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Abstract—Monitoring the state of our roadways has become 

increasingly important in order to better manage traffic 

congestion. Sophisticated traffic management systems are 

being developed that are able to process both static and mobile 

sensor data that provide traffic information for the roadway 

network. In addition to typical traffic data such as flow, 

density, and average traffic speed, there is now strong interest 

in environmental factors such as greenhouse gas and pollutant 

emissions from traffic. It is now possible to combine real-time 

traffic data along with instantaneous emission models to 

estimate these environmental measures in real-time. In this 

paper, we describe a system that can more accurately 

determine average traffic fuel economy, CO2, CO, HC, and 

NOx emissions using a computer vision-based methodology 

that also incorporates energy/emission profiles from the 

comprehensive modal emissions model CMEM and EPA’s 

MOVES emission factor database. The vision system provides 

information not only on average traffic speed, density, and 

flow, but also on individual vehicle trajectories and recognized 

vehicle categories. The vehicle trajectories for the specific 

identified categories are used by the emissions model to predict 

environmental parameters. This estimation process provides 

far more dynamic and accurate environmental information 

compared to static emission inventory estimation models. 

Keywords: computer vision; traffic surveillance; emissions 

modeling; CMEM; MOVES 

I. INTRODUCTION 

As our roadways become increasingly congested, it is 
becoming increasingly critical that we monitor the state of 
our roadway network through a variety of means. In the last 
decade, there has been a tremendous amount of research in 
Intelligent Transportation Systems (ITS) in the field of 
Advanced Traffic Monitoring and Management Systems 
(ATMMS). Traffic management centers are becoming 
increasingly sophisticated around the world where traffic 
data from a variety of sensors are brought in, analyzed, and 
then used to better manage overall traffic. A good example 
of this type of system is the California Traffic Performance 
Monitoring System (PeMS) [1] which collects link-based 
traffic data such as traffic flow, density, and average speed 
across California’s freeway network. 

In addition to standard traffic measures, there is also a 
strong interest now is traffic emissions in terms of 1) 
pollutants such as carbon monoxide (CO), hydrocarbons 
(HC), oxides of nitrogen (NOx), and particulate matter (PM); 
and 2) greenhouse gases such as carbon dioxide (CO2). 
Estimating an emissions inventory for mobile sources (i.e., 
vehicles traveling on the roadway network) is an active field 
due to requirements from the U.S. Environmental Protection 
Agency (EPA) and the California Air Resources Board 
(CARB). Most of the roadway planning must undergo 
detailed emissions modeling to determine the impacts of 
future activity. To support these emissions inventory 
estimates, both the U.S. EPA and CARB have sophisticated 
emission models that can be used to determine emissions for 
specific scenarios. 

Transportation policy makers are now beginning to see 
the value of combining both real-time transportation data and 
emissions modeling so that instantaneous emissions can be 
predicted for a roadway network on a link-by-link basis. 
There have been a few attempts to simply take link-based 
traffic volumes and average speeds and then use a speed-
emissions curve to estimate link-based emissions. This 
approach lacks sensitivity in that it does not capture an 
instantaneous profile of vehicle types and their instantaneous 
activity. To estimate real-time link-based emissions (and fuel 
economy), we have developed a computer vision-based 
methodology that also incorporates energy/emission profiles 
that have been derived from a comprehensive modal 
emissions model (CMEM) [2-6] and EPA’s MOVES 
emission factor database. In Section II, we describe the 
computer vision-based monitoring system that is capable of 
estimating not only traffic parameters of flow, density, and 
speed, but can also extract vehicle velocity trajectories as 
well as perform rough vehicle categorization. Section III 
describes the emissions and energy models and how they are 
interfaced with the results from the computer vision traffic 
monitoring system. Section IV describes the experimental 
setup and initial results from this innovative real-time 
energy/emissions traffic monitoring system. 
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II. VISION-BASED TRAFFIC MONITORING SYSTEM 

Highway traffic management is an important field requiring 

up-to-date data delivered in real time along with historical 

data on traffic conditions to design effective control 

strategies. In California, inductive loop sensors deliver 

counts (number of vehicles to cross a loop) and occupancy 

(average fraction of time a vehicle is over a loop) every 30 

seconds from locations all over the state, providing a large 

data infrastructure.  Unfortunately, only about 60% of 

California’s loop detectors supply usable data and the 

system is costly to maintain. Video monitoring offers an 

attractive alternative for loop sensor data with the advantage 

that cameras can be unobtrusively deployed on roadsides 

and that video monitoring has several potential monitoring 

applications in addition to vehicle counts and traffic 

measurements.  Video monitoring can be used to track 

individual vehicles in a scene, revealing additional 

information which is difficult to obtain using loop detectors 

alone such as trajectory information and vehicle 

classification.  This added information provides a more 

complete picture of highway traffic then can be obtained 

from loop detector data alone. 

 

The VECTOR system [7] is a visual traffic monitoring 

system which detects and tracks every vehicle in view.  

Highway congestion statistics are accumulated by analyzing 

vehicle trajectories to mimic the measurements obtained 

with loop detectors.  In addition, the appearance of each 

detection is used to determine vehicle type.   

A. Vehicle Detection and Tracking 

A single camera is used to monitor both directions of a busy 

4 lane highway.  Moving vehicles are detected using 

background subtraction.  Vehicles are tracked using a global 

nearest neighbor optimization which accounts for dynamics 

using a Kalman filter and appearance similarity.  Detections 

are matched to existing tracks if they appear where expected 

based on the Kalman motion model and if the appearance is 

consistent to help deal with occlusions.  As vehicles are 

tracked, their current lane number is determined using 

position information described in [7] to mimic the output of 

inductive loop sensors.   

B. Traffic Flow Measurement 

Using trajectory information, the time series of fundamental 

highway usage parameters, analogous to those obtained 

from conventional loop detectors, is collected in real-time.  

This system delivers flow (# vehicles/time), density (# 

vehicles/distance), and average speed (MPH) in 30 second 

intervals. The primary traffic measure of flow counts the 

number of vehicles every 30 seconds and indicates link 

usage.  The VECTOR flow statistic is generated by counting 

the number of passing vehicles in the 30 second update 

interval.  The vehicles are counted as they exit the camera 

field of view to simulate a spot sensor. 

 

Density is the average number of vehicles in the camera 

view normalized by the roadway length and measures 

highway crowding.  The speed is the average velocity of all 

tracked vehicles in the 30 second interval which is difficult 

to obtain using loops. Fig. 1 through Fig. 3 give examples of 

the accumulated statistics in the north and south bound 

directions of US Interstate 5 (I5) on a Friday evening.  

Density greatly increases in the southbound direction 

between 15:00-16:00 with an accompanying increase in 

flow.  But, the increased usage leads to a large reduction in 

link speed.  Once the evening commute is in full swing, 

between 16:00-18:00, the speed is only 20 MPH, density is 

capped at approximately 175 vehicles per mile, and the flow 

follows a downward trend after reaching its limit of 60 

vehicles per 30 seconds.    

 

 
Fig. 1. Density for north and southbound directions of I-5. 

 
Fig. 2. Flow for north and southbound directions of I-5. 

 
Fig. 3. Speed for north and southbound directions of I-5. 

Fig. 4 through Fig. 6 show the south bound statistics for 

different lanes to highlight lane level congestion effects.  In 

Fig. 4 it is evident lane 4 (the slow lane) is occupied by 

more vehicles.  During the commute hours this difference is 

greatly increased from 30 vehicles/mile to 80 vehicles/mile 

which causes congestion.  This is revealed in Fig. 5 by 
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noting the increased flow and density until a sudden flow 

drop shortly after 16:00.  The congestion in the slow lane 

spills over into the adjacent lanes causing a comparable loss 

in speed over all the lanes as is evident in Fig. 6.  This 

phenomenon demonstrates the need for on and off ramp 

management to control the slow lane as well as the entire 

highway link itself. 

 

 
Fig. 4. Lane density for north and southbound direction of I-5. 

 
Fig. 5. Lane flow for north and southbound direction of I-5. 

 
Fig. 6. Lane speed for north and southbound direction of I-5. 

C. Vehicle Classification 

The VEhicle Classifier and Traffic flOw analyzeR 

(VECTOR) classifies vehicles into the eight different 

vehicle types (Sedan, Pickup, SUV, Van, Semi, Truck, 

Bike, Merged) seen in Fig. 7. These vehicles were selected 

because they were the most often occurring vehicle types 

from the 2001 National Household Travel Survey conducted 

by the U.S. Department of Transportation [8]. 

 

The block diagram depicting the VECTOR classification 

scheme is in Fig. 8.  After a vehicle is detected, a set of blob 

measurements are calculated to describe the object.  The 

blob measurements consisted of 16 features obtained using 

morphological operations,   ! =  [#$, … , #%&]' = {area, 

breadth, compactness, elongation, perimeter, convex hull 

perimeter, length, long and short axis of fitted ellipse, 

roughness, centroid, the 4 first and second image moments} 

[9].  The extracted features are transformed into a lower 

dimensional space that better separates the vehicle types 

using Fisher's linear discriminant analysis (LDA) [10].  For 

each frame a vehicle is tracked, its transformed features are 

used to generate a single frame classification using a 

weighted K nearest neighbor (wkNN) technique.   

Information redundancy, in repeated vehicle images, during 

tracking is exploited to generate an improved vehicle type 

classification for the track.  The track-based refinement 

scheme reduces uncertainty and noisy measurements from a 

single frame through maximum likelihood estimation [7]. 

 

 
Fig. 7. Sample images from VECTOR vehicle classes. 

 
Fig. 8. Block diagram for the VECTOR classification scheme. 

Using vehicle type information, VECTOR provides rich 

contextual traffic measurements in addition to reproducing 
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loop detector data. Traffic parameters are compiled for each 

type of vehicle based on the vehicle classification.  This 

information is useful for understanding how roads are being 

utilized. Fig. 9 plots the flow and speed of different vehicle 

types on a weekday.  In Fig. 9a there are clearly many more 

sedans on the road than any other class of vehicles but 

during the evening commute the number of pickups and 

SUVs on the road appear to switch; during the day there are 

more pickups and during rush hour there are more SUVs.  

One may speculate that this occurs because contractors and 

other workers (construction or landscaping) who need 

pickups start and end their work earlier than the more 

typical 9-5 day.  In Fig. 9b it is noted that most of the 

vehicles travel at approximately the same speed (the speed 

of traffic) but the larger semi trucks tend to travel slower 

than passenger vehicles, matching intuition. 

 

 
Fig. 9. Traffic highway statistics separated by vehicle type. 

III. ENERGY/EMISSIONS MODEL AND INTERFACE 

A. Vehicle Emission Modeling 

In order to more accurately determine the amount of 

emissions or fuel usage from a particular vehicle, it is 

necessary to know certain vehicle characteristics such as 

weight, fuel type, engine displacement, aftertreatment 

technology and vehicle age as well as how the vehicle is 

being operated (the driving profile). Unfortunately, it is not 

possible to determine many of these vehicle characteristics 

using conventional traffic cameras. The resolution of these 

setups along with the vast number of vehicles on the road 

with varying characteristics makes this level of data 

collection almost impossible without the use of other 

identifying techniques such as RF-tags or license plate 

recognition. As shown earlier, it is however possible to 

distinguish between different classes of vehicles using 

conventional traffic cameras. Each class of vehicles has 

different emission properties which are generally related to 

vehicle size and type. In the current implementation, an 

instantaneous emission value (Epol) for pollutant (pol) is 

estimated for each vehicle based on vehicle class and 

Vehicle Specific Power (VSP) 

 

()*+(.) = 0(12ℎ4562 56788, 9:;) (1) 

where vehicle class represents the VECTOR categories 

discussed in Section II and VSP is Vehicle Specific Power, 

used by several, e.g., Jimenez-Palacios [11]. The emission 

value is updated and recorded for each vehicle at each time 

frame t that is observed in the camera field of view. The 

bounding box surrounding a detected vehicle is color coded 

to indicate the current emission score with more red 

indicating a higher score. 

B. Vehicle Specific Power Approach 

There are various approaches to estimating vehicle 

emissions depending on the scope of the analysis and the 

available data. By tracking the state of each vehicle in each 

video frame, the VECTOR system provides velocity, 

acceleration and vehicle category identification information 

for each vehicle in the monitored area at a frequency of 1 

Hz or greater.  

Traditional emission modeling techniques are limited to 

utilizing average congestion level and average speed based 

emission rates to estimate emissions. One of the 

fundamental drawbacks of this modeling approach is that a 

given speed under various levels of acceleration will results 

in a wide range of emissions. Acceleration is an important 

factor in the estimation of vehicle load, which is well 

correlated with fuel use and consequently emissions. In 

order to take advantage of this significantly greater level of 

detail, VSP was used as the basis for emission rates.  

 

VSP is defined as the instantaneous power to move a 

vehicle per the mass of the vehicle. The calculation for VSP 

in kW/metric tons is based on the following equation, 

simplified from the power demand terms for a moving 

vehicle: 

 

VSP =  1(1.17 +  g sin(θ) +  gCA) +
ρDCEAG1H

2M
 (2) 

where  

1 = vehicle speed in m/s 

7 = vehicle acceleration in m/s
2
 

g  = gravity (m/s
2
) 

θ  = grade 

CA  = coefficient of rolling resistance 

ρD  = density of air (kg/m
3
)  

(~1.2 kg/m
3
 at sea level and 20 °C) 

CE  = coefficient of aerodynamic drag 

AG  = frontal area of vehicle (m
2
) 

M  = mass of vehicle (kg)  

 

The values in Table 1 are used to approximate VSP for 

seven of the VECTOR vehicle classes. The merged vehicle 

class is excluded. 

 
 

 

 

 

 

a) b) 
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Table 1. Approximations for VECTOR vehicle category vehicle 

characteristics. 

Type Mass (kg) Frontal Area (m
2
) Cr Cd 

Sedan 1360 2.0 0.0135 0.34 

Pickup 2340 3.3 0.0135 0.43 

SUV 3035 3.44 0.0135 0.41 

Van 2270 3.46 0.0135 0.38 

Bike 230 0.65 0.0250 0.9 

Truck 11360 6.6 0.0094 0.7 

Semi 27300 10.0 0.0094 0.85 

 

Using the values from Table 1, equation 2 was reduced, for 

ease of use, to the equations found in Table 2 for 7 of the 

VECTOR vehicle classes. 

 
Table 2. VSP equations for VECTOR vehicle classes. 

Type VSP Equation (kW/metric ton) 

Sedan VSP =  1(1.17 +  g sin(θ) +  0.1323) + 0.0003001H 

Pickup VSP =  1(1.17 +  g sin(θ) +  0.1323) + 0.0003641H 

SUV VSP =  1(1.17 +  g sin(θ) +  0.1323) + 0.0002791H 

Van VSP =  1(1.17 +  g sin(θ) +  0.1323) + 0.0003481H 

Bike VSP =  1(1.17 +  g sin(θ) +  0.24500) + 0.0015261H 

Truck VSP =  1(1.17 +  g sin(θ) +  0.09212) + 0.0002441H 

Semi VSP =  1(1.17 +  g sin(θ) +  0.09212) + 0.0001871H 

 

C. Emission Table Generation 

Emission tables developed for this project provide 

instantaneous emission rates for VSP values between 0 and 

40 kW/tone and can be conveniently applied both in real-

time and in post processing. For each vehicle and at each 

time step, a VSP value is calculated using the equations in 

Table 2 and corresponding emission values are determined 

from the emission table for that specific vehicle class.  

 

1) Comprehensive Modal Emissions Model 
The VSP based emission tables for this project were 

primarily generated from modeling results from the 

Comprehensive Modal Emission Model (CMEM) which 

was developed at CE-CERT, University of California at 

Riverside [2]. CMEM is a modal emissions model intended 

primarily for use with microscale transportation models that 

typically produce second-by-second vehicle trajectories. 

CMEM is capable of predicting second-by-second fuel 

consumption and tailpipe emissions of carbon monoxide 

(CO), carbon dioxide (CO2), hydrocarbons (HC), and 

nitrogen oxides (NOx) based on different modal operations 

from an in-use vehicle fleet. CMEM consists of nearly 30 

vehicle/technology categories covering light-duty vehicles 

and Class-8 heavy-duty diesel trucks. With CMEM, it is 

possible to predict energy and emissions from individual 

vehicles or from an entire fleet of vehicles, operating under 

a variety of conditions.  

 

One of the most important features of CMEM (and other 

related models) is that it uses a physical, power-demand 

approach based on a parameterized analytical representation 

of fuel consumption and emissions production. In this type 

of model, the fuel consumption and emissions process is 

broken down into components that correspond to physical 

phenomena associated with vehicle operation and emissions 

production. Each component is modeled as an analytical 

representation consisting of various parameters that are 

characteristic of the process. These parameters vary 

according to the vehicle type, engine, emission technology, 

and level of deterioration. One distinct advantage of this 

physical approach is that it is possible to adjust many of the 

physical parameters to predict energy consumption and 

emissions of future vehicle models and applications of new 

technology (e.g., aftertreatment devices). For further 

information on the CMEM effort, please refer to [2-6]. 

 

VSP and emission values are calculated for each CMEM 

vehicle category for both cycles. Vehicle population data 

from CARB’s EMFAC model for San Diego County and 

calendar year 2010 is used to approximate fleet distributions 

for CMEM categories. CMEM categories are further 

grouped into the VECTOR vehicle classes for compositing. 

Fig. 10 shows compositing results for the VECTOR pickup 

class.  In this figure the light blue lines show VSP emission 

results for individual CMEM vehicle categories within the 

VECTOR pickup class and the red line shows the weighted 

composited VSP based emission values for the VECTOR 

pickup class.  

 
Fig. 10. VSP based emission rate values for the VECTOR 

pickup class generated from weighted CMEM categories. 

In addition to the VECTOR sedan, pickup and semi classes, 

the CMEM model was used to determine the van and SUV 

categories as well even though there are no specific van or 

SUV categories in the CMEM model. In order to determine 

van and SUV emissions more directly, individual van and 

SUV vehicles from the NCHRP database from the original 

CMEM project [2] were identified (20 SUV vehicles and 37 

vans) and modeled using CMEM. The VSP based emissions 
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from these vehicles were averaged to create emission tables 

for those two categories specifically.     

 

2) VSP Emission Rates from EPA’s  MOVES Model  
The VECTOR vehicle classes consist of 7 different vehicle 

classes not counting the merged category.  The car, pickup, 

van, SUV and semi categories are determined from the 

CMEM model; the remaining two VECTOR categories, 

truck and motorcycle, are not supported by the CMEM 

model.  

The VECTOR truck category is a broad category and 

encompasses a range of visually similar vehicle types such 

as busses, garbage trucks, and medium heavy trucks.   For 

the most part, these vehicles are large diesel engine driven 

vehicles and for this application this class was approximated 

as an urban bus according to EPA’s approximation for 

1996-2006 class 48 vehicles from heavy-heavy duty (HHD) 

vehicles [12].   

 

The motorcycle class is modeled using base emission rates 

found in the 2010 MOVES database. MOVES stands for 

Motor Vehicle Emissions Simulator and is EPA’s latest 

mobile source emission model.  The MOVES modeling 

methodology is based on VSP binned emission rates. It is 

applicable at the microscale level and can be integrated 

upwards for mesoscale and macroscale applications.  The 

core of the MOVES modeling suite is a MySQL database 

which is referenced by the MOVES software and GUI to 

run elaborate analysis at various temporal and spatial 

resolutions.  At the fundamental level, the MOVES model, 

is a database of emission and energy use tables binned by 

VSP operating mode.  VSP operating mode bins are VSP 

bins split not only by VSP, but also by mode such as 

acceleration, deceleration, braking, and speed range.  

MOVES VSP operating mode bins are divided into 3 

distinct speed ranges in an effort to separate emission speed 

effects.  For this analysis, MOVES VSP operating mode 

bins with matching VSP ranges were combined across 

vehicle speeds to create approximate VSP emission tables. 

Motorcycle emission rates were extracted from the MOVES 

database by query using the appropriate sourceBinID for the 

motorcycle regulatory class and the 2006 model year group. 

The appropriate polProcessIDs for CO, HC, NOx and total 

energy were used as well as ageGroupIDs for 0-3 and 4-5 

years. VSP operating mode bins between 11 and 40 were 

used. Pollutant emission factors were queried from the 

emissionratebyage table and total energy was queried from 

the emissionrate table.  Total energy was converted to CO2 

using an oxidation factor of 1 and carbon content of 0.00196 

g/kJ as discussed in the MOVES documentation[12].     

IV. EVALUATION SETUP AND RESULTS 

A. Visual Vehicle Type Classification 

Total classification accuracy for a sample of 6,500 test 

tracks was found to be 78.4% and the performance of the 

system by vehicle type is presented in the confusion matrix 

in Table 3. 

 

Table 3. Confusion matrix for all test hours. Total classification 

accuracy of 78.4% over 6,500 test tracks. 

 sedan pickup suv van semi truck bike merged 

sedan 2726 127 202 55 0 0 1 0 

pickup 40 374 52 24 0 14 0 4 

suv 411 113 1147 172 0 3 0 4 

van 15 11 54 83 0 6 0 7 

semi 0 0 0 0 26 1 0 1 

truck 1 5 1 2 11 36 0 0 

bike 1 0 0 0 0 0 18 0 

merged 7 7 6 10 3 31 2 677 

total 3201 637 1462 346 40 91 21 693 

% correct 85.2 58.7 78.5 24.0 65.0 39.6 85.7 97.7 

% correct 85.2 58.7 80.1 56.5 85.7 97.7 

 

With the vision based monitoring system, vehicle type 

distribution data can easily be obtained for a given location 

in real-time from the data presented in Fig. 9.  Distribution 

data for 5 minute samples every hour over the course of 10 

hours is presented in Fig. 11.  This data compares 

reasonably to 2010 EMFAC vehicle distribution data for 

San Diego County which is presented in Fig. 12.   

 
Fig. 11. Measured VECTOR vehicle class distribution for 5 

minute samples per hour over 10 hours.  

 
Fig. 12. EMFAC 2010 vehicle distribution for San Diego 

County. 

B. Real-Time Vehicle Emission Aggregation 

The VSP emission equations and emission tables described 

in Section III allow real-time estimation of vehicle 

emissions using the velocity, acceleration and category 

identification provided by the VECTOR system. Vehicle 

emission values are updated for each new video frame 

acquired, which is at a rate of 30 times per second. The 

traffic flow and emission are plotted to show the current 
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emission values along with a short history as seen in Fig. 

13.  To the right of the moving plots are two bars which 

indicate the current emission load in the north and south 

bound directions of the highway.  The height and color of 

the bars denote the magnitude of the emission score with red 

indicating high emissions.   

 

These diagnostic plots provide immediate up-to-date 

measurements but are quite variable due to the traffic 

congestion conditions.    Similar to the standard loop 

detector measures used for traffic management, the emission 

score is accumulated and archived over 30 second 

increments to aggregate the data into more stable and 

meaningful timescales. Emission statistics could then be 

used in the same way that the traditional highway measures 

of flow, occupancy, and speed are utilized through traffic 

measurement database systems such as Berkeley's (and now 

Caltrans) Performance Measurement System (PeMS) [1].  

Fig. 14 through Fig. 17 show the variability and trend of 

cumulative predicted CO2 , HC, NOx and CO emission over 

a more than 9 hour time period. In Fig. 18, a simple map 

application provides a color coded view of the highway 

emissions in a particular roadway segment.  Darker more 

red colors indicate a higher emission score in the past 30 

seconds.  This map is similar to navigation speed colored 

maps which display the highway speed based on loop (or 

floating car) measurements.  The map can display the 

historical emissions at a location over time to demonstrate 

how commutes affect air quality.  

 

 
Fig. 13. Real-time plot of vehicle counts and emission 

measurements. 

 
Fig. 14. Cumulative predicted CO2 emissions for southbound    

I-5. 

 
Fig. 15. Cumulative predicted HC emissions for southbound I-5. 

 
Fig. 16. Cumulative predicted NOx emissions for southbound    

I-5. 

 
Fig. 17. Cumulative predicted CO emissions for southbound I-5. 
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Fig. 18. Google map with highway color-coded based on 

transportation emission measurement updated in 30 second 

intervals. 

V. CONCLUSIONS  AND FUTURE WORK 

A computer vision-based system for traffic monitoring 
was integrated with a VSP based emission modeling 
approach to develop an innovative system for estimating 
real-time traffic emissions accounting for vehicle velocity, 
acceleration and type. A set of VSP based emission profiles 
was developed from CE-CERT’s microscale emission model 
CMEM and additional categories were supplemented with 
data from EPA’s latest emission model MOVES. The 
method for processing both of these emission modeling data 
sources is presented. Using this system, real-time vehicle 
distribution statistics that are generally comparable to 
EMFAC vehicle population data were observed and real-
time estimated emissions for a sample period were shown.  

This study was performed on a level section of road, but 
can easily be extended to include road grade as an additional 
input for emission modeling.  Future work will be to develop 
this for additional areas of interest to verify operation in a 
wide variety of differing conditions.   
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