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Motivation

- Complicated signals
(functions) can be constructed
as a linear combination of AR
sinusoids JVUVUVVVVYVUI
= Mathematically compact AR A VACAYE
representation with complex a /N
exponentials e/®t
- Introduced as Fourier series

by Jean Baptiste Joseph
Fourier

V| i'd
= Initially considered periodic )y N\
signals |

'u-.\_,\ ] I'J l'.,..' A
> Later extended to aperiodic - |
signals NV |

- Powerful mathematical tool

K« e 9 FIGURE 4.1 The function at the bottom is the sum of the four functions above it
. Can go between tlme and I"uuAn-.-r's' idea ".‘ 1807 that ;\cl'{udic functions could be represented as a weighted sum
« 9 . of sines and cosines was met with skepticism
frequency” domain
processing
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Preliminary Concepts

- Complex numbers - Fourier Transform
: C=R+]jI o F(u) = F{F(D) =
o C*=R—jI [ f()e I2mrtge
o C=|C|el® * u : continuous frequency
- Using Euler’s formula Varlablel
- e/ =cosf +jsinb ) f(t):?.'_ Fw} =
J F(we?™tdy

» Fourier Series

- Express a periodic signal as a
sum of sines and cosines

o f(t) = Xpcpel@ont
1 s
* o = [ f(D)eT 0ot

* wo =2m/T

> Notice for real f(t) this
generally results in a complex
transform



Rectangle Wave Example

sin tuW
C P =AW=
= Rectangle in time gives sinc in frequency
= See book for derivation
« Frequency spectrum

|[F(uw)| = AW p—
- Consider only a real portion

Note zeros are inversely proportional to width of box
= Wider in time, narrow in frequency

sin TuW

f(0) F(u) Fam)

AW h AW h

/_ i vwvv\/\/ﬂ NVWVVW
- L y - J
, e LT ONN
M W Amw w2

FIGURE 4.4 (a) A simple function; (b) its Fourier transform: and (¢) the spectrum. All functions extend to
infinity in both directions.
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Convolution Properties

- Very important input-output relationship
between a input signal f(t) and an LTI system

h(t)

- f@) *h(t) = [ f(OA(t - 1)dr

- Dual time-frequency relationship
* f(&) *h(t) & F(uHu)
> f()h(t) & F(u) * H(u)

= Convolution-multiplication relationship



Sampling

- Convert continuous signal to a |
. 1) i
discrete sequence b
> Use impulse train sampling FIGURE 4.5

() A continuous

© f@) = fOsar(®) = ,, Sy Mo

1o model the

2 f(£)6(t —nAT) e © Sampled

function formed

. 6(t — TlAT) - impulse ;h]l!lc‘;l‘:(;n:uclui
response at time t = nAT ‘ | l I l ‘ | I l l . @S vaies
integration and
ve s IAT =AT 0 7, o 2 u.\in;' the sifting
- Sample value BATEAED 4TI propery of
Nnsarit impulse. (The

o fk = f(kAT) dashed line in (c)
is shown for

reference. It is not

’— s \\
R /’ R - part of the data,)
4 I | ] N ,’[ [\ - -
S 1t~
I 11,
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Fourier Transform of Sampled Signal
-« F(u) = F{f(®©)} = F(w) » S() :

1 n S
o S =52 (n—71) /\ F«:m;“ )
. . . (a) rouner

= FT of impulse train is an - transform of &

band-limited

impl.I1se tI'aiIl F(u) hlmcli;m.
(b)—d)
- See section 4.2.3 in the book

Transforms of the

corresponding
fOI' detalls /\ /\ /\ /\ /\ sampled function
under the
. , conditions of

- Note Spacing between ~1/AT 1/AT m:e.r-sampllng,
impulses are inversely F(u) s M
related oo oy

CF) =3 F (n— 1)
= Sampling creates copies of
the original spectrum
= Must be careful with
sampling period to avoid i |
aliasing (overlap of spectrum) 47 247 ~1ar 0 UAT AT AT

M

' % %
~2/AT  =1/AT 0 1/AT 2/AT
F(u)




Sampling Theorem

- Conditions to be able to recover - Sampling theorem
f (t) completely after sampling R S
- Requires bandlimited f(t) ar ~ “Hmax
1 - Nyquist rate 2.4

= F(u) =0 for || > :
(W) . ] > Hmax - Recovery with lowpass filter
= Can isolate center spectrum o H(u) = AT for |u| < u
copy from its neighbors ) — rmax
F(p)
b
Flu) FIGURE 4.7
¢ (a) lr.-l.nh!'orm ol u M max M max
| b /\ /\ V4NN /\ /\
! b) Translorm | i | 1
iciulling fram —2/AT -1/AT | 0 | 1/AT 2/AT g
LTsfiiall)'l Sam Pl'mg_ : :
the same function. i Hw) i
| |
— H max 0 M max & | AT |
I-'-'(y'b R
t b
¢ M
FIGURE 4.8
Extracting one
period of the
transform of a
band-limited
function using an
i =5 idcal lowpass
1 filter. -

:A r ZAT AT “Hmax 0 Mmax



Aliasing

 Corruption of recovered signal
if not sampled at rate less than
Nyquist rate
= Spectrum copies overlap

= High frequency components
corrupt lower frequencies

- In reality this is always present
> Most signals are not
bandlimited
> Bandlimited signals require
infinite time duration
- Windowing to limit size
naturally causes distortion
= Use anti-aliasing filter before
sampling
- Filter reduces high
frequency components

| - i
)
Flu) = II'}(‘/'(}A|
' ]
! L ! - ,
“Hmax ) Mo
a
b

C
FIGURE 4.9 (a) Fourier transform of an under-sampled. band-limited function
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig, 4.8(b). (¢) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(u) and,
therefore, of the original, band-limited continuous function. Compare with Fig, 4.8

¢« ®
[ [ |

FIGURE 4.10 lllustration of aliasing. The under-sampled function (black dots) looks
like a sine wave having a frequency much lower than the frequency of the continuous

signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis

oceur every second. AT is the separation between samples,



. ul

Discrete Fourier Transform

- Discussion has considered continuous signals (functions)
= Need to operate on discrete signals

- DFT is a sampled version of the sampled signal FT in one
period
= F(u) = Xy, fpe™/2mHnaT

= Sample in frequency evenly (M) over a period
m

U= var

° Fp = X fne—j2nmn/M
-m=012,..,.M—1
= M samples of f(t), {f,,}, results in M DFT values

» Note: implicitly assumes samples come from one period of
periodic signal

» Inverse DFT

_ 1 2mmn/M
; Fn—MZmFme] /
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Sampling/Frequency Relationship

- M samples of signal with sample period AT
» Total time > T = MAT

- Spacing in discrete frequency

1 1
oAU = —— ==
MAT T

- Note the switch to u for discrete frequency

1

* Total frequency range 2> 0 = MAu = —

- Resolution of DFT is dependent on the duration
T of the sampled function
= Generally the number of samples

» See £ft.mi1n Matlab to test this



Extensions to 2D

- All discussions can be extended to two variables
easily
> Add second integral or summation for extra
variable

- 2D rectangle
] F(,u, V) — ATY [sm (nuT)] [sm (ntvZ)

[

| F ()|

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the r-axis, so the spectrum is more “contracted” along the u-axis.
Compare with Fig. 4.4.



Image Aliasing

- Temporal aliasing appears in video
> Wheel effect — looks like it is spinning opposite

direction

- Spatial aliasing is the same as the previous
discussion—> now in two dimensions

Footprint of an

ideal lowpass
(box) filter
I'j' :

ab

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

(b) under-sampled
band-limited
function.

2t
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cd

FIGURE 4.16 Aliasing in images, In (a) and (b). the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (¢) and (d), the
sides of the squares are 0.9174 and 04798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.



Image Interpolation and Resampling

- Used for image resizing

= Zooming — oversample and image
= Shrinking — undersample an image
- Must be careful of aliasing
- Generally smooth before downsample

abc

FIGURE 4.17 lllustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to S0% of its original size by pixel deletion. Aliasing is clearly visible.
(¢) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California. Santa Barbara.)



Fourier Spectrum and Phase Angle

- F(uv) = |F(u,v)|e/®@v) « Spectrum
» Magnitude, spectrum
© |F(u,v)| =
[R?(u, v) + I?(u, )]/

> Phase angle

— Y — v

- /oY) = grctan ll(u’v)]

R(u,v)

- Spectrum is component we
naturally specify while phase is
a bit harder to visualize
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Spectrum

Translation does not affect
spectrum

> Wide in space - narrow
in frequency

ab

c d

FIGURE 4.25

(a) The rectangle
in Fig. 4.24(a)
translated,

and (b) the
corresponding
spectrum.

(¢) Rotated
rectangle,

and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical 1o the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

Orientation clearly visible
in spectrum




Phase

- Difficult to describe phase given image content

abece

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a). and (¢) to the rotated image in
Fig. 4.25(c).

= a) centered rectangle
= b) translated rectangle
= ¢) rotated rectangle



Spectrum Phase Manipulation

- Both spectrum and phase are important for image

content

abe

de |

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (¢) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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Frequency Domain Filtering Basics

- Generally complicated relationship between image and
transform

= Frequency is associated with patterns of intensity variations
in image

- Filtering modifies the image spectrum based on a
specific objective
= Magnitude (spectrum) — most useful for visualization (e.g.
match visual characteristics)
= Phase — generally not useful for visualization

45 degree lines <%

Off center line

ab

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)
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Fundamentals

» Modify FT of image and inverse for result

» g(x,y) = FHH@W, v)F (u,v)]
- g(x,y): output image [M X N]
* F(u,v) : FT of input image f (x,y) [M X N]
* H(u,v) : filter transfer function [M X N]
- F~1:inverse FT (iFT)
= Product from element-wise array multiplication

FIGURE 4.30
Result of filtering
the image in
Fig.4.29(a) by
setting to ) the
term F(M/2, N/2)
in the Fourier
transform.

Remove DC (0,0)
term from F (u, v)




Exa M p le F] lte I"S Addition of small offset to

retain DC c[?mponent after HP
(u.v)

AN |\“\'13,
A

abe
de f

FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using
Eq.(4.7-1).We used @ = (.85 in (¢) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).
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DFT Subtleties

- Multiplication in frequency is convolution in time
» Must pad image since output is larger
- Will pad f(x, y) image but not h(x, y)
* H(u,v) designed and sized for padded F(u, v)
= DFT implicitly assumes a periodic function

ab

FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without
image padding. (b) Periodicity after padding with Os (black). The dashed areas in the
center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are
superimposed for clarity; they are not part of the data.)



Phase Angle

- Generally, a filter can affect the phase of a signal
- Zero-phase-shift filters have no effect on phase

= Focus of this chapter
- Phase is very important to image

= Small changes can lead to unexpected results

ab

FIGURE 4.35

(a) Image resulting
from multiplying by
(1.5 the phase angle
in Eq. (4.6-15) and
then computing the
IDFT.(b) The
result of
mulliplying the
phase by .25, The
spectrum was not
changed in cither of
the two cases,
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Frequency Domain Filtering Steps

1. Givenimage f(x,y) of size M X N, get padding

(P,Q)
= Typicallyuse P = 2M and Q = 2N

Form zero-padded image f,,(x, y) of size P X Q
Multiply £, (x,y) by (—1)**Y to center the
transform
Compute DFT F(u, v)
Compute G(u,v) = H(u, v)F(u, v)
Get real, symmetric filter function H gu , V) of size
P x Q with center at coordinates (E -

6. Obtain (padded) output image from 1FT
° Yp (x,y) = {real [F[G(u,v)]}(—1)*Y

7. Obtain g(x, y) by extracting M X N region from top
left quadrant of g, (x, y)

A ol



Steps Example

abece
de f
g h

FIGURE 4.36
(a)An M < N
image, /.

(b) Padded image.
fpolsize P X Q.
(c) Result of
multiplying f, by
(—1)*"7,

(d) Spectrum of
Fp. (e) Centered
Gaussian lowpass
filter, H. of size

P x Q.

(1) Spectrum of
the product HFF,.
(£) gp. the product
of (—=1y"""and
the real part of
the IDFT of HF,.
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of 8p-
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Relationship to Spatial Filtering

- Frequency multiplication - convolution in
spatial domain
= h(x,y) © H(u,v)
= Use of a finite impulse response

- Generally use small filter kernels which are more
efficient to implement in spatial domain

- Frequency domain can be better for the design
of filters
= More natural space for definition

= Use iFT to determine the “shape” of the spatial
filter
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Smoothing

- High frequency image content comes from edges
and noise

- Smoothing/blurring is a lowpass operation that
attenuates (removes) high frequency content

- Consider three smoothing filters
» Ideal lowpass — sharp filter
= Butterworth — filter order controls shape
» Gaussian — very smooth filter



|deal Lowpass Filter

(1 D(wmv)<D
H(wv) = {O D(u,v) > Dg

> D(u,v) = [(u - 2)2 T (v - %)2]

= Pass all frequencies D, distance from DC
» D, is the cuttoff frequency

Hu, v) Hi
i v

D(u, v)
' Dy
w

abc

FIGURE440( )I p Cliv pll of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(¢) Filter radial ¢ ection
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ldeal Lowpass Example
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FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The | s = :
spectrum is double the image size due to padding but is shown in half size so that it fits ‘ ; y . 5
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with |

respect to the full-size spectrum image, These radii enclose 87.0, 93.1, 95.7, 97.8, and
X of the 1t i ‘.ooool“ svaaannad

99.2% of the padded image power, respectively.

ringin
SHE 1 ceoammEl  cccemEE
FIGURE 4.43
(a) Representation () o

in the spatial LR X J cee

i |||||||| |||||||| i

1LPF of radius 5

~_N\ A /\___~ andsize
Y | \/ = 1000 % 1000.

b) Intenally saaaaaadd aaaaaaaa

profile of a

horizontal line ab
passing through cd
. 52 N el
blurrlng the center of the
image. FIGURE 4.42 (a) Origonl image. (b)) Results of filtening using ILPFs with cutoff

frequencies set at vadii values 1), 30, 60, 160, and 460, as <hown in Fig 441(h). The
power removed by these filters was 13,69, 43,22 and (.8% of the total. respectively




LP Spectrum View

+

(a) (b)

(e) (d)

Figure 5.25: Low-pass frequency-domain filtering—for the original image and its spectrum
see Figure 3.7. (a) Spectrum of a low-pass filtered image, all higher frequencies filtered out.
(b) Image resulting from the inverse Fourier transform applied to spectrum (a). (¢) Spectrum of
a low-pass filtered image, only very high frequencies fltered out. (d) Inverse Fourier transform

applied to spectrum (c¢), © Cengage Learning 2015,



Butterworth LP Filter

1
P Huwv) = 1+[D(w,v)/Dg]?™
= n — order of the filter (controls sharpness of

transition)
= Cutoff generally specified as the 50% of max

H(u, v) H(u, v)
v 1.0

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.



Butterworth LP Example

- No ringing is visible because of LY .
the gradual transition from v a _
high to low frequency in filter

= May be visible in higher- “””” q —
order filters (n > 2) r”aaaaaa |
= Trade-off frequency narrow cenmn «eummB
main lobe with sidelobe : 2
. e a “ee a

Looll...a ‘olllaaaa

o 2
oee oo : P
4 - AN T R
: S AR
L e SO

saaaaaad aiaaaaaad

abed El 3
c
FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity el
profiles through the center of the filters (the size in all cases is 1000 X 1000 and the cutoff frequency is 5). FIGURE 4.45 (a) Original image. (b)—(f) Results of filtering using BLPFs of order 2.

Observe how ringing increases as a function of filter order. with cutoff frequencics at the radii shown in Fig 4.41. Compare with Fig 442



Gaussian Lowpass Filter

o« H(u,v) = e—Dz(u,v)/Za2
» g — measure of spread
- 0 = D, is the cutoff frequency
» 1FT 1s also a Gaussian
- No ringing because of smooth function
= A favorite filter for smoothing

Hu, v) Hu, v)
4
! v 1.0

0.667 |

t

abe

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image, (¢) Filter
radial cross sections for various values of D,



Gaussian LP Example

- No ringing
- Not as much smoothing as
Butterworth 2

- Best for use when ringing is
unacceptable

- Butterworth better when tight
control of transition between
high and low frequency is
required

r . |
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saaaaaad . .
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|1 1
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FIGURE 4.48 (a) Onnal ymage. (b)~(f) Results of filtering using GLPFs with cutoff
frequencies ot the radii shown in Fig 4.41. Compate with Fi



|
Sharpening

Use a highpass filter | wwigyh
° Hyp(w,v) =1—Hp(u,v) .

Ideal _
0 D(u,v) <D, " | I

) H(u’ v) - {1 D(u, 17) > DO H(n.:.m :‘ Hin v)

=% IAn‘-'
« Butterworth _
1 NS
Hu,v) = 1+[Do/D(u,v)]?" ‘ .
- Gaussian M | _—
u] H(u’ ‘U) = e—DZ(u,v)/ZGZ Ilu‘:. v) G . ll“; vl
Y/ |
abe B E - —_ — = [ Xu, v
def '
Bhi o

FIGURE 4.52 Top row: Perspective plot, image representation. and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters



Highpass Examples

ab

FIGURE 4.53 Spatial representation of typical (a) ideal. (b) Butterworth, and (¢} Gaussian frequency domain

highpass filters, and corresponding intensity profiles through their centers.

Same ringing artifacts as ideal lowpass

a7

abe

FIGURE 4.54 Results of highpass filtering the image in Fig, 441(a) using an THPF with D, 30, &0, and 160

abe

FIGURE 4.55 Results of highpass filtering the image in Fig 4.41(a) using a BHPF of order 2 wath D, = 30, 60,
and 16l corresponding to the circles in Fig. 4.41(h). These results are much smoother than those obliined

with an IHPF.

alb e

FIGURE 4.56 Rosults of hi_!'|'||\:|-\.'= fillter g the mage in Fl_!',. d.dlia) '|:|'\.i|'|_:' a GHPF with I, W, &, andd 1640
correspogding 1o the circles m Fig, 441000, Compare with Fes 454 and 4.55




HP Sp

ectrum View

(€) (d)

Figure 5.26: High-pass frequency domain filtering. (a) Spectrum of a high-pass filtered image,
only very low frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). {c¢} Spectrum of a high-pass filtered image. all lower frequencies filtered
out. (d) Inverse Fourier transform applied to spectrum (c), © Cengage Learning 2015,



Selective Filtering

- Bandpass/reject — operate on a ring in the
frequency spectrum
= See Table 4.6 for definitions

‘ ab
FIGURE 4.63
(a) Bandreject
Gaussian filter.
(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity:it
is not part of the
data.

- Notch filters — operate on specific regions in the
frequency spectrum

= Move center of HP filter appropriately




Notch

Examples

.\f" a‘_l;
v Wi
v 2

ab
cd

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moire pattern.
(b) Spectrum.

(¢) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.



Notch Examples

ahb
cd

FIGURE 4.65
(4)674 < 074
image of the
Saturn rings
showing nearly
penodic
mterterence

(b1 Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
mterterence
pattern. {¢) A
vertical notch
reject filter.

(d) Result of
liltering. The thin
biack border in
(<) was added for
clartty: it is not
part of the data,
{Origial image
courtesy

of Dr, Robert

Al West,
NASA/JPL,)

117/

ab

FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of

Fig. 4.65(a).

(b) Spatial
pattern obtained
by computing the

IDFT of (a)



BP Spectrum View

Figure 5.27: Band-pass frequency domain filtering. (n) Spectrum of a band-pass-filtered image,
low and high frequencies filtered out. (b) Image resulting from the inverse Fourier transform
applied to spectrum (a). © Cengage Learning £015.
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Figure 5.28: Periodic noise removal. (a) Noisy image. (b} Image spectrum used for image
reconstruction—note that the areas of frequencies corresponding with periodic vertical lines are
filtered out. (¢) Filtered image. @ Cengage Learning 2015.
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Implementation Issues

- DFT is separable

> Can compute first a 1D DFT over rows followed by
the 1D DFT over columns

= Simplifies computations in 1D
- Practically use Fast Fourier Transform (FFT) to
computer all DFT

= Computationally efficient algorithm that
simplifies problem by halving sequence repeatedly

» Efficiency requires M and N (size of image) to be
multiples of 2



