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Abstract—Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and

manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video

analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for

real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object

trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned

through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities

probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion

using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive

evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework

for surveillance-based activity analysis.

Index Terms—Trajectory clustering, real-time activity analysis, abnormality detection, trajectory learning, activity prediction.
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1 INTRODUCTION

THE dramatic decrease in cost for quality video equip-
ment coupled with the ease of transmitting and storing

video data has led to widespread use of vision-based
analysis systems. Cameras are in continuous use all around,
along highways to monitor traffic, for security of airports
and other public places, and even in our homes. Methods to
manage these huge volumes of video data are necessary as
it has almost become an impossible task to continually
monitor these video sources manually. Vision researchers
have been forced to develop robust real-time methods to
recognize events and activities of interest as a means
to compress video data into a more manageable form, and
to provide annotations that can be used for search indexing.

While researchers have been long been interested in
understanding human behavior, much of the work has
relied on high resolution descriptors such as state space
approaches [1], 3D reconstruction of body configurations
[2], volumetric space-time shapes [3], or body part decom-
position [4]. In the surveillance and monitoring setting, such
rich descriptors may not be available or may not be
necessary. Rather, coarse center-of-body motion can be
reliably extracted from either rigid or deformable objects
(e.g., vehicles or humans) in these far-field situations. This
motion has cued human activity understanding through

selective focus of attention in PTZ image capture [5] or
detection of loitering individuals [6]. In the transportation
setting, vehicle motion has been utilized for traffic conges-
tions measurements [7] and detailed origin-destination
information at intersections [8]. But, these techniques
require domain knowledge and as more video sites have
been erected, the need for automatic methods to character-
ize activity from data rather than by manual specification
[9] has greatly increased, as these methods provide a
framework for unsupervised detection of interesting or
abnormal events.

This work seeks to understand suveillance scene activity
with minimal constraints and limited domain knowledge
by developing a probabilistic trajectory analysis framework.
A 3-stage hierarchical modeling process, which charac-
terizes an activity at multiple levels of resolution, is
developed to classify and predict future activity and detect
abnormal behavior. The unsupervised learning scheme is
able to learn the points of interest in a scene, cluster
trajectories into spatial routes, capture dynamics and
temporal variations by a hidden Markov model, and
provide an activity adaption methodology to characterize
a novel scene over long time periods without a priori
knowledge. The framework effectively handles imperfect
tracking and can automatically estimate the number of
typical activities in a scene. Finally, extensive evaluation on
a number of data sets, which is lacking in the literature, is
provided to quantify analysis performance.

2 RELATED RESEARCH

A surveillance activity is composed of a sequence of
ordered actions and a trajectory is the set of observable
motion measurements. Often the observed motion pat-
terns in visual surveillance systems are not completely
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random but have some underlying structure which has
been exploited to build models that allow for accurate
inferencing.

Pioneering work by Johnson and Hogg [10] described
outdoor motions with a flow vector and learned implicit
temporal relationships using a leaky neural network. The
leaky network was modified with feedback between output
nodes and the leaky neurons to enable prediction by
Sumpter and Bulpitt [11]. Owens and Hunter [12] extended
this idea using a self-organizing feature map to further
detect abnormal behavior. Unfortunately, the neural net-
work implementations required difficult fine tuning of
parameters and large amounts of data which resulted in
slow convergence.

By utilizing a complete trajectory as input for clustering,
Hu et al. drastically improved the learning process speed
[13]. This explicitly enforeced the sequential nature of
trajectory observation points and allowed researchers to
extend the modeling to detect abnormalities and make
predictions by utilizing previously observed motion [7],
[14], [15], [16]. Multilayered learning approaches have been
developed to first model the spatial extent then dynamics of
an activity [15]. Junejo et al. characterized an activity by its
extent, the traversal speed, as well as the amount curvature.
Makris and Ellis [17] developed an online method for
building up spatial envelopes for each activity. Others have
learned the smaller action groups and connected them
within a Markov model [18] or tree-like structure [19]. By
learning actions, new activities branch out from existing
models (natural for online learning) and enable efficient
learning through the use of shared data.

In stark contrast, others have completely ignored the
inherent ordering in a trajectory. Rather than require full
trajectories, which are difficult to obtain due to scene
clutter and occlusion, only interframe motion is considered
for bag-of-word type learning methods. Stauffer and
Grimson created a codebook of motion flows and learned
the co-occurrence of motions. Similarly, drawing inspira-
tion from document clustering research, Wang et al. [20],
[21], [22] have developed hierarchical Bayesian models to
group co-occurring motions into actions and activities,
jointly and without supervision. Xiang and Gong [23] were
able to segment videos into clips of different activities
based on the spectral similarity of behaviors.

A more detailed examination of techniques is presented
in the review by Morris and Trivedi [24], which highlights a
wide range of applications, challenges, and common
approaches to trajectory learning and modeling. They
emphasize not only the learning framework but also
trajectory representation [25], [26], [27] and similarity
metrics for comparison [28], [29].

This work presents a new multilevel trajectory learning
framework which is capable of automatically estimating the
number of activities in a scene and adapts to changes over
time. Thorough evaluation of performance, lacking in related
studies, is presented to characterize analysis performance.

3 TRAJECTORY LEARNING FRAMEWORK

This paper adopts the general probabilistic trajectory
analysis framework, shown in Fig. 1, to automatically learn

and describe activity. At the front end, a vision-based
background subtraction module detects moving objects and
a tracking process creates trajectories which are the main
input for activity inferencing [7]. Coarse body motion is
utilized as a reliable low level feature which can describe
how an agent moves through a visual scene. A trajectory is
a sequence of T flow vectors:

F ¼ ff1; . . . ; ft; . . . ; fTg; ð1Þ

ft ¼ ½xt; yt; ut; vt�T; ð2Þ

where flow vector ft compactly represents an object’s
motion at time t by the ðx; yÞ position and corresponding
component velocities ðu; vÞ.

During the initial observation and learning phase,
trajectories are collected to create a measurement database.
The trajectory database is clustered to find similar motion
patterns without specifying those of interest. Finally, the
groups of similar trajectories are probabilistically modeled
to populate an activity database for inferencing.

A key for designing an effective learning framework is to
examine and limit the types of behaviors to be analyzed. This
work is concerned with simple activities composed of
smaller actions which are performed by a single agent. More
complex behaviors, e.g., interactions between agents, are left
for future studies. As shown in Fig. 2, an activity is defined
by a sequence of atomic actions and a trajectory is the
observable measurement that summarizes activity history.

An activity can be decomposed at different resolutions to
answer specific analysis questions. An activity can be
characterized by four main components (left side of Fig. 3)
that form an explanation hierarchy with each level provid-
ing a more refined activity description. Each of the levels is
briefly described to highlight its analysis importance.

Level 1 (Node). A simple compact representation of the
interesting endpoints (origin and destination information is
used by the transportation community to understand to and
from where people travel).

Level 2 (Spatial). Different routes between nodes spatially
localize differing activities and separates the straight route
from a more round about approach.
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Fig. 1. The general framework for trajectory analysis. During the
observation (training) phase, trajectories are clustered and modeled.
The learned set of typical patterns are used for live activity analysis in
the online evaluation phase.



Level 3 (Dynamic). Further disambiguation is made by

considering the dynamics in how routes are traversed to

make a distinction between slowly and quickly moving

activities (e.g., free-flow versus congestion on the highway).
Level 4 (Temporal). The finest level of activity character-

ization accounts for temporal variations. This most closely
matches the activity model to account for the duration and
sequencing of actions.

The 3-stage hierarchical learning process presented on
the right of Fig. 3 describes each of the levels in turn. Nodes
or points of interests (POI) are discovered using Gaussian
mixture modeling (GMM) and expectation maximization.
The spatial routes are extracted by comparing and cluster-
ing similar trajectories while simultaneously and automa-
tically determining the number of activities in a scene. In
the last stage, both the spatio-temporal dynamics that
characterize an activity are encoded in the probabilistic
hidden Markov model (HMM).

The evaluation phase uses the learned activity HMMs as

a descriptive vocabulary for online analysis. As a new object

is tracked, its activity is characterized, future behavior is

predicted, and alarms are signaled if there is an abnormal or

unusual action. In addition, recent observations are used to

update and modify the activity models to better reflect the

surveillance scene.

The analysis framework must cope with a number of

real-world implementation issues in order to facilitate

deployment. In a new scene, the number of typical activities

is not known a priori and must be estimated automatically.

In addition, the learning and evaluation algorithms must

gracefully handle incomplete trajectories due to faulty

tracking. Finally, when monitoring a site over long periods,

the initial training period may not reflect the current scene

configuration, necessitating approaches to modify the

activity models. In the following sections, more details of

the learning and analysis framework are provided, as well

as an evaluation methodology.

4 NODE LEVEL LEARNING

The first activity level locates the points of interest in the

image plane. These POI are represented as graph nodes in

a topographical map of the scene (Fig. 4). The POI are

used to filter noisy trajectories which arise from tracking

failures to provide robustness and improve the automatic

activity definition.

4.1 Points of Interest

There are three different types of POI in a scene: entry, exit,

and stop. The entry and exit POI are the locations where

objects either appear or disappear from the scene (e.g., the

edge of the camera field of view) and correspond to the

first, f1, and last, fT , tracking point, respectively.
The stop POI indicate scene landmarks where objects

tend to idle or remain stationary (e.g., a person sitting at a
desk). Potential stop points must have very low speed for at
least � seconds. But, unlike the inactivity regions of
Dickinson and Hunter [30], stop regions are also localized.
The stop POI shown in Fig. 4 is defined by �=�t consecutive
points with speed less than the threshold Vstop and all within
the small radius R. This more complex inactivity definition
ensures a stationary object remains in a particular location.
Just relying on a low speed threshold can contaminate the
set of stop points, e.g., samples of a vehicle in congestion
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Fig. 3. In order to model activities at various resolutions, a 3-stage hierarchical learning procedure is adopted. The first level learns points of interest
(nodes), the second locates spatial routes between nodes through clustering, and the final level probabilistically encodes spatio-temporal dynamics.

Fig. 2. A surveillance activity is defined by a set of atomic actions and
composed by the action sequence. Trajectory points are samples drawn
from each action and relate the duration and ordering of actions.



could be consistent with the low speed check even though it
travels across the the full camera field of view.

The POI are learned through a 2D mixture of Gaussian
zone modeling procedure [17]. For each POI type {enter,
exit, stop}, a zone consisting of Z Gaussian components,

Z ¼
XZ
m¼1

zmGð½x; y�T; �m;�mÞ; ð3Þ

is learned using expectation maximization (EM) [31], with
½x; y�T the image coordinates of a point in the POI set. Each
mixture component m denotes the location of an activity
node on the image plane by its mean �m and its size is
specified by �m. The density of a node,

dm ¼
zm

�
ffiffiffiffiffiffiffiffiffiffi
j�mj

p ; ð4Þ

defines its importance.
Since it is not known a priori how many POI belong in a

zone, the number must be estimated. The unimportant
zones components can be automatically discarded using a
density criterion based on the average mixture threshold,

Ld ¼
�Z

�
ffiffiffiffiffiffiffiffiffi
j�Z j

p ; ð5Þ

where 0 < �Z < 1 is a user defined weight and �Z is the
covariance matrix of the entire zone data set [17]. Zone
components with low density (low importance) dm < Ld do
not have much support in the training data and most likely
model noise points in the tracking process (broken
trajectories) since they are not well localized, while tight
mixtures with high density indicate valid POI.

Fig. 5 shows the entry/exit zones learned for an
intersection with green denoting entry and red exit POI.
Noise mixtures from broken tracks, which are removed, are
drawn in black.

4.2 POI-Based Filtering of Broken Tracks

The POI modeling procedure indicates important nodes in
the surveillance scene which can be used to help the activity
training process. Including noise tracks generated during
tracking failure from things like occlusion would make
activity learning more difficult because they are not
adequately explained and result in wasted modeling effort.

The POI-based filtering process considers any trajectory
that does not begin and end in a POI as a tracking error and
removes it from the training database. Trajectories that
travel through a stop zone are split into separate tracks
leading into and out of the zone. The enter/exit and stop
filtering provides the consistent trajectories needed for
robust activity modeling.

4.3 Discussion

The Node Level learning is able to distinguish the image
locations where objects should appear, disappear, and
remain stationary. While it is evident that the mixture of
Gaussian process is not able to perfectly place POI for each
lane, the top left enter POI actually incorporates three
different lanes in Fig. 5; it is effective at removing broken
trajectories from the training database. The choice of Z for a
zone is not critical because, when underspecified, EM will
create a larger mixture component.

Better POI localization might be possible by automati-
cally selecting the number of mixture components in
conjunction with estimation by modifying the classical EM
algorithm [32].

5 SPATIAL LEVEL LEARNING

The second behavior level focuses on spatial support,
differentiating tracks based on where they occur. Once the
scene goals are explained by POI, the connections between
nodes are described by spatial routes.

5.1 Trajectory Clustering

After POI-based filtering, a training database of clean
trajectories is available for grouping into routes which
separate different ways to get between nodes. These routes
can be learned in unsupervised fashion through clustering.
Clustering groups typical trajectory patterns and only relies
on the definition of similarity between tracks. The main
difficulties when trying to learn routes are the time-varying
nature of activities, which leads to unequal length trajec-
tories, and not knowing how many routes exist, necessitating
unsupervised learning techniques.

5.1.1 LCSS Trajectory Distance

Since trajectories are realizations of an activity process, the
length of trajectories can be of unequal length based on
the properties of differing activities. Additionally, even
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Fig. 5. Entry/Exit interest are zones learned by Gaussian mixture
modeling (no stop zones in this data set).

Fig. 4. Graph representation of a visual scene where nodes indicate
points of interest while the edges signify the spatial connections (routes).
The green nodes are the locations where objects enter the scene, red
where they exit, and yellow are regions where an object stops and
remains stationary.



trajectories sampled from the same activity can be of
unequal length due to sampling rate and speed of action.
In order to compare trajectories, a distance measure must
be able to handle variable sized inputs.

LCSS is a sequence alignment tool for unequal length
data that is robust to noise and outliers because not all
points need to be matched. Instead of a one-to-one mapping
between points, a point with no good match can be ignored
to prevent unfair biasing. When modified for trajectory
comparison, LCSS was found to provide the best clustering
performance when compared with a number of other
popular distance measures [28], [34]. The LCSS distance
for trajectories suggested by Vlachos et al. [35] is defined as

DLCSSðFi; FjÞ ¼ 1� LCSSðFi; FjÞ
minðTi; TjÞ

; ð6Þ

where the LCSSðFi; FjÞ value specifies the number of
matching points between two trajectories of different length,
Ti and Tj. The recursive LCSS definition

LCSSðFi; FjÞ

¼

0; Ti ¼ 0 j Tj ¼ 0;

1þ LCSSðFTi�1
i ; F

Tj�1
j Þ; dEðfi;Ti ; fj;TjÞ

< � & jTi � Tjj < �;

maxðLCSSðFTi�1
i ; F

Tj
j Þ;

LCSSðFTi
i ; F

Tj�1
j ÞÞ; otherwise:

8>>>>>>><
>>>>>>>:

ð7Þ

which can be efficiently computed with dynamic program-
ming, matches points that are within a small euclidean
distance � and an acceptable time window �. The term Ft ¼
ff1; . . . ; ftg denotes all of the sample points in F up to time
t.

5.1.2 Spectral Clustering

Spectral clustering has become a popular technique recently
because it can be efficiently computed and has improved
performance over more traditional clustering algorithms
[34]. Spectral methods do not make any assumptions on the
distribution of data points and instead relies on eigen-
decomposition of a similarity matrix which approximates
an optimal graph partition. The basic steps for normalized
spectral clustering presented by Ng et al. [33] are outlined
in Fig. 6

The similarity matrix S ¼ fsijg, which represents the
adjacency matrix of a fully connected graph, is constructed
from the LCSS trajectory distances using a Gaussian kernel
function:

sij ¼ e�D
2
LCSS

ðFi;FjÞ=2�2 2 ½0; 1�; ð8Þ

where the parameter�describes the trajectory neighborhood.
Large values of � cause trajectories to have a higher similarity
score while small values lead to a more sparse similarity
matrix (more entries will be very small). The Laplacian matrix
is formed from the adjacency matrix,

L ¼ I �D�1=2SD�1=2; ð9Þ

with D the diagonal degree matrix with elements the sum of
the same row in S. A new N �K matrix, U , is built using
the first K eigenvectors of L as columns. Finally, the rows of
U , each viewed as a new feature vector representation of a
training trajectory F , are clustered using fuzzy C means
(FCM) [36] to form K groups of similar tracks. The initial
cluster centers are chosen based on the orthogonal
initialization method proposed by Hu et al. [37].

Rather than k-means, FCM is used in the last spectral
clustering step to minimize the effects of outliers and obtain
soft cluster membership values uik 2 ½0; 1� which indicate
the quality of training sample (how confidently trajectory i
is place in cluster k). High membership means little route
ambiguity or a typical realization of an activity process.

5.1.3 Route Creation

The spectral clustering process partitions the trajectory
training database into groups of similar patterns. A route
is defined as a prototype from each group. The route
prototype is chosen as an average of trajectories in a
cluster which utilizes the membership values uik returned
from FCM.

In order to average trajectories of different length, each
trajectory F has its velocity information ignored and is
spatially resampled to a fixed size L. Rather than simple
temporal subsampling, the resampled track evenly distri-
butes points along the trajectory. A trajectory is viewed as a
parameterized curve F ¼ fxðtÞ; yðtÞg and is reparameterized
in terms of arc length F ðsÞ to consider only the trace of the
curve. The sampling ensures the euclidean distances between
consecutive points are equal to completely remove dynamic
information (as hidden in the temporal sampling rate). This
prevents regions of higher sample density from contributing
bunches of points in a single area as occurs when an object is
moving slowly during a section of its trajectory. Finally, a
vector �F ¼ ½x1; y1; . . . ; xL; yL�, representing a point in the IR2L

route space, is constructed for each of the N training
trajectories by stacking the consecutive trace points.

A route prototype is constructed as the weighted average
of the training database

rk ¼
PN

i¼1 u
2
ik

�FiPN
i¼1 u

2
ik

; ð10Þ

where uik is the FCM membership of example i to cluster k.
The resulting set of K prototypes frkg encode the the typical
scene routes.

5.2 Cluster Validation

Spectral clustering is performed with a large K to partition
the training data but the true number of routes must still be
estimated because it is not known a priori. After clustering,
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Fig. 6. Basic steps for spectral clustering of trajectories as presented by
Ng et al. [33].



the routes are subsequently refined to a smaller number
(Nr < K) by merging similar prototypes.

The merge procedure compares routes by finding an
alignment between pairs of routes using dynamic time
warping (DTW) [38]. DTW is used to equally value all
matches and provide a one-to-one matching between points
on routes. After alignment, two routes are considered
similar if the number of matching points is high or if the
total distance is small. The match count is defined as

Mðrm; rnÞ ¼
XL
l¼1

Iðdlðrm; rnÞ < �dÞ; ð11Þ

dlðrm; rnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmðlÞ � xnðlÞÞ2 þ ðymðlÞ � ynðlÞÞ2

q
; ð12Þ

where Ið:Þ is the indicator function and the total distance
between routes is

Dðrm; rnÞ ¼
XL
l¼1

dlðrm; rnÞ: ð13Þ

The threshold value �d pixels was chosen experimentally for
good results and is based on how closely routes are allowed
to exist in the image plane. When either Mðrm; rnÞ > TM or
Dðrm; rnÞ < L�d, then routes rm and rn are considered similar.

A cluster correspondence list is created from these
pairwise similarities, forming similarity groups. Each corre-
spondence group is reduced to a single route by removing
similar routes and transferring the membership weight of
every training trajectory onto the remaining route, e.g.,

~umi ¼ umi þ uni 8n � m; ð14Þ

where ~u represents the membership after merging.
In practice we have found that FCM tends not to overfit

the data but instead finds several very similar clusters,
making the merge algorithm effective. The route prototypes
are plotted in Fig. 7a for K ¼ 30. The turns in the upper
corners have multiple similar clusters which are removed
by the match-merge procedure to retain only the true Nr ¼
19 routes shown in Fig. 7b.

5.3 Discussion

There are many options when clustering trajectories,
ranging from the choice of clustering algorithm to the
measure of similarity between tracks [24]. The choice of
LCSS distance along with spectral clustering has been
proven to be very effective for surveillance settings [28], [34]

but still requires a model order choice and validation
scheme such as the match-merge process presented.

Additionally, automatic route definition relies on con-
sistent and repetitive activities; rare occurrences will be lost
during clustering. A hierarchical clustering procedure can
avoid active selection of model order and provides a set of
solutions at varying resolutions which could prove effective
for handling infrequently recurring activities.

6 DYNAMIC-TEMPORAL LEVEL LEARNING

The clustering procedure locates routes spatially, but this is
insufficient for detailed analysis. It is necessary to know not
only where objects are but also the manner in which they
travel. The higher order dynamics and temporal structure
of the third and fourth activity hierarchy levels are needed
to completely characterize an activity path.

6.1 Activity HMM

A path provides a compact representation of an activity
which incorporates location, dynamics, and temporal
properties. Each activity is represented using a hidden
Markov model because it naturally handles time normal-
ization. In addition, the simplicity of training and evalua-
tion makes it ideal for real-time implementation.

An HMM, in compact notation 	 ¼ ðA;B; �0Þ, is char-
acterized by the following parameters:

. The number of states (actions) in the model Q. In this
work, Q is fixed for simplicity but it is possible to
estimate an optimal number [39].

. The Q�Q state transition probability matrix A ¼
faijg where

aij ¼ pðqtþ1 ¼ jjqt ¼ iÞ: ð15Þ

. The observation probability distribution B ¼ bjðfÞ
where

bjðfÞ ¼ Gðf; �j;�jÞ ð16Þ

represents the Gaussian flow f distribution of each
of the j ¼ 1; . . . ; Q states of unknown mean �j and
covariance �j.

. The initial state distribution �0 ¼ f�jg with

�j ¼ pðq1 ¼ jÞ: ð17Þ
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Fig. 7. (a) A large set of clusters, representing intersection maneuvers, are learned by spectral clustering with LCSS trajectory distance. (b) The
correct Nr ¼ 19 routes remain after merging. (c) The spatio-temporal dynamics of each route is encoded by an HMM.



The temporal level of the learning hierarchy in Fig. 3 gives a
graphical representation of an HMM where circles repre-
sent the states and arrows indicate the state transition.

The activity path HMM is a left-right hidden Markov
model (aij ¼ 0 for j < i) which encodes the sequential start
to finish structure of trajectories by prohibiting backtrack-
ing. Each of the k ¼ 1; . . . ; Nr scene activities is represented
as 	k ¼ ðAk;Bk; �0Þ with a fixed �0 for each path of

�0ðjÞ ¼
1

C
e��pj j ¼ 1; . . . ; Q: ð18Þ

C is a normalization constant to ensure valid probabilities.
This definition allows tracks to begin in any state, which is
important when trajectories are incomplete due to occlusion
or during online analysis. The exponential weighting is
used to prefer action sequences that begin decoding in
earlier states, though the choice of �p is not crucial as long
as there is nonzero probability for each state.

The path model is finalized when both the transition
probabilities Ak and the action states which define Bk are
learned from the trajectory training database.

6.2 Path Training

An HMM is trained for each activity by dividing the
training set D into Nr disjoint sets, D ¼

SNr

k¼1 Dk. The set

Dk ¼ fFijuik > 0:8g ð19Þ

contains only the most representative examples of cluster k.
In this stage of learning, the full trajectory, including
position and velocity, Fi ¼ fftg with ft ¼ ½xt; yt; ut; vt�T, is
utilized for a precise spatio-temporal model. Using path
training sets Dk, the Nr HMMs can be efficiently learned
using standard methods such as the Baum-Welch method
[38] to find the transition probabilities Ak and the Gaussian
state observation distributions �jk and �jk.

The set of learned activity paths which specify where
lanes are located as well as how vehicles are expected to
move in the lane for the traffic intersection are shown in
Fig. 7c. Typically, the path models have a highly structured
transition matrix which is block diagonal. For long activities
with few model states (T � Q), the highest transition
probability is along the main diagonal, which means it is
typical to have multiple observations from a single action.

Notice that while data could be shared and states tied in
regions of overlap between HMMs, doing so would discard
subtle cues which distinguish activities. For example, the
slowing necessary to make a right turn through an
intersection is not present when passing straight through.

The resultant activity models after the third stage of the
hierarchical activity learning process provide a simple
probabilistic interpretation of an activity. In addition, new
camera setups can be easily deployed because there was no
need to manually select “good” trajectories for the modeling
since they were automatically discovered.

6.3 Updating Path Models

The activity HMMs learned above accurately depict the
scene at the time of training, but, in a surveillance setting,
there is no guarantee that the activity processes are
stationary, meaning the models must reflect changes over
time. Two complementary adaption methods are used to

update the HMM database. The first is an online scheme to
refine the existing activity HMMs based on newly observed
trajectories, while the second introduces new models
through periodic relearning rounds.

6.3.1 Online Incremental Update

After training, the activity models are optimal for the
training data, but, after time, might not reflect the current
configuration of the scene. Small variations and perturba-
tions could arise from various causes such as camera
movement or path reconfiguration, e.g., people walking
around a puddle. An activity HMM can be updated with
new trajectories in an online fashion using maximum
likelihood linear regression (MLLR) [40]. MLLR computes
a set of linear transformations that reduce the mismatch
between the initial model and new (adaption) data. The
adapted HMM state mean is given by

�̂j ¼Wk
j; ð20Þ

where Wk is the 4� ð4þ 1Þ transformation matrix for
activity k and 
j is the extended mean vector


j ¼
�
1; �T

j

�T ¼ ½1; �x; �y; �u; �v�T ð21Þ

of state j. State j represents an individual action that makes
up an activity and �j ¼ ½�x; �y; �u; �v�T summarizes the
location and dynamics of the action. Wk ¼ ½b H� produces
an affine transformation for each Gaussian HMM state with
H a transformation and b a bias term. The transformation
matrix Wk can be found using EM by solving the auxiliary
equation

XT
t¼1

XQ
j¼1

LjðtÞ��1
j ft


T
j ¼

XT
t¼1

XQ
j¼1

LjðtÞ��1
j Wk
j


T
j ; ð22Þ

whereLjðtÞ ¼ pðqjðtÞjF Þ. The optimization is performed over
allQ states of an HMM to provide an activity level regression.

Each time a new trajectory is classified into path 	k
(below in Section 7.1.1), a transformation is learned and
applied to the mean of each of the HMM states for a
sequential online update. The update

�jðtþ 1Þ ¼ ð1� �MLLRÞ�jðtÞ þ �MLLRWkðtÞ
j 8j; ð23Þ

modifies the mean of existing path 	k to better fit new
observations at time t. The learning rate �MLLR 2 ½0; 1� is a
user-defined parameter set to control the importance of a
new trajectory.

6.3.2 Incorporating New Activities

The MLLR update allows modification of existing activities
but, in order to introduce new and unseen activities into the
activity set, a periodic batch retraining procedure is adopted
[15]. Abnormal trajectories that are not well explained by
any of the activity models (defined in Section 7.1.2) are
collected to form an auxiliary training database. Once the
database has grown sufficiently large, it can be passed
through the 3-stage learning machinery to periodically
augment the activity set. Since the abnormality database is
populated by trajectories which did not fit any of the
existing models, any consistent patterns extracted indicate
new activities, e.g., a newly opened lane on a highway. In
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this way, repetitive motions initially considered abnormal
can be assimilated into the scene definition.

6.4 Discussion

The HMM-based formulation does not impose global
temporal alignment, unlike other probabilistic spatio-
temporal activity representations [15]. Instead, a local
model of temporal structure is used which encodes the
probability of time-scale distortion at any particular
instance in time in the transition probability. The local
model provides the flexibility to accurately compare
similar, though different length, trajectories. But, because
there is an underlying dynamic process, the exponential
state duration model implied by the transition probabilities
may not accurately match the perceived dynamics.

The hidden semi-Markov model (HSMM) has been
proposed to explicitly model the state duration density
[41]. Yet this is often ignored due to increased computa-
tional and memory requirements along with a need for
significantly more data to train a larger number of
parameters [38]. By modeling state durations, the path
transitions can more closely match observed dynamics and
more complex activities can be included (states with
multimodal stay durations, e.g., straight through or stop
at an intersection).

7 ACTIVITY ANALYSIS

After the the offline learning process, the underlying
activities present in a visual scene are compactly repre-
sented by the set of HMM paths. Using these learned
models, the activity of a scene agent can be accurately

characterized from live video. Activity analysis includes
describing actions, predicting future behavior, and detec-
tion of abnormal and unusual events.

7.1 Trajectory Summarization

When a trajectory is completed (e.g., leaves the scene), a
summary of the object activity is generated and it is
determined to be either typical or abnormal.

7.1.1 Trajectory Classification

Using Bayesian inference, the activity that best describes the
trajectory observation sequence is determined by maximum

likelihood estimation

�� ¼ arg max
k

P ðF j	kÞ: ð24Þ

The likelihood can be solved efficiently for the HMM using
the forward-backward procedure [38] to indicate how likely
is it that activity 	k generated trajectory F . Partially
observed activities (broken tracks from occlusion) can also
be evaluated using (24) because the nonzero �0 allows any
initial start state.

7.1.2 Abnormal Trajectories

Since only typical trajectories are used to learn the activity
paths, abnormalities (outliers) are not well modeled and the
quality of class assignment �� will be low. Trajectories with
low log-likelihood logP ðF j��Þ < LLT�� can be recognized
as abnormalities. The decision threshold is learned during

training by comparing the average likelihood of samples in
training set Dk to those outside:

LLink ¼
1

jDkj
X
i2Dk

logP ðFij	kÞ; ð25Þ

LLoutk ¼
1

N � jDkj
X
i62Dk

logP ðFij	kÞ; ð26Þ

LLTk ¼ �
�
LLink � LLoutk

�
þ LLout: ð27Þ

The sensitivity factor � 2 ½0; 1� controls the abnormality rate
with larger �, causing more trajectories to be considered
anomalous. The automatic threshold selection process is
visualized in Fig. 8, where the green line signifies LLink , red
signifies LLoutk , and black indicates the threshold LLTk.

A few examples of abnormalities are displayed in Fig. 9.
In Fig. 9a, although U-turns were allowed, the wide arc
from the middle lane was not. The illegal loop in Fig. 9b
and the off-road driving in Fig. 9c are clearly unusual,
while the trajectory in Fig. 9d looks acceptable but actually
came from travel in the wrong direction.

7.2 Online Tracking Analysis

Although it is interesting to provide a summary of
completed tracks, it is often more important in surveillance
to recognize activity as it occurs in order to assess and react
to the current situation. A description of activity must be
generated based on the most current information and
refined with each new video frame. The online analysis
engine is given the difficult tasks of making predictions
with incomplete data (partial trajectory) and detecting
unusual actions.

It is important to note that, within this framework, each
individual scene agent is considered separately. Rather than
just indicating a noteworthy event is happening, the
location and individual of interest is highlighted as well.

7.2.1 Activity Prediction

Real-time analysis provides the alerts necessary for timely
reaction. This response time could be improved if the
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Fig. 8. A threshold is automatically set between the within class (green)
and out of class (red) training examples with a tunable parameter � to
control the sensitivity of abnormality detection.



monitoring system were able to infer intentions and
determine what will happen before it actually occurs.
Accurate prediction can help reduce reaction time or even
avoid undesirable situations by providing a buffer to take
countermeasures and corrective actions.

Future actions can be inferred from the current tracking
information. Instead of using all of the tracking points
accumulated up to time t, only a small window of data is
utilized:

Fwp
wc
¼ fft�wc ; . . . ; ft�1; ft; f̂tþ1; . . . ; f̂tþwpg: ð28Þ

The windowed track consists of wc past measurements, the
current point ft, as well aswp future points. The future points
f̂tþ� are estimated by applying the tracking motion model �
time steps ahead. By utilizing only the windowed trajectory,
only the recent history is considered during online evalua-
tion because old samples may not correlate well with the
current activity. This allows an agent to be monitored over
very long time periods by discarding stale data.

The activity prediction is made at the current time t by
evaluating (24) with F replaced by its windowed version:

��ðtÞ ¼ arg max
k

P
�
Fwp
wc
j	k
�
: ð29Þ

This prediction has a longer time horizon than standard one
step prediction (e.g., Kalman prediction) because it exploits
previously observed activities rather than relying on a
generic motion model. During complex maneuvers, motion
models will rarely be effective much more than a few time
steps into the future.

An example of the superiority of the trajectory pattern
prediction is shown in Fig. 10. The top three best activity
predictions are color coded as green for best match, yellow
as top-2, and red as top-3 and their associated confidence is
presented in the colored box. During the straight sections
(Fig. 10a) the motion model, shown as light blue Xs, seems
to estimate behavior. As the turn progresses in Fig. 10b, the
motion model very poorly approximates the maneuver. It is
quickly realized that the maneuver is a U-turn (Fig. 10c)
since it was seen before while the motion model seriously
falls behind. Finally, in Fig. 10d, the estimates realign in the
straight section but the track memory helps distinguish the
U-turn in green.

The prediction sequence which encodes an object’s
action history, f��ð1Þ; . . . ;��ðtÞ; . . . ;��ðT Þg, can indicate
behavioral changes. A consistent activity manifests as
consecutive labels which are equal, while a transition
between labels indicates an activity switch (such as during
a lane change).

7.2.2 Unusual Action Detection

Similarly to abnormal trajectories, unusual actions can be
detected during tracking. These anomalies indicate devia-
tions the instant they occur. Since only a windowed version
of a track is used during tracking, the the log-likelihood
threshold (27) needs to be adjusted. The new threshold is

LLTtk ¼ �tk
�
�t
�
LLink � LLoutk

�
þ LLoutk

�
;

�tk ¼
E½#fqgjwc�

Q
:

ð30Þ
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Fig. 10. The top three {1 green, 2 yellow, and 3 red} most likely maneuvers and prediction confidence are shown during a U-turn. (a) The motion
model (light blue X) fits during linear motion but (b) does not handle turns well. (c) Halfway through the u-turn, the prediction can accurately gauge
the maneuver, while the motion model poorly approximates it. (d) New maneuvers explain the current situation but activity memory still indicates the
U-turn in green.

Fig. 9. Abnormal trajectories (a) Wide u-turn. (b) Illegal loop. (c) Off-road driving. (d) Travel in the opposite direction.



The abnormality threshold is adjusted with �t to account for
the reduced probability mass associated with a partial
trajectory. The term �t corresponds to the fraction of states
visited in the evaluation window. This assumes uniform
state duration for a full trajectory and averages the log-
likelihood into each model state Q, while the numerator
E½#fqgjwc� is the expected number of states that will be
visited in an observation window. The adjustment term is
estimated as

�tk �
Qwc= �Tk
Q

¼ wc�Tk
; ð31Þ

with �Tk the average length of training trajectories in Dk

corresponding to path 	k. �Tk=Q is the number of samples
per state which results in Qwc= �Tk as the number of states in
a window. Notice that the window only considers wc and
sets wp ¼ 0 to make assessments only on observed data.
Here, �t 2 ½0; 1� is again chosen to ensure detection of most
suspicious tracking points. In this work, �t was automati-
cally selected to return an unusual action detection rate of
approximately 10 percent on the training set.

As soon as an object strays from an activity model, an
unusual action alarm is triggered for timely detection.
Examples of unusual actions are given in Fig. 11. The illegal
loop and off-road driving from Fig. 9 are seen in Figs. 11a
and b, respectively. The time evolution of a detection is

shown in Fig. 11c, where initially a typical behavior is

denoted with a green box but, in the middle of an illegal left

turn from the middle lane, the box turns red to indicate an

unusual action. Finally, a short time later, the action

stabilizes back at green.

8 EXPERIMENTAL STUDIES AND ANALYSIS

The following section assess the performance of the activity

learning and analysis framework. First, the three-staged

learning process is evaluated by examining the quality of

the automatically extracted activities. After, the accuracy of

the trajectory summarization and online analysis modules

are considered.
The results are compiled from a set of varying scenes.

Three different experimental locations are analyzed: a

simulated traffic intersection (CROSS), a highway road

segment (I5) (Figs. 12a and 12b), and the interior of a

laboratory under observation by an omnidirectional camera

(OMNI) (Figs. 12c and 12d). Table 1 details the size of the

data sets and experimental parameters. Further details

about the experimental data sets can be found in [34]. The

results of trajectory summarization and online analysis are

presented in Tables 2 and 3, respectively.

2296 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 11, NOVEMBER 2011

Fig. 11. First occurrence of an unusual event during online processing. The red box indicates unusual detection, while green is deemed acceptable.
(a) Illegal loop. (b) Off-road driving. (c) The illegal left turn from the middle lane is detected before realigning into the exit lane.

TABLE 1
Experimental Parameters

Fig. 12. The other experimental data sets tested in addition to the intersection (CROSS). (a) The I5 highway traffic scene. (b) POI learning results
with sparse mixtures due to broken trajectories. (c) OMNI camera inside a laboratory. (d) Analysis results show the predicted path and a red
bounding box highlights an usual action from backtracking.

TABLE 2
Trajectory Summarization Results



8.1 Cluster Validation

Perhaps the most important, and most difficult, task in
trajectory learning is to robustly and accurately extract the
dominant scene activities without a priori specification.
This section compares different methods to estimate the
number of routes a scene; this process is generally known as
cluster validation.

In this work, the number of activities is automatically
determined by first overclustering trajectories and then
merging similar routes (Fig. 13). Two types of merge
criteria are compared: membership and distance. The
membership criteria utilizes the distribution of member-
ship score uik to find similar clusters. The three member-
ship criteria are the Bhattacharyya coefficient BCðrm; rnÞ,
cosine angle cosðrm; rnÞ, and sum-of-squared difference
ssdðrm; rnÞ:

BCðrm; rnÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uirmuirn
p

; ð32Þ

cosðrm; rnÞ ¼
PN

i¼1 uirmuirnP
i

ffiffiffiffiffiffiffiffi
u2
irm

q P
i

ffiffiffiffiffiffiffiffi
u2
irn

q ; ð33Þ

ssdðrm; rnÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuirm � uirnÞ

2
q

: ð34Þ

The route distance criteria measures, the match count (11),
and total distance (13) were found to perform better than
membership criteria (Fig. 13a).

Using the distance-based merge criterion, all 19 of the
traffic intersections are correctly identified in the CROSS

experiment. This set contained the most activities, but was
distinct due to a favorable view. All eight of the highway lanes
(Fig. 12a) were correctly identified in the I5 experiment as
well, but there were also two false lanes. The extra lanes
appeared in the southbound direction closest to the camera.
Even though tracking errors were removed through POI
learning (Fig. 12b), perspective distortion cause the north-
bound lanes to appear significantly closer than the south-
bound. By selecting the distance threshold �d that could
resolve the north lanes, it allowed multiple responses in the
closest lanes. This highlights the need for camera calibration
to unify the measurement space. In the OMNI experiments,
there are no physical lanes but virtual paths that people travel
between doors and desks. The seven door-to-door paths were
correctly extracted in the OMNI1 experiment. The second
omni experiment was more complex and only 13 of 15
(Fig. 12c) paths were discovered. The two missing paths had
very little support after trajectory filtering, but could be
learned given more data. These OMNI experiments were
much more difficult than the vehicle scenes because they are
less constrained, paths do not have clear separation, and
paths contain significant overlap.

The cluster validity evaluation shows the learning frame-
work is able to accurately extract the typical scene activities
with few parameters. The two parameters to specify for
route clustering are the initial number of clusters K and �d.
Although �d must be chosen, it is related to the desired
spatial resolution between trajectories, and when doing
spectral clustering with the merge process, the initial choice
of K is quite forgiving (Figs. 13b and 13c).

8.2 Trajectory Summarization

After an object track finishes, trajectory summarization
determines which activity likely generated the trajectory
and also whether or not it is typical or something abnormal.
In the following section, the quality of activity assignment
and anomaly detection are evaluated, with results summar-
ized in Table 2.

8.2.1 Trajectory Classification

Using (24), each test example is categorized by the activity
that most likely generated the observation. The intersection
experiment had 9,191 of 9,500 trajectories correctly labeled.
The lane number for 879 of 923 manually labeled tracks
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TABLE 3
Online Analysis Results

Fig. 13. (a) The point match criteria outperforms the distance and membership criteria for merging similar clusters. (b) Spectral clustering using
LCSS distance has better merge performance than simply resampling tracks and FCM clustering. (c) The true number of clusters is consistently
selected after the merge process. The route count Nr is automatically estimated as the mode across the range of match thresholds.



from I5 video was correctly determined for 95 percent
accuracy. Not surprisingly, most classification errors occur
in the northbound lanes (93 versus 98 percent southbound)
where the lanes appear very close in the image plane. Since
a trajectory was constructed from the centroid of a detection
bounding box, large vehicles which cover multiple lanes
had trajectories that would “float” above the true lane. In
this situation, homography-based ground plane tracking
would help keep trajectories consistent across detection
sizes and preserve relative distances.

The test set for the OMNI1 database was collected over
24 hours on a single Saturday without participant aware-
ness for natural tracks and all 25 of the test trajectories were
correctly classified. The OMNI2 test set, in contrast, was
choreographed during a 30 minute collection period. In this
set only 12 of the 16 were correctly assigned to a path.

8.2.2 Abnormal Trajectories

Abnormal trajectories were determined using (27) with � ¼
0:9 for the CROSS test and a more lenient � ¼ 0:75 for the
OMNI1 test, reflecting the relative difficulty of the two data
sets. Eighty-four percent of the CROSS abnormalities were
identified with a 10 percent false positive rate. The OMNI1
and OMNI2 experiments did not perform quite as well.
They had a 68.8 and 83.3 percent detection rate with 12.0 and
25.0 percent false positive rate (FPR), respectively. Fig. 9
shows abnormal trajectories in the CROSS set, while Fig. 16a
shows an example from the OMNI scene.

8.3 Online Analysis

While trajectory summarization is useful for data compres-
sion and semantic query [37], it is an offline process that
operates after the completion of an activity. In contrast,
surveillance requires real-time up-to-date information to
understand the monitoring situation. Online analysis must
interpret agent behavior while under observation and
express findings immediately. The following section gives
the online performance. In particular, it examines how well
an activity can be predicted using limited data and how
often unusual actions are detected. The online analysis
results are summarized in Table 3, which uses wc ¼ 0:3 �T
and wp ¼ 0:1 �T in (28).

8.3.1 Activity Prediction

An emerging theme in intelligent monitoring is intention
prediction. Rather than just explaining what has occurred,

intent prediction tries to infer what an agent will do before
it happens to provide time for preemptive acts

This section provides evaluation on how well activities
can be predicted using the HMMs. The accuracy of
prediction is measured at each time instant for every
moving object in a scene. A correct prediction must have the
same label at a time t as the true label of the full trajectory.

Looking at the prediction column in Table 3 we see that
the highest prediction performance is for the I5 data set.
This is not surprising because the lanes of the highway are
straight and do not have any overlap. In contrast, the other
data sets have 20-30 percent lower performance attributed
to the overlap of activities. Using only a small window of
data it is almost impossible to distinguish activities when
segments are shared. At the start of the U-turn in Fig. 10,
none of the top-3 predictions match so are considered
incorrect even though it is not possible to make an accurate
prediction with so little data.

When considering not just the best match, but the top
three matches, as shown in Fig. 14a, the performance is
significantly better. This shows that it is possible to have a
good idea of the final activity, as demonstrated in the u-turn
example (Fig. 10).

The effects effects of wc and wp when evaluating (29) are
examined for the OMNI1 experiment in Fig. 14. As expected,
the prediction accuracy improves given more data, since
larger wc values get closer to having the full trajectory, but,
when wc is between 40-50 percent performance saturates
(Fig. 14b). In Fig. 14c, the effects of wp are explored and
indicate that, despite poor motion models, there is some
benefit for small wp > 0, especially at lower wc values. But,
wp should not be too large since the predicted points will
poorly represent the future activity far into the future.

The plots in Fig. 14 indicate it is best to only propagate
the motion model forward for a few time steps and to use as
much historical data as possible for accuracy. But, a balance
must be made between accuracy and response delay when
dealing with more past samples.

8.3.2 Unusual Action Detection

With unusual action detection, the moment of an abnorm-
ality is immediately indicated in real time (the exact time
and location is highlighted by the red box seen in Fig. 12d).
It is noted that these events tend to occur in groups of
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Fig. 14. OMNI1 online analysis results: (a) The true activity is often within the top-3 predictions. (b) Prediction accuracy increases with more data but
saturates between 40-50 percent of track length. (c) Propagating the motion model forward a short amount of time improves prediction with the most
benefit when utilizing fewer historical samples.



successive points, where the number of points is directly
proportional to the time duration of an unusual action.

The unusual action detection was performed for the
CROSS and OMNI1 experiments only and each individual
tracking point had to be manually labeled as abnormal or
not. The unusual action column of Table 3 summarizes
the detection performance on these sets. The simulated
intersection had an 82.2 percent detection rate with a
32.4 percent FPR, while the OMNI1 experiment only had
57.6 percent TPR but at a lower 26.6 percent FPR.
Unfortunately, the false positive rates were quite high.

Performance on the simulated data set was higher because
the trajectories were more controlled. It was easy to indicate
what was an abnormal trajectory point. In contrast, the
natural tracks from the OMNI1 data set were given a best
guess label. It was often very difficult to tell what exactly was
unusual in this scene as there was little interframe motion and
high overlap between routes. In addition, what might be
considered abnormal given the final activity label might
actually be quite typical given the best online match ��ðtÞ
based on just a window of data. For example, when moving in
a direction, backtracking, then resuming forward, all of the
backtrack was manually labeled as abnormal (since it is
opposite the end maneuver), but during the backtrack, it is a
typical action for another maneuver. An example of this
behavior is demonstrated in Fig. 16b, where the red Xs
correspond to the point of backtrack.

The online abnormality detection performance is better
characterized in Fig. 15 by the receiver operating character-
istics (ROC) curve for the two data sets. The CROSS curve
looks promising and has decent detection (40-50 percent)
even at very low FPR. In contrast, the real data collected in
the OMNI1 set shows ample room for improvement. Work
is needed to move the OMNI1 curve toward the CROSS
ROC curve, which may require modification of the �tk term.
Notice that the curve associated with a velocity (dynamics)
encoded path (OMNI1-uv) is slightly better than relying on
just position (OMNI1-xy). The added velocity detail helps
discriminate higher order effects.

8.4 Comparative Analysis

In order to validate our work we compare our system
against the state of the art. We use the system presented by
Hu et al. in 2006 [15] with their improved spectral clustering
technique developed in 2007 [37]. The comparison looks at
the quality of route extraction from clustering and activity
recognition results on the CROSS data set.

In order to learn the routes, Hu et al. [15] defined
trajectory similarity as the average distance between
trajectory points (after resampling to a fixed number of
points) and used spectral clustering. The optimal number of
scene routes was automatically determined using the
tightness and separation criterion (TSC). The plot in Fig. 17
shows the TSC values for different numbers of clustersK for
the test sets. Note: A smaller TSC value indicates better
clusters (tighter, more compact clusters with greater separa-
tion between different clusters). Although spectral clustering
produces better separated routes than FCM, it is not readily
apparent what the optimal choice forK should be. The red X
indicates the true number of paths and, unfortunately,
choosing the K value that minimizes the TSC does not
always produce the correct number because of local minima.
This is in contrast with Fig. 13c which demonstrates the
stability of the match-based merge techniques.

In [15], the motion patterns are modeled as a chain of
Gaussians very similar to an HMM. The main difference is
time normalization is done probabilistically with the HMM,
while the chain does this based on track length (dividing a
trajectory into Q parts, with each part corresponding to a
small set of points). Using the average distance between a
trajectory and a chain, the likelihood of a path was found to
behave as an exponential random variable. Their abnormal
trajectory threshold was chosen as the minimal value in
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Fig. 16. Examples of automatically detected anomalies. (a) Offline:
Walking along the walls of the OMNI1 room. (b) Online: Backtracking
and reversing travel direction (red Xs indicate the point of unusual
action).

Fig. 17. The TSC cluster validity criterion used by Hu was not able to
consistently elbow at Nr (denoted by the red X).

Fig. 15. Unusual action ROC for the CROSS and OMNI1 data sets. The
OMNI1 experiment demonstrates significant room for improvement.
Evaluation is difficult because of the large overlap between activities,
which causes confusion when using only a small window of data.



each set Dk. Finally, they estimate the probability of an
unusual point during live analysis by seeing how well the
current tracking point is modeled by the best fit Gaussian
state. Table 4 gives quantitative comparison between the
two systems on the intersection CROSS data set.

Since a Gaussian chain and an HMM are very similar, the
results for full trajectories are quite similar. Using the same
abnormality threshold, Hu is able to detect more abnormal
trajectories but with almost 5 percent higher FPR. In contrast
to the summarization, the HMMs are much more effective
during live analysis, both for prediction and unusual action
detection. The HMM time normalization procedure is more
robust than the length based normalization used by Hu. The
ROC curve in Fig. 18 shows significant improvement when
using a small window of data over just the current sample
point. In fact, the lowest FPR possible with Hu’s single point is
approximately 30 percent and this requires �t values up to
five significant digits.

The comparative experiments suggest the three stage
learning framework accurately specifies scene activities.
Automatic selection of the number or routes is robustly
handled through the match-based merge process and the
HMM path models activity subtleties for robust online
analysis.

9 CONCLUDING REMARKS

This paper has introduced a general framework for
unsupervised visual scene description and live analysis,
based on learning the repetitive structure inherent in
motion trajectories. An activity vocabulary at differing
resolutions is automatically generated through a 3-stage
hierarchical learning process, which indicates important
image points, connects them through spatial routes, and
probabilistically models spatio-temporal dynamics with an
HMM. The activity models adapt for long-term monitoring
of changing environments. Comprehensive analysis, not
present in previous literature, of three different experi-
mental sites demonstrates the framework’s ability to
accurately predict future activity and detect abnormal
actions in realtime.

Trajectory learning and analysis can be integrated into
larger monitoring systems [42] to help focus and direct
attention in multicamera setups. In addition, by utilizing
only trajectory information, rather than higher resolution
visual descriptors, the learning framework is general
enough to be used for data exploration in alternate sensor
modalities such as radar [43] without modification.
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