CIn D D - e S w s B ©
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Canny Edge Examples

-igure 6.11: (a) Non-maximal suppression of the data in Figure 6.9b. (b) Hysteresis applied to
a); high threshold 70, low threshold 10. @ Cengage Learning 2015

Figure 5.23: Canny edge detection at two different scales. @ Cengage Learning 2015.



Canny Edge Examples |l

ab
cild

FIGURE 10.25

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

ab
cd

FIGURE 10.26

(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.

(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)
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Hough Transform

- Segmentation viewed as the problem of finding
objects
> Must be of known size and shape
- Typically hard to do because of shape distortions
= Rotation, zoom, occlusion
- Search for parameterized curves in image plane
* f(x,a) =0
- a — n-dimensional vector of curve parameters

= Each edge pixel “votes” for different parameters
and need to find set with most votes
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Hough Transform for Lines

- Original motivation for Hough transform
 Lines in the real-world can be broken, collinear, or
occluded

= Combine these collinear line segments into a larger
extended line

o 1Hough transform creates a parameter space for the
1ne
= Every pixel votes for a family of lines passing through
it
= Potential lines are those bins (accumulator cells) with
high count

- Uses global rather than local information

» See hough.m, radon.m 1n Matlab
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Hough Transform Insight i

(b) Parameter
space.
- Want to search for all points , _ i b
that lie on a line \
= This is a large search (take Ay

number of edgels) T /
- Infinite lines pass through a \ 00 \
single point (x;, y;) \ -
oy =ax;+b *
- Select any a, b
- Reparameterize
o h= —X;a + Vi
= ab-space representation has
single line defined by point

s (i, yi) :
two points and count the \ \I

- All points on a line will
intersect in parameter space

= Divide parameter space into
cells/bins and accumulate
votes across all a and b values

(xi, y1) for a particular point

= Cells with high count are
indicative of many points
voting for the same line
parameters (a, b)
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Hough Transform in Practice

- Use a polar parameterization of a line — why?

]
|||||

- After finding bins of high count, need to verify edge

= Find the extent of the edge (edges do not go across the
whole image)

- This technique can be extended to other shapes like
circles
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Hough Transform Example |

Input image Grayscale

-90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80
0

Hough space Top edges



Hough Transform Example Il

-300
-200

-100

100 4
200

300 -

-80 -60 40 -20 0 20 40 60 80
6 (degrees)

http://www.mathworks.com/help/images/analyzing-images.html



Hough Transform for Circles

Consider equation of circle - Each edgel votes for a circle of
= (xy —a)? + (x, —b)? =12 radius r at center (a, b)
(a, b) — center of circle - Accumulator array is now 3-
- r — radius dimensional

7N " Usually for fixed radlus circle

(c) (d)

Figure 6.31: Hough transform —example of circle detection. (n) Image of a dark circle, of
known radins v, on o bright background, (b) For each dark pixel, a potential circle-center locus
is defined by n clecle with radius r and center at that pixel. (¢) The frequency with which
imnge pixels occur On circlescenter loci s determined —the highest-froquency pixel represents © (d]

the center of the circle (marked by e}, (d) The Hough transform correctly detects the circle Figure 6.32: Hough transform—circle detoction. (a) Original image. (b) Edge image {note that
(marked by e} in the presence of incomplete circle information and overlapping structures, (See the edge information is far from perfect). (¢} Parameter space, (d) Detected clreles, © Cenguge
Figure 6.32 for a real-life example.) © Cengage Learning 2015 Loarning 2015
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Hough Transform Considerations

- Practical only for 3-dimensions
= Exponential growth of accumulator array

- Use gradient information to simplify process
= Only accumulate limited number of bins

= Accounts for local consistency constraints

- Line pixels should be in edge direction (orthogonal to
gradient direction)

- Weight accumulator by edge magnitude
= Consider only the strongest edges
- “Back project” strongest accumulator cells of each
pixel to remove other votes
= Sharpen accumulator response
- Line tracing
= Find endpoints of line



- x|
Multispectral Edges

- Pixel (i, j) has n-dimensional vector
representation
- Trivial edge detection
= Operate on each spectral band separately
= Combine all bands to form single edge image
- Multiband (Roberts-like) edge operator
= 2 X 2 X n-neighborhood

Sy ][d<z+u+1>] z i+ 1.9) 65 1]
Vo3| du] S [di+ 1,5+ D] Vs, [d6+1,7)]7 2, [dG.g + 1)
where dil D= Bk l)—f(L l).

(5.60)
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Thresholding

- Segment object from background
N (1 fGH>T
A _{o fGH<T “
= T — threshold
= 1 object and 0 background

- Requires the correct threshold of
this to work

Difficulty to use a single global
threshold

- T=7T()
More often want adaptive
threshold

- T=T(.f)
* f. - is smaller image region (e.g.
subimage)

- Many simple variants
> Band thresholding - range of values

for object

> Multiband — multiple bands to give

1d

Figure 6.1: Image thresholding. (a) Original image. (b) Threshold segmentation. (¢) Threshold

too low, (d) Threshold too high, © Cengage Learning 2045,

grayscale result

=2 O
« )
\ F
\ J

\ { ;
(i/ 8

Figure 6.2: lmage thresboiding moditication 2] Original image. (b)) Horder detection uning

band-thresholding Cergage Lanruing 8015
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Threshold Detection Methods

- When objects are similar, the - In practice is difficult to tell if a
resulting histogram is bimodal distribution is bimodal
= Objects one color and - There can be many local maxima
background another - How should the correct one be
s Good threshold is between selected?
“peaks” in less probable - Notice also that since the
intensity regions histogram is global, a histogram
- Intuitively the lowest point for salt and pepper noise could be
between peaks the same as for objects on

- background
.- » Should consider some local
neighborhood when building
the histogram

* Account for edges

2 o4 86 128 180 W2 2N
nimesty

(a) (b)

Figure 6.3: Bimodal histograms. (a) In cases with well-separable objects from the background,
the shown histogram is clearly bimodal. (b) An example of & more shallow bimodal histogram
(see top-left of Figure 6.5 for original image, in which the distinction between foreground and
background has been deliberately perturbed), Note a wide, shallow peak whose distribution
reaches from 0 to approximately 140, and s higher one more easily visible to the right. The
distributions overlap in the gray-levels 100-160. © Cengage Learning 2015
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Optimal Thresholding

Optimal l Optimal l Optimal

- Model the histogram as a ()
weighted sum of normal
probability densities

threshold

]

]

° Threshold Selected tO ' 'Distribution of objects

o e . . Distribution of background

minimize segmentation error

(minimum number of b | [ | Qptimal Optimal Conventional
islabeled pixels) resho Conventional 3

maisiapele plXe S Conventional \L

threshold s

= Gray level closest to Optinsl

minimum prObablllty Figure 6.4: Gray-level histograms approximated by two normal distributions—the threshold is

between normal maXima set to give minimum probability of segmentation error. (a) Probability distributions of back-

ground and objects. (b) Corresponding histograms and optimal threshold. © Cengage Learning

2015.
- Difficulties
> Normal distribution - Useful tools:
assumption does not always » Maximum-likelihood
hold classification
= Hard to estimate normal - Expectation maximization

parameters - Gaussian mixture modeling



Otsu’s Algorithm

» Automatic threshold detection

= Test all possible thresholds and find that which minimizes
foreground/background variance

“Tightest” distributions

1.  Compute histogram H of image and normalize to make a probability
2. Apply thresholding at each gray-level t

Separate histogram into background B and foreground F

Compute the variance oz and oy

Compute probability of pixel being foreground or background
Wp = 5‘:0 H(j)
5.  Select optimal threshold as

t = min o (t)

o(t) = wgog(t) + wp(t)og(t)

[m]

el

[m]

o

o

THE ABERYSTWYTH FUNICULAR DISASIEH THE ABERYSTWYTH FUNICULAR DISASTER

DISASTER DISASTER DISASTER

Figure 6.5: Top left, an image with artificially stretched white background—the image has also
been showered with random noise. Top right, thresholded with Otsu’s method: the histogram
is shown in Figure 6.3, and the algorithm delivers ¢ = 130. At bottom, the results of t =
115,130, 145 on the trickiest part of the image; segmentation quality degrades very quickly.



Mixture Modeling

« Assume Gaussian distribution
for each group

= Defined by mean intensity
and standard deviation

° Nmoder(9) =
i=1 a; exp{—(g — u)?/20}}

- Determine parameters by
minimizing mismatch between
model and actual histogram
with fit function

= Match Gaussians to
histogram

o F =

ZgEG (hmodel (9) — hregion (g))

- Can use Otsu’s as a starting
guess

» Limit search space

2

ol

Volume Volume
) PA

Lrray mutier

White matter

4 < -

S0 ol 150 200 250 O 200 250 { 2 2
Gray level Gray level Gray Jevel
(b) (c)

Figure 6.6: Segmentation of 3D Tl-welghted MR brain lmage data
b) Fitted Gaussian distributions,; global 31 image fit, (¢) Gaus-

using optimal thresholding.

(a) Local gray-level histogram

stan distributions corresponding to WM, GM, and CSF. Courtesy of R, J. Frank, T J rabatosks

Figure 6.7: Optimal MR brain image segmentation. Left column: original Tl-weighted MR
images. two of 120 slices of the 3D volume. Middle left: Partial-volume maps of gray matter.
The brighter the voxel. the higher is the partial volume percentage of gray matter in the voxel.
Middle right: Partial-volume maps of white matter. Right column: Partial-volume maps of

cerebro-spinal fluid. Courfesy of R. J. Frank, T. J. Gmbowski, The University of Iowa.



Multi-Spectral Thresholding

- Compute thresholds in spectral bands independently and combine
in a single image
> Used for remote sensing (e.g. satellite images), MRI, etc.
- Algorithm 6.3
1. Compute histogram and segment between local minima on either
side of maximum peak for each band

2. Combine segmentation regions into multispectral image
3. Repeat on multispectral regions until each region is unimodal

O
b

(a) (b) (c)

Figure 6.8: Recursive multi-spectral thresholding. (a) Band 1 thresholding. (b) Band 2 thresh-
olding. (¢) Multi-spectral segmentation. © Cengage Learning 2015.
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Region-Based Segmentation

- Regions are areas defined inside of borders
= Simple to go back and forth between both
= However, segmentation techniques differ
- Region growing techniques are typically better in
noisy images
= Borders are difficult to detect
- A region is defined by a homogeneity constraint
= Gray-level, color, texture, shape, model, etc.
= Each individual region is homogeneous
= Any two regions together are not homogeneous
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Region Merging

- Start with each pixel as a region and combine
regions with a merge criterion
= Defined over adjacent regions (neighborhood)
- Be aware the merging results can be different
depending on the order of the merging
= Prior merges change region relationships

- Simplest merge methods compute statistics over
small regions (e.g. 2 x 2 pixels)
= Gray-level histogram used for matching



Region Merging Via Boundary Melting

- Utilize crack information (edges between pixels)

- Merge regions if there are weak crack edges between
them

(¢) (d)

Figure 6.40: Region merging segmentation, (a) Original image. (b) Pseudo-color representation
of the original image (in grayscale), (¢) Recursive region merging, (d) Region merging via
boundary melting. Courtesy of R. Marik, Czech Technical University



%
Region Splitting

- Opposite of region merging
» Start with full image as single region and split to
satisfy homogeneity criterion
- Merging and splitting do not result in the same
regions
= A homogenous split region may never have been
grown from smaller regions

- Use same homogeneity criteria as in region
merging



Split and Merge

- Try to obtain advantages of both / /
P
e

merging and splitting —_— l
- Operate on pyramid images il ol
= Regions are squares that / o
correspond to pyramid level Figure 6.1 Splitnd-mere o bersrehical data strueture, © Gy Lorning 2017
= Lowest level are pixels 5 | s
- Regions in a pyramid level that I
are not homogeneous are split 02 | 03 310
into four subregions
= Represent higher resolution a 30 ”
level below . 2

o e . 32 33
- 4 similar regions are merged
into a single region at higher
pyramid level

- Segmentation creates a quadtree

> Kach leaf node represents a
homogenous region
- E.g. an element in a pyramid
level
> Number of leaf nodes are
number of regions 310 311 312 313

Figure 6.42: Segmentation quadtree. © Cengage Learning 2015.

T Merging




Watershed Segmentation

- Topography concepts - Region edges correspond to
- Watersheds are lines dividing high watersheds
catchment basins - Low gradient areas correspond

to catchment basins

= All pixels in a basin are
simply connected and
homogeneous because they
share the same minimum

Watersheds

Catchment
@ basins

(a) (b)
Figure 6.44: One-dimensional example of watershed segmentation. (a) Gray-level profile of
image data. (b) Watershed segmentation—local minima of gray-level (altitude) yield catchment
basins, local maxima define the watershed lines. © Cengage Learning 2015.



Watershed Computation

- Can build watersheds by
examining gray-level values
from lowest to highest

- Watersheds form when
catchment basins merge

- Raw watershed results in
oversegmentation

- Use of region markers can
improve performance
= Matlab tutorial

() (d)

Figure 6.46: Watershed segmentation. (a) Original;. (b) Gradient image. 3 x 3 Sobel edge
detection, histogram equalized. (¢) Raw watershed segmentation. (d) Watershed segmentation
using region markers to control oversegmentation. Courtesy of W. Higgins, Penn State Universify.


http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
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Matching

Basic approach to segmentation by locating known objects
(search for patterns)

> Generally have a model for object of interest

Various examples of matching
= Different sophistication

Optical character recognition (OCR)

> Template matching when font is known and image carefully
aligned

Font-independent OCR

> Match pattern of character

Face recognition

> Match pattern of face to image

= More variability in appearance
Pedestrian behavior matching

- Explain what a pedestrian is doing



Template Matching

- Try to find template image in larger test image
- Minimize error between image and shifted template

rr Co
=20 Tij—Leptimi)’ =0, (6.29)
i=1 j=1
rr, e
E(x) = ). ) (Tij — Lytizs)’
i=1 j=1
o Cp rp Cp rp cp

T 23 S Toslensimess) + 303 arimns)? 630

i=1 j=1 i=1 j=1 i=1 j=1

First term is a constant and the last term changes slowly
so only the middle term needs to be maximized

o e

Corrr(x) =Y Y (Tijleatizyti) (6.31)

i=1 j=1
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Binary Filtering as Detection

- Filtering (correlation) can be used as a simple
object detector
= Mask provides a search template

= “Matched filter” — kernels look like the effects
they are intended to find

This 1s who I am.
Nobody said b -
you had to like it.

image
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Correlation Masking

This 1s who I am.
Nobody said
you had to like it.

correlation detected letter

0.9 max threshold 0.5 max threshold



Normalized Cross-Correlation

- Extension to intensity values

- Handle variation in template and image
brightness

template

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/



Where’s Waldo

Detected template correlation map

Adapted from
http://kurser.iha.dk/ee-ict-master/ticovi/




Detection of Similar Objects

- Previous examples are detecting - What to do with different sized
exactly what we want to find objects, new scenes
= Give the perfect template
- What happens with similar
objects

Template

Figure 6.48: Template matching: A template of the
letter R is sought in an image that has itself, a

Detected template slightly rotated version, and a smaller version. The

correlation response (contrast stretched for display)
illustrates the diffuse response seen for even small ad-
justments to the original. © Cengage Learning 2015.

- Works fine when scale,
orientation, and general
orientation are matched

Adapted from K. Grauman
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Template Matching Strategies

- Detection of parts

= Full “pixel perfect” match may not exist, but smaller
subparts may be matched

= Connect subparts through elastic links
- Search at scale
= Pattern matching is highly correlated in space
- Neighborhoods around match have similar response

= Search at low resolution first and go to higher
resolution for refinement

- Less comparisons, much faster
» Quit sure mismatches quickly
= Do not compute full correlation when error is too large

= Matches are rare so only spend time on heavy
computation when required (cascade classifier later)
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Evaluating Segmentations

» Need to know what is the
“right” segmentation and then AR Ml cheies ek i i

measure how close and e
algorithm matches "

- Supervised approaches
= Use “expert” opinions to
spec1fy segmentation ASA ®)
u] Evaluate by: Figure 6.53: Border positioning errors. (s) Border positioning errors are computed as directed
distances between the computer-determined and correct borders. (b) If errors are calculated in

° Mutual Overlap the opposite direction (from ground truth to the computer-determined border), o substantially

different answer may result. (¢) Zoomed area showing the difference in caleulating directional
- Border position errors
(Hausdorff set distance)

- Unsupervised approaches

= No direct knowledge of true
segmentation
- Avoid label ambiguity

= Define criterion to evaluate
region similarity and inter-
region dissimilarity

Independent standard

Computer-detected border

errors. © Cengage Learning 2015

Figwee 6.51: A reglon feom a dynamically enhanesd MRI study with partly ambiguons boand-
ary. I'wo dilferent experts have oveelakd their jodgments, Courtesy of O, Kubassova, 8 Tusner,

uversity of Leeds



