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Abstract— While there have been many advances in intel-
ligent monitoring, it is still difficult to understand complex
environments without human assistance. Rather than focus on
fully automated monitoring, this work advocates user-centered
analysis. A standardized analysis environment for visual fusion
and embedding of information is developed called CANVAS
(Contextual Activity Notification Visualization Analysis Sys-
tem). CANVAS provides a user interaction interface for instan-
taneous feedback of contextual processing units which enables
high level semantic extraction and understanding. This assistive
tool utilizes advanced monitoring techniques to provide the
desirable context necessary for decision making and planning.
In addition, it takes advantage of web-based technology for
ubiquitous accessibility.

I. INTRODUCTION

Intelligent monitoring of environments has progressed

rapidly in the past 10 years [1]. Multiple cameras are now uti-

lized to monitor complex environments because of improved

video compression and network transmission. Monitoring

goals have transitioned from low level surveillance tasks (e.g.

detection and tracking) to higher level environmental and

situational awareness.

Accurate environment understanding requires incorpora-

tion of the needs of the monitoring system user. This user

must be included in the analysis loop for critical decision

because these decisions are based on a deep understanding of

the environment and the monitoring situation. Unfortunately,

due to vasts amounts of streaming information, limited

attention, and distributed awareness, a human operator can

not accurately monitor large areas and networks effectively.

Automatic computational techniques are vital for the moni-

toring process in order to highlight and guide user attention

to relevant areas. The large volumes of monitoring data must

be condensed and presented to a user in an accessible format

suitable for quick decision making.

This work presents a surveillance and monitoring system

called CANVAS. CANVAS is a Contextual Activity Notifi-

cation Visualization Analysis System that spatially integrates

distributed sensors. It is used to develop advanced monitoring

techniques, integrate cameras and GPS enabled devices, and

centralize information [2]. It provides a flexible backbone

which allows improvements to vision algorithms while pro-

viding a seamless visualization interface. The visualization

provides a user with environmental context for the distributed

analysis modules in a customizable web interface for im-

proved environmental awareness.
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II. SYSTEM DESCRIPTION

CANVAS is a monitoring system capable of integrating

spatially distributed sensors into a single unified environ-

ment for activity understanding. The web-based monitoring

interface, presented in Fig. 1, contains a map for localization

of sensors, environmental context, and incorporates analysis

icons as well as access to live video feeds of the monitoring

area. The single display is capable of monitoring a wide area

in a compact workspace.

The block diagram in Fig. 2 depicts the major compo-

nents of CANVAS. There are three separate design layers;

the Sensor Layer, a Hidden Layer, and the User Layer.

The Sensor Layer provides the interface to the physical

environment by taking measurements with a number of

sensors. The Hidden Layer is the processing backbone of

the system and is transparent to the end user. In this layer,

the raw sensor measurements which describe the current

state of the scene are archived in the system database. In

addition, computational models are trained to understand the

environment (e.g. distinguish pedestrians from vehicles or

model highway traffic flow) in real-time for live analysis.

The User Layer, provides the web monitoring interface for

video contextualization and environmental and situational

awareness. A user is able to query the database for pertinent

information and have the display updated in real-time.

III. SENSOR LAYER

Environment perception is handled by the Sensor Layer

where the Data Collection block delivers the meaningful sig-

nals for CANVAS. Low level data extraction occurs through

sensor specific filters which are designed to transform raw

sensor output into informative features, e.g. tracking for

motion description and measurements of object size and

shape.

The main sensing modality for CANVAS are video cam-

eras. Fig. 3 shows a map of UCSD along with images of

the many camera nodes situated around campus. A variety

of environments, both indoor and outdoor, with different

coverage area, scale, and objects of interest are present. Both

pan-tilt-zoom (PTZ) and wide are covering omni-directional

cameras [2] are utilized to monitor highway traffic along

Interstate 5, human/vehicle interactions on campus roads, and

people indoors. Most video processing is performed remotely

by transmitting video data across the network. Non-streaming

cameras with a local capture machine can be used to limit

the bandwidth requirements necessary from very-large scale

video networks by transmitting just archival data.

In addition to video, GPS enabled devices provide a sec-

ondary sensor. The popularity of smart phones can provide
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Fig. 1: CANVAS provides a web-based user interface for a user to contextualize the spatial proximity of sensors, view

live video streams, and compile processing and analysis results. A map shows the location of sensors, provides information

about the coverage area, and contains iconic display of events and activities. Live video provides raw, unprocessed, visual

information.
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Fig. 2: CANVAS Monitoring Diagram: The monitoring framework is composed of a Sensor Layer which provides an

interface to the physical environment, a Hidden Layer which houses a measurement database used to learn and infer the

current activity, and the User Layer which provides contextual visualization in real-time.

963



Fig. 3: UCSD video network. A network of video cameras is situated around campus to provide coverage of different

environments. Both rectilinear PTZ as well as omni-directional cameras are used to monitor highway vehicle traffic and the

close interactions of people and vehicles on campus.

location information from a number of users. The LISA

automotive testbeds (driving capture and analysis testbeds)

[3] are equipped with GPS receivers to provide tagged

driving parameters such as speed and steering. With mobile

internet connectivity, these measurements could be streamed

in real-time.

Together the positions from infrastructure mounted cam-

eras and mobile devices provide the raw data for situational

awareness and activity understanding.

IV. HIDDEN LAYER

The hidden CANVAS layer provides the underlying data

analysis and environmental perception for activity under-

standing. The monitoring tasks require the storage of sensor

data in order to learn methods for describing and understand-

ing the scene in real-time.

A. Information Archival

At the heart of CANVAS is the database archival system

which is implemented as a MySQL relational database.

Sensor data, which provides measurements on the state of

the monitored world, is timestamped and stored. Over time,

a historical context emerges which enables accurate scene

understanding based on real observations.

The database is split into three main partitions; data, mod-

els, and live information. The data partition holds sensor data

as it is extracted. The models partition maintains the results

obtained from the Learning modules. This information is

used during Live Analysis to process new data. The analysis

output is automatically entered into the live database partition

to provide the information necessary for visualization.

B. Learning and Analysis

The Learning module develops models which can interpret

sensor data through offline training. These models can then

be used during Live Analysis to understand the current state

of the monitoring scene. The Analysis modules are essential

for effective monitoring because it eases the cognitive load

of a human observer. In addition, multiple analysis tasks can

be run in parallel on multiple video feeds which is something

quite difficult for a human.
1) Object Classification: Automatically detected objects

can have their type identified based on their visual signatures

[4]. The 7 most often occurring vehicle types {Sedan,

Pickup, SUV, Van, Semi, Truck, Bike} are identified in

highway streams. This detailed real-time fleet composition

is a missing management component essential for estimating

emissions or infrastructure load assessment [5]. On campus,

detected objects are marked as either {car, pedestrian, biker,

skateboarder, or a group of people}. This classification helps

with criticality assessment of situations when vehicles and

people interact in close proximity.
2) Traffic Modeling: Intelligent traffic management relies

on up-to-date measurements of the transportation network.

A single infrastructure camera can effectively monitor a

highway link [4] to extract the essential lane level measures

of flow (#vehicles
time ), density (#vehicles

distance ), and speed (MPH).

These traffic parameters are stored in the database where they

can be aggregated over time to build the daily speed profiles

which are used to detect abnormal driving.
3) Trajectory Learning: Recently, one of the most popular

techniques for automated surveillance and monitoring is

trajectory learning [6]. This technique makes it easier to

monitor larger video networks because activity models are

learned automatically without need for manual specification.

Object trajectories, consisting of location and speed, are

compared and clustered to build probabilistic models of

typical activity [7]. These models are utilized during live

analysis to describe, predict, and detect abnormalities, all

critical for scene and situation understanding.

V. USER LAYER

The User Layer provides a common visualization envi-

ronment for the display or real-time information and live
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(a) (b)

Fig. 4: CANVAS Visualization Page (with processed output video for clarity rather than raw streams). (a) A campus street

is monitored using two overlapping cameras. The output of object classification and tracking is marked using icons which

are geo-registered on the map. (b) Environmental context is encoded using an aerial image of the highway where detected

vehicles are placed in the appropriate lane.

analysis. Situational awareness is realized through functional

display layers built for each of the Analysis modules. Each

additional visualization layer provides a more detailed pic-

ture of the monitoring state while preserving surrounding

environmental context.

Instead of overloading the display with large amounts of

annotations, information is distilled and visualized through

the use of icons and avatars (examples in Fig. 4). The

filtered view of information limits cognitive load and helps

focus attention on the locations most likely to be interesting

through automatic highlighting [8].

CANVAS’ web based visualization indicates the location

of sensors with respect to one another, gives access to raw

video feeds, presents pertinent analysis results, and provides

a user interface to navigate, query, and customize the display.

A. Mapping

The monitoring environment is encoded in a 2D map

because it increases situational awareness by providing sur-

rounding environmental context which assists comprehension

of spatial relationships between objects [9]. The user display

is built using the Google Maps API because it is a familiar

interface (often used for directions) and its wide coverage

makes it applicable to most outdoor locations. Environmental

context is presented through different modalities such as

aerial imagery or geographical information system (GIS)

type layers depicting structures and areas of interest. The

map lets the user know where the monitoring occurs.

B. Geo-Registration

Visualization of sensor readings and analysis requires

proper alignment with the map coordinates. Sensor coor-

dinates must be transformed into GPS latitude and longi-

tude coordinates in a process called geo-registration. Geo-

registration requires calibration between the sensor space and

the map space. Simple spot sensors, such as inductive loops,

only acquire measurements from a single location which

makes the calibration straight forward; the sensor output can

be overlayed on the GPS coordinate of the sensor location. It

is more difficult to calibrate spatial sensors because of their

coverage area. In this case, it is necessary to transform points

in the sensor FOV into a corresponding map location.

In order to geo-register a camera, the locations of objects

in the image plane and the corresponding latitudes and

longitudes on the map need to be known. This is a multi view

registration problem. One view of the scene is generated by

the camera and the second view is the map (satellite image).

Typically, the epipolar constraint can be used to determine

the relative pose between the two cameras and solve for the

transformation between views. But, since the map is only

a 2D representation of the world, full three dimensional

mappings are not required. The transformation between

the map coordinates and image coordinates reduces to a

mapping between 2D planes. This calibration is learned as

a homography transformation, H , mapping the image pixel

locations on the ground plane (e.g. the road) xim = [x, y]T

to its corresponding latitude and longitude coordinates on the

map Xgps = [X, Y ]T

Xgps = Hxim = Rxim + T. (1)

The homography matrix H explains the rotation R and

translation T relating the camera and satellite map image and

can be found by using a GPS receiver to collect the latitudinal

and longitudinal coordinates of specific image locations.

Corresponding points between the map and video were

obtained by walking on the street and using an iPhone as

a GPS receiver while being recorded by the camera. GPS

coordinates were extracted at specific points by remaining

still until the GPS reading stabilized. The corresponding
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(a) (b)

Fig. 5: Geo-registration calibration with GPS coordinates obtained using an iPhone. (a) Image locations of ground plane

calibration points. (b) Google maps satellite image with GPS location of calibration points.

(a) (b)

(c)

Fig. 6: (a) A driver’s awareness is limited to what can be seen by the driver. (b) Using infrastructure, situational awareness

can be transferred to the driver. The car is warned of the occluded pedestrian tying his shoe on the left side of the road (c)

A GPS enabled mobile device can be detected even through visual occlusion in order to relay appropriate safety messages

to both the vehicle and pedestrian of the impending crosswalk situation.

image point was manually marked at the point of contact

between road and feet. Fig. 5a shows the camera view of

Matthews Lane on campus. The aerial image with corre-

sponding GPS points marked is shown in Fig. 5b. Given

at least 4 corresponding points, the homography matrix H
can be estimated in a least squares by solving the system of

equations

Xj
gps × Hxj

im = 0 j = 1, 2, . . . , n (2)

by singular value decomposition using the four-point algo-

rithm [10] (× denotes vector cross product).

Due to the quality of the GPS receiver, the coordinates

coordinates obtained by the iPhone do not fall exactly where

expected on the Google road map. The coarse resolution

and the narrow strip of road covered by the camera some

numerical instability during the mapping from image to map

coordinates but will improve with newer GPS sensors.

C. Customization

The Visualization block only presents information to the

user when it is needed because complex environments are

filled with distracting activities and events. Only those of

interest are displayed to minimize visual clutter.

Clickable controls are used to select camera feeds, change
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environmental context, and display analysis results. Two

live feeds may be initialized to view raw video (right side

of Fig. 1). The map provides the common visualization

space for video analysis and its scale, navigation, and image

selection (map layer in Fig. 4a or aerial imagery in Fig.

4b) is controlled by the Google Map API. Toggle buttons

overlay Analysis results onto the map and enable information

display customization through layer selection. These buttons

generate the appropriate SQL commands which removes the

need for user training. Figure 4 shows two different classifi-

cation layers; a classification layer denoting pedestrians and

vehicles on campus is shown in Fig. 4a while Fig. 4b shows

vehicle tracking.

VI. WIDE AREA ACTIVITY ANALYSIS

By exploring the environment with the map-based repre-

sentation, activities can be understood within a larger spatial

context. The relationships between cameras and monitored

objects are contained in a single view to abstract the par-

ticulars of a specific location. In Fig. 6a, a campus road

is shown as seen from inside a vehicle. The driver’s view

is limited through the front windshield but with help from

infrastructure cameras, the pedestrian behind the vehicle is

detected and a warning (yellow bounding box) could be

relayed to the driver upon approach (Fig. 6b).

The integration of GPS into mobile devices provides a

broader medium for understanding behavior. Using GPS

enabled phones, a new stream of trajectory information can

be acquired which supplements infrastructure sensing. A

pedestrian is tracked through occlusion in Fig. 6c and an alert

is sent to the phone warning of the oncoming vehicle. The

mobile devices provide a level coverage not feasible using

infrastructure. Fig. 7 shows the route of a probe vehicle.

The vehicle enables coverage well beyond the extent of the

campus network, yet still can be seamlessly integrated in the

map interface. The trajectories obtained from mobile devices

and automobiles help complete the environment behavior and

activity picture [11].

VII. CONCLUSIONS

The CANVAS monitoring system provides a unified inter-

face for monitoring of large areas. Live video streams can

be selected and viewed by an operator but the focus is on

delivering clean computational output that abstracts underly-

ing analysis. The user interface localizes events on a map,

which most people are familiar with, for spatial context using

simple icons. The icons highlight regions of interest, enabling

wider coverage and ultimately ultimately improves the effec-

tiveness of the monitoring by focusing attention through the

presentation of only the most relevant information. CANVAS

was designed to be scalable in order to accommodate new

sensors, analysis processes, and information visualization.

With future advances in wireless communication, rather than

just providing a webpage, services can be run to provide real-

time alerts.

Fig. 7: GPS enabled vehicles and devices are seamlessly

integrated into the map. A recorded route taken by a GPS

equipped vehicle is overlayed on the map. The route is color

coded based on the speed of the automobile with respect to

speed limits.
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