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Abstract— Automobiles are quickly becoming more complex
as new sensors and support systems are being added to improve
safety and comfort. The next generation of intelligent driver
assistance systems will need to utilize this wide array of sensors
to fully understand the driving context and situation. Effective
interaction requires these systems to examine the intentions,
desires, and needs of the driver for preemptive actions which
can help prepare for or avoid dangerous situations. This
manuscript develops a real-time on-road prediction system able
to detect a driver’s intention to change lanes seconds before it
occurs. In-depth analysis highlights the challenges when moving
intent prediction from the laboratory to the road and provides
detailed characterization of on-road performance.

I. INTRODUCTION

Of the 40,000 fatalities on U.S. roads in 2009, 18%
involved lane control (merging/changing lanes 2.0%, nego-

tiating a curve 14.2%, and passing other vehicle 2.0%) [1]

which highlights the need lane change assistance systems

with time- and safety-critical capabilities. The next gener-

ation of advanced driver assistance systems (ADAS) will

need to make use of a holistic awareness of the surround,

vehicle, and driver in order to predict and mitigate dangerous

or uncomfortable circumstances.

These predictive systems provide the early notification

necessary for an ADAS system to engage in assistive actions.

Since drivers only use their blinkers half the time before

a lane change [2], they could be engaged automatically

to notify surrounding vehicles of the impending maneuver.

Blind spot systems might be better accepted if warnings were

only presented when needed (driver is not aware of blind spot

vehicle). ACC assisted overtakes could be made more natural

by accelerating into the lane change rather than waiting to

clear a lead vehicle. Or, in risky situations, the vehicle could

warn the driver of impending danger or could even take over

control of the vehicle to completely avoid collision.

However the false alarm rate on such systems must be

extremely low in order for the system to be effective. A high

error rate could cause the driver to get distracted or annoyed

and consequently disregard or disable the offending ADAS

system. This paper presents a real-time lane change intent

detection implementation (Fig. 1) in order to understand

how previously reported offline classifiers [3]–[7] perform

in on-road situations; especially with respect to the false

positive rate. New analytical methods are proposed to more

realistically characterize and improve the intent prediction
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performance in “real” situations. Utilizing a new holistic

driving dataset, rather than a small set of exemplars, it is

shown that on-road prediction must be improved in order to

be useful for production.

II. RELATED RESEARCH

Automotive researchers have long been interested in un-

derstanding drivers since they play a central role in driving

[8]. Through recognition and understanding of a driving

behavior, it is possible to characterize the driving situation.

Tijerina et al. [9] found that there were between 65-92%

probabilities of glancing at a mirror prior to a left or right

lane change, and a recent NHTSA study [2] determined

that these visual searches last on average 1.1 seconds. Early

recognition of the driving situation would be extremely

beneficial for ADAS by improving system performance or

early priming of corrective behaviors, e.g. suppress lane

departure warnings and engage a lane change assistant when

a driver wants to make a lane change.

Unfortunately, it is not possible to exactly know what a

driver wants, rather it must be inferred at small time scales

based on vehicular measurements. Oliver and Pentland [10]

were able to distinguish between 7 distinct driving maneu-

vers, each decomposed into a sequence of actions using

(coupled) HMMs. Recently, Berndt et al. [11] used HMMs

for continuous prediction of lane changes and turns. The first

3 HMM action states were used for early detection. Other

researchers have focused on a single maneuver, such as lane

change, and adopted traditional machine learning and pattern

recognition techniques. An HMM utilizing vehicle dynamics

measurements was able to distinguish between lane keeping

and lane changes [12]. Salvucci et al. [13] incorporated

vehicle dynamics, lane, and ACC radar information into a

driver cognitive model of lane change. Researchers in San

Diego have used the relevance vector machine to predict

driver intentions to change lanes [3], [7], brake [5], and

turn [4]. These studies developed a holistic understanding

of the driving situation by utilizing a number of sensors.

They relied heavily on the patterns of visual search (eye and

head motion) that precede maneuvers for predictability.

While it has been shown that a driver’s lane change intent

can be predicted, such a system has not been implemented

and deployed in a moving vehicle. It is currently unknown

how the performance of the above intent prediction schemes

will translate from the laboratory into a real vehicle and

whether intent prediction is ready for the next generation

ADAS.
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Fig. 1: Overview of Real-time Intent Detection System.

III. HOLISTIC INTENT DETECTION FRAMEWORK

The real-time holistic intent detection framework is de-

picted in Fig. 1. While driving, a block of data is collected

from all the signals from each of the sensor systems,

processed, and concatenated to produce a feature vector. A

supervised offline process utilizes the feature vector to train

a discriminative lane change classifier whose weights are

used to produce an output time series of lane change intent

probability score every 33 msec during “real” driving.

A. LISA-X Automotive Testbed

A new automotive testbed was designed to observe and

capture the full driving context using production-grade sen-

sors to determine what can be accomplished with current

technology and minimal additional costs. The testbed vehi-

cle, dubbed Laboratory for Intelligent and Safe Automobiles

X (LISA-X), is a 2008 Volkswagen Passat Variant 3.6L,

modified to include the following sensors for holistic data

capture [6]:

1) Adaptive Cruise Control (ACC) Radar

2) Side Warning Assist (SWA) Radars

3) Lane Departure Warning (LDW) Camera

4) Head (HEAD) Tracking Camera

The ACC and SWA radar systems are used to get surrounding

obstacle information from the front and rear respectively. The

LDW camera system tracks the road markings to determine

position within a lane. The only research level system,

the monocular head camera system, monitors the driver’s

head position and orientation. These sensor subsystems were

tightly integrated into the vehicle body to ensure minimal

distraction during driving.

LISA-X can capture, record, and process all of the ad-

ditional sensor sub-system data along with the other more

traditional vehicle dynamic signals delivered along the CAN-

bus. During operation, over 200 sensory signals are captured,

timestamped, and synchronized at 30 Hz to provide a rich

description of the driving experience by observing the vehi-

cle, environment, and driver state.

B. Holistic Maneuver Descriptor
A descriptor of the full driving context is constructed by

concatenating the signals from the sensor subsystems into a

large feature vector

x(t) =

⎡
⎢⎢⎢⎢⎣

ν̄
ᾱ
ς̄
λ̄
η̄

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Vehicle

ACC

SWA

LDW

HEAD

⎤
⎥⎥⎥⎥⎦

. (1)

The vector x(t) represents all signals and measurements

taken from a short time window of the past W = 2 seconds.

The descriptor incorporates temporal patterns in Nw = W ∗
30fps = 60 frames of historical time series values, e.g. head

rotation

η̄j...j+Nw−1(t) = [Y aw(t − Nw − 1), . . . , Y aw(t)], (2)

as well as higher-level window measurements, e.g. the

amount of time spent glancing to the side

η̄j+Nw
(t) =

t∑
k=t−Nw−1

I[Y aw(k) > 30] (3)

where I[.] is the indicator function. The higher-level mea-

surements are features designed provide highly discrimi-

native dimensions to the features space by incorporating

“expert” knowledge drawn from human experience and pro-

vide maneuver indicators. This helps limit the size of x(t)
and condition noisy or sparse sensor signals for improved

machine learning robustness to limited data.
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C. Subsystem Signals and Features

After processing all the signals, the feature vector x(t),
of approximately 500 dimensions, is constructed from the

window of sensor data. A summary of the relevant features

from each of the sensor subsystems is presented below.

1) Vehicle Signals ν̄: The CAN-bus provides measure-

ments of the vehicle’s dynamic state and controls. This sup-

plies several time series features which include the steering

wheel angle, yaw rate, and blinker state signals, as well as

indicators of blinker direction and length of time it is active.

2) ACC Signals ᾱ: The ACC system is able to track a lead

vehicle using a narrow cone RADAR. The 4 ACC features

relate to a lead vehicle and account for the distance to the

ACC vehicle, the relative speed of the ACC vehicle, the

measured time gap with the ACC vehicle in seconds, and the

difference between the current vehicle speed and the desired

speed (ACC set speed).

3) SWA Signals ς̄: The SWA system is able to track a

number surround vehicles in the rear and sides using a paired

RADAR system and delivers the position (si
x(t), si

y(t)) and

relative velocity (si
u(t), si

v(t)) of each obstacle i. The large

rear area is quantized into three smaller critical zones which

correspond to the blind spots in the rear of the vehicle as

shown in Fig. 2. Each zone is defined to be between −15 <
y < −5 meters behind and defined by the size of adjacent

lanes

Z1 = {x| − 5 < x < −1.65} (4)

Z2 = {x| − 1.65 < x < 1.65} (5)

Z3 = {x|1.65 < x < 5}. (6)

The SWA blind spot features indicate the occupancy and

speed state within a critical zone z as

ςz = max
i

1
Nw

Nw−1∑
k=0

si
v(t − k) (7)

where the i indicate all tracked vehicle at the current time t.
The features ςz and are intended represent deterring factors

since the presence of a vehicle in the adjacent lane would

impede a maneuver.

4) LDW Signals λ̄: The LDW system provides measure-

ments of the vehicle position with respect to the road and the

road geometry. The LDW features correspond to the recent

time series of vehicle lateral deviation (position within the

lane), lane curvature, and vehicle yaw angle with respect to

the lane.

5) HEAD Signals η̄: Unlike the other sensor subsystems,

the HEAD system does not monitor the driving environment,

instead it focuses on the driver. Since preparatory glances are

a major indicator of a lane change maneuver [2] there are a

large number of features generated for the HEAD systems

to better infer driver actions. The features include the time

series of head yaw position, yaw motion (derivative of yaw

position), a histogram of head yaw values, a histogram of

yaw motion values, a histogram of head pitch position, and

an indicator signal of significant yaw rotation (3).
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Fig. 2: Three SWA regions of interest: driver-side lane in

pink, ego-lane in orange, and passenger-side lane in blue. The

SWA features consist of the average longitudinal speed in

each of these regions and indicate motivators and deterrents

to a lane change.

D. Sparse Classifier for On-Road Intent Prediction

The lane change inference algorithm utilized in this work

is based on the work of McCall et al. [3] which has been

shown to be effective at early detection of intent in other

studies [4]–[7]. A Bayesian extension to the popular SVM,

called a relevance vector machine (RVM) [14], discriminates

between lane change and lane keeping. The basic form of the

RVM classifier is given as follows:

yδ(t) = ωδ · φδ(x(t)) (8)

where x(t) is the input feature vector at time t and ω
a learned weight vector. The output y then represents the

probability that x belongs to a particular class. In this case,

we determine whether x represents an intended lane change

at a particular time δ in the future.

The RVM is particularly useful because its use of a param-

eterized prior helps prune large feature vectors and facilitate

a sparse representation (in ωδ). This allows selection of a

few of the most useful features without specific multi-modal

modeling assumptions and enables fast computation for real-

time classification. In this way, all the sensor sub-systems

can be treated equally and the most distinct and relevant

signals for lane changes are automatically determined during

training.

IV. ON-ROAD PERFORMANCE CHARACTERIZATION

The on-road pattern recognition is significantly different

than in the laboratory setting. In the laboratory, independent

examples are presented to the classifier while in the real-

world case, evaluations must be made continually as new

data arrives. This continuous operation has direct impact on

performance characterization because of a large imbalance

between positive and negative examples, consecutive evalu-

ations will perform similarly, and decisions must be made in

real-time.

A. Driving Data Collection

In order to train and test the lane change intent classifier, a

new sensor rich database of naturalistic driving was collected
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TABLE I: Lane Change Prediction Datasets

Label Data Set Npeople Nruns Hours Description
D Long runs for Training 15 24 14.5 782189 frames

Dtrain Training Examples 266+/2606- examples
Dtest Cross Validation Test Examples 101+/879- examples

T Long runs for Testing 4 18 7.9 427497 frames

using the instrumented LISA-X vehicle. The data collection

was performed in San Diego and Palo Alto by the VW

Electronic Research Laboratory (ERL). The 15 (12 male, 3

female) participants were of varying nationalities, with ages

ranging from their 20s to 50s, and had various amounts of

driving experience and familiarity with ACC functionality.

1) Training Database: For each driver, a data collection

run consisted of two phases of approximately 30 minutes

each. In one phase, a driver was instructed to stay in

the “slow lane” and engage the ACC when it was safe

and comfortable to do so, passing when necessary. In the

second collection phase, the driver was free to drive normally

without the ACC function engaged in order to obtain com-

pletely natural driving behaviors. Drivers (especially those

not familiar with ACC operation) had a tendency to behave

differently when the ACC was active than in their normal

day-to-day driving behavior.

The complete training dataset, D, contained 24 driving

runs for 14.5 total hours of driving data (CAN messages and

raw videos) in a variety of driving conditions. Almost 500

instances of lane changes were automatically detected based

on lane deviation information (some were manually marked

when lane tracking was unreliable). A positive example was

constructed from a W = 2 second chunk of data δ seconds

prior to the lane. For a lane change at time tlc this resulted

in measurements between times [tlc − δ − W, tlc − δ].
Several validation criteria were used to ensure training

samples were taken from highway driving with valid sensor

reading, resulting in 367 instances of “good” lane changes.

These training examples were split into two separate sub-

sets for cross-validation training. The set Dtrain, with 266

positive examples, was for training the classifier while Dtest,

with 101 examples, was for assessing the performance during

training. Negative examples were randomly selected between

lane change occurrences at a 10:1 ratio.

2) Testing Database: The independent testing dataset T ,

consisted of 7.9 hours of completely uncontrolled driving

during 18 separate data runs by a 4 person subset of the

drivers involved in set D. Drivers were free to use ACC as

desired and were not prompted with any directions. Dataset

T contained over 400,000 evaluation windows but only 229

lane changes. Table I summarizes the lane change prediction

datasets.

B. From Laboratory to Roads

In the laboratory setting, pre-specified examples are fed

to the classifier to determine performance but in real-world

settings, the classifier must continually evaluate data as it

arrives. Practically, this results in much lower false pos-

itive rates because of the significantly larger number of

evaluations (although this does not necessarily translate to

“better” performance). This necessitates the development of

new analytical methods for more realistic characterization

and improvement of intent prediction in “real” situations.

1) Traditional Evaluation: During the intent classifier

training, performance is evaluated with a small cross-

validation test set Dtest. The blue ROC curve generated

using this set of labeled positive and negative examples

(Fig. 3a) provides the traditional performance evaluation in

the laboratory setting, and is similar to those seen in prior

work [3].

In addition, even with the wide variety of driver’s behavior

prior to a lane change, the RVM intent classifier has quite

consistent performance and could be expected to perform

just as well on a larger population. Using an analysis of

variance, treating the subjects as random factors, there was

a significant separation between the lane change and lane

keeping classes (F (1, 14) = 674, p < 0.001).

2) On-Road Evaluation: Dataset T was used to analyze

the on-road performance of the predictor response during

continuous operation. In this experiment, a first-in first-out

measurement buffer is maintained as data is continuously

streamed to output the probability of lane change every 33

msec. The two ROC curves, in blue and green, are shown

in Fig. 3a for detection time of δ = 2.5 [seconds] using all

the sensor subsystems. The ROC from the on-road set T is

better than for Dtest because of the greater rate of negative

examples, causing a very low false positive rate.

While the traditional ROC curve analysis makes the clas-

sifier seem quite strong, viewing the results on a scale more

meaningful for in-vehicle usage a different story unfolds.

Fig. 3b presents the same ROC but using false positives per

second [FP/sec] rather than the traditional (and academic)

false positive rate. The seemingly “good” laboratory clas-

sifier with 50% TPR and only 1% FPR translates into a

false detection every 3 seconds. In order to have acceptable

on-road performance the prediction FPR must be greatly

improved.

C. Lowering Classifier FPR

The intent classifier performance analysis using real units

[FP/sec] shows that false detections are the main source of

error. These false positives are mainly the result of two phe-

nomena. First, on-road evaluation presents data sequentially

and continually (in overlapping time windows), which results

in temporal consistency. Second, a classifier is designed to

detect a lane change δ seconds before its occurrence, but the

classifier is not always precise in its prediction time.

1) Time Series Dependency and Multi-suppression: In

classical pattern classification setups, data is selected, either
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Fig. 3: Plots comparing the δ = 2.5 intent ROC curves with all sensor subsystems for the different test sets. (a) The

traditional TPR vs FPR ROC curve used to asses classifier performance with results on T higher due to the much larger

number of negative examples in the set. (b) ROC curve utilizing real units demonstrates the laboratory evaluation does not

translate well on-road. The on-road performance can be greatly improved by lowering the number of false positives using

a multi-suppression technique (MS) as shown in red.
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Fig. 4: The evolution of lane change probability (black) 5

seconds prior to a lane change (blue). The red denotes all

frames with probability above the detection threshold. No

detection occurs at δ = 2.5 seconds because of inherent

behavioral variability. Using multi-suppression (cyan), only

the first detection in a sequence is counted and the best

matching detection (green) within a small match window

can be determined.

positives or negatives examples, and fed to a classifier to

test its response. The implicit assumption is that individual

examples are independent. In the on-road case, a sliding

window is used on time series data which results in non-

independent samples. Two consecutive windows will con-

tain almost identical data and therefore will have similar

responses. The plot in Fig. 4 shows the evolution of intent

probability of the δ = 2.5 classifier in black for a number

of seconds before a lane change.

Ideally, a single large value would spike at 2.5 seconds

prior to the lane change, but in this case there are actually two

major responses at 3.5 and 1.25 seconds prior. As the lane

change approaches, the probability of lane change increases

and a number of time instances are above the detection

threshold. Each of the red deltas indicate a detection but

there is only one lane change which means most of them are

considered false positives. With the assumption that consec-

utive detections arise from the same intent, a single detection

can be extracted on the rising edge of the intent signal. This

multiple detection suppression technique logically handles

the time series effect but may change the detection time

away from δ. After this “multi-suppression” only 3 detections

remain in this segment. The detection that matches (Section

IV-C.2) the lane change is the closest to δ as shown in green

while the remaining 2 detections are false detections, which

is dramatically less than the red.

The on-road performance after multi-suppression (MS)

is shown in red in Fig. 3b. The MS scheme results in

performance gain over traditional evaluation but introduces

an interesting looping behavior in the ROC curve. This does

not cause any problems because it occurs only at very low

thresholds and in practice only larger thresholds would be

used to ensure high confidence.

2) Imprecise Prediction Timing and Match Windows:
Even though an intent classifier was trained to infer the

lane change δ seconds before its occurrence, the cues that

signify an oncoming lane change may not always happen

at the exact same time, due to the variability in human

behaviors. As demonstrated in Fig. 4, although a detector is

designed for a specific time δ, the detections are not localized

and can occur before or after this time. Therefore, during

performance evaluation, there must be some flexibility to

allow examples within a small time window around δ to
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Fig. 5: Real units ROC curve for the lane change intent

classifier at different detection timings. The closer to the lane

change the better the performance and prediction horizons

beyond 3.0 seconds are completely unreliable.

be considered a positive as well.

In order to determine if the classifier was able to correctly

infer the lane change δ seconds early, a small match window

(±1 sec) is used to soften the δ constraint to consider a

close detection as a match (green in Fig. 4) while any other

detections not matched are considered false positives.

D. On-Road Results

In Fig. 5 the predictor performance is given in false

positives per hour for various detection times δ. Predictions

made earlier than 3 seconds before a lane change are

unreliable indicating there are few distinctive behaviors in

the [−7,−3] seconds time range as expected. Fig. 6 depicts

the head yaw and lane deviation variation from the positive

training set. Lane deviation is very useful within [−2, 0]
seconds but is uninformative earlier. In contrast, head motion

during scans is significant between [−3, 1.5] seconds before

a lane change, much closer to the lane change time than

was previously reported [2]. The choice of W = 2 [seconds]

ensures the scan behavior in contained in a data window,

although predictions made closer to the lane change have

generally better performance.

During on-road use, data is collected in a sliding window

and the holistic classification engine is able to predict on-

coming lane changes in real-time as demonstrated in Fig. 7a

(although not localized at −δ seconds before the maneuver).

The ROC analysis demonstrated it is possible to achieve

detection rate in the 80% but false positives were a concern.

Since the majority of highway driving is in a lane-keeping

mode, it is particularly important to eliminate false positives

to reassure the driver of system performance.

The multi-suppression technique helped reduce false posi-

tive evaluation frames and the match window relaxed detec-

tion timing during continuous evaluation for a more indica-

tive performance curve. However, there are still a variety of

other reasons for a false positive which limit the prediction

engine’s effectiveness, among them:
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Fig. 6: Distribution of head yaw and lane deviation signals

during lane changes. Before -2 seconds, it is very difficult to

predict an oncoming lane change using just lateral deviation.

In contrast, a driver’s yaw when scanning tends to occur

between [−3.0, 1.5] seconds before a lane change.

• events that look similar to lane changes (merges, exits),

• lane changes close to times of poor sensor readings,

• an intent without a corresponding maneuver, i.e. an

aborted lane change,

• predictions which occur outside of the match window.

Fig. 7b highlights a difficulty when dealing with intentions

and the holistic approach. Here a driver looks over his

shoulder and appears as if he will make a lane change but

does not actually change lanes. The intention to maneuver

existed but it is difficult to quantify without the existence of

the lane change. Hence, this is arguably a “true” false positive

because an assistance system could be engaged based on the

driver desires. The evaluation criteria is strict in these cases

(counting as a false positive) because an ADAS must have

guarantees about the oncoming maneuver in order to assist

properly. This is also why merely detecting the lane change

in advance is not sufficient; it must be detected δ seconds in

advance.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Real-time driver intention understanding is a key for the

successful development of next generation driver assistance

systems. Automotive systems operate under safety and time-

critical constraints, where every millisecond helps to save

lives. These these precious moments can be gained by deeper

understanding of a driver’s intentions and early predictions

of maneuvers. But, the traditional laboratory methods for

training and evaluation of prediction schemes do not provide
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Fig. 7: Examples of on-road intent detection which display the head and lane viewing cameras, the surround map, and the

lane change intent output probability. (a) An example of lane change intent successfully detected 2-3 seconds prior to the

lane change. (b) An example of an aborted intent, in which the pink vehicle in the blind spot most likely caused the driver

to abstain from the lane change.

effective indicators of continuous on-road performance. In

order to more realistically characterize operation, this work

introduced a multi-supression technique, for a single local-

ized detection, and match window, to relax the prediction

timing constraint, to dramatically lowered the false positive

rate from successive evaluations. The resulting classifier was

able to reliably predict lane changes up to 3 seconds before

the actual maneuver thanks in large part to a head viewing

camera which directly observed the driver. Still, in order

to be road ready, early prediction schemes will need to

explicitly account for the correlated nature of vehicular mea-

surement (time series) data and use contextual information

as a prior for output probability calculation.
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