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Abstract— The widespread use of cameras for traffic monitor-
ing coupled with the availability of robust tracking algorithms
has led to volumes of data. It is necessary to process this
data for higher level tasks. One of these processing tasks is
vehicle type classification, which can be used in a query based
management system. This paper presents a tracking system
with the ability to classify vehicles into three classes {Sedan,
Semi, Truck+SUV+Van}. This system was developed after
comparing classification schemes using both vehicle images and
measurements. The most accurate of these learned classifiers
was integrated into tracking software. This merging of of
classification and tracking greatly improved the accuracy on
low resolution traffic video.

I. INTRODUCTION

Today there are an ever growing number of cameras being
used for scene analysis. Many of these are applied to traffic
monitoring because it is a low cost and passive method
for data collection. Past research [1] has been devoted
to accurately tracking vehicles. The relative strengths and
limitations of the varied trackers are well researched. Back-
ground subtraction trackers perform quickly and can adapt
to various lighting conditions but deal poorly with occlusion
or adverse weather conditions. Interest feature detection can
better model a vehicle with occlusion but still suffer from
difficulties ensuring robust localization of salient features.
Model based trackers are robust to illumination and occlusion
but require models for all vehicles, limiting its scalability.
The focus of more recent research is on higher level analysis
of this tracking data. This is of great importance for dealing
with the growing problem of urban congestion. The traffic
congestion problem is costing Americans $63.1 billion a
year. Any analysis that can help assess and direct planning
and ameliorate this problem is needed.

One of the primary high level analyses one could envision
is vehicle classification. Vehicle classification is particularly
useful for re-identification [2] in multi-sensor networks [3]
and anomalous event detection [4] as well as the more
standard applications of traffic flow analysis and unobtrusive
path tracking [5]. This paper demonstrates the effectiveness
of combining tracking with classification for significantly
improved classification results on low resolution traffic video.
The technique is also general enough to be applied to a wide
variety of surveillance scenes besides traffic.

II. SYSTEM OVERVIEW

This paper presents a traffic monitoring system that is
able to classify the type of vehicles in a highway scene. We
classify vehicles into three main classes, Sedan, Semi, and an
additional class, Truck + SUV + Van (TSV). Examples from
each of the classes are shown in Fig. 1. The Van samples are
composed of a variety of vehicles, e.g. minivans, that were
either not explicitly separated or were vehicles that were
difficult for a human viewer to classify. The Truck, SUV,
and Van examples were grouped together because of the
similar appearance and represent the most diverse class. The
examples shown have been scaled for display purposes but
demonstrate the difficulties for a classifier. The vehicles have
differing scale, perspective view, and can be quite low resolu-
tion when in the lanes furthest from the camera, making the
appearance of different classes similar. Fig. 4 shows a sample
of the video output. The text accompanying each vehicle is a
Track ID, class identifier number, followed by a estimate of
speed and direction of travel. Our proposed system would be
similar to [6] but without explicitly selecting regions to build
classifiers. Instead the system will have one classifier trained
for the entire scene and eventually should be invariant to the
camera pose selected by a remote operator.

The vehicle classifier was built after doing a comparison of
different classification schemes using either image based (IB)
or image measurements based (IM) features. A feature trans-
formation technique, principle component analysis (PCA) or
linear discriminant analysis (LDA), was applied to manage
the size of the data and classification was accomplished
using a weighted K nearest neighbor classifier. The classifier
scheme with the best performance on test sets from two
days was integrated into tracking software to output track
information that included a track vehicle type label of greatly
improved accuracy.

III. COMPARISON STUDY

We are interested in comparing the performance between
classifiers using the image of a vehicle as a feature and
features derived from measurements taken from the image.
The features are obtained automatically from traffic tracking
software and used for classification.

A. Image Based (IB) Features

Here the image of the tracked object is used as a feature
vector. To do a proper comparison each object was resized
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(a) Class 0 - Truck + SUV + Van (TSV)

(b) Class 1 - Sedan (c) Class 2 - Semi

Fig. 1. Sample Images from Each Class. Vehicles are Detected at Different Scales and Perspective.

to [64x32] pixels, generating a feature vector with 2048
components. Images as feature vectors have been used in
human face recognition literature for many years with a
high degree of success [7]. We borrow those techniques
and attempt to apply them to the vehicle classification
problem. The added complexity for vehicle classification
is the large variation between classes. In face recognition,
the structure of two different subjects is quite similar (eyes,
nose, mouth) as opposed to vehicles which may not have
the consistent structure necessary for alignment. In addition
many of the face databases are constructed in very controlled
environments to deal with lighting and background clutter.

B. Image Measurements Based (IM) Features

In addition to the image of tracked objects, a number of
simple measurements are taken. We would like to work with
measurements rather than the images directly because it is
much cheaper computationally and storage-wise to maintain
a database of features rather than images. The goal is to
obtain as many simple measurements as possible and allow
a classifier to decide which are best for classification. Cur-
rently, 10 different measurements make up the measurement
feature vector. These measurements have been normalized by
applying a homography transformation to the road ground
plane allowing comparison of vehicles throughout the entire
field of view. The feature vector consists of

• area
• bounding box [width, height]
• convex area
• ellipse [eccentricity, major axis, minor, axis]
• extent - proportion of pixels in bounding box to object
• solidity - proportion of pixels in convex hull to region
• perimeter

Using IM, objects are defined by features derived from an
image blob. This generalizes well to many different types
of scenes besides traffic, such as pedestrians, by defining all
objects by the same set of simple measurements.

IV. CLASSIFICATION METHODS

The image based feature vector is rather large and pro-
hibits robust classification both computationally and because
of the lack of adequate training data to properly fill a

high dimensional feature space. Two different dimensionality
reduction techniques, PCA and LDA, were used to ensure
manageable classification. The same dimensionality tech-
niques are used on the IM features, not for dimensionality
reduction but to remove redundant information and to project
the data into a space better suited for classification [8].

A. Principle Component Analysis

As a dimensionality reduction technique, PCA aligns
data along the directions of greatest variance. Let χ =
{x1, x2, . . . , xN} be a training set of N vectors each of
dimension d. Construct the training matrix X̄ = [x1 −

μ, . . . , xN −μ], where μ = 1
N

∑N

i=1 xi. The PCA projection
is found by solving the eigen problem

X̄X̄T e = λe. (1)

Notice the rank of X̄X̄T is the minimum of d and N. When
N � d this decomposition can be computed more efficiently
by solving

X̄T X̄f = γf. (2)

The eigenvector e is then easily found by noting that multi-
plying both sides of (2) by X̄ gives us (1),

X̄T X̄f = γf

X̄X̄T (X̄f) = γ(X̄f)
X̄X̄T e = γe,

with e = X̄f (e must be normalized such that ‖e‖ = 1).
The PCA projection, PPCA is then formed from the M
eigenvectors with largest corresponding eigenvalue. The new
feature vector

xPCA = PPCAx = [e1, . . . , ei, . . . , eM ]x

is of dimension M.

B. Linear Discriminant Analysis

While PCA puts emphasis into retaining directions of large
variance, it does not take into account the actual classes.
Since large variance is not always best for classification,
LDA tries to project onto a subspace of best discrimination
by maximizing the separation between classes relative to
separation within classes. Let χc = {x1, . . . , xNc

} be a set
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Fig. 2. LDA projection of image measurement (IM) data. Sedan and semi classes are well separated but there is overlap between SUV and Truck classes.

of Nc training vectors for class c, each of dimension d,
with mean μc = 1

Nc

∑Nc

i=1 xi. The full training set, χ =
{χ1, . . . , χC}, is composed of the training samples from all
classes and has mean μ = 1

N

∑N

i=1 xi, where N =
∑

c Nc.
The LDA projection is given by the maximization problem

PLDA = argmax
x

|wT SBw|

|wT SW w|

(3)

where SB is the between class scatter and SW is the within
class scatter matrices.

SB =
C∑

i=1

Ni(μi − μ)(μi − μ)T

SW =
C∑

i=1

∑
xk∈χC

(xk − μi)(xk − μi)T

The solution to this maximization leads to the generalized
eigen problem SBw = λSW w. Again the top M eigenvectors
are retained to obtain the LDA projection matrix,

xLDA = PLDAx = [w1, ..., wi, ..., wM ]x (4)

C. NN Derivative Classification

In this experiment a weighted K nearest neighbor rule
(wkNN) [6] was used to classify a transformed feature vector
into a vehicle class. This a modification of the nearest
neighbor (NN) classifier. The advantage of wkNN is that each
sample is assigned to every class by a class weight (5) while
NN only gives a binary indication of class membership. This
class weight is a soft membership to each class, which builds
robustness to noise and outliers. The L2 norm was used as the
distance metric to determine the similarity between vectors.
The wkNN weight for each class indicates the strength of
match and a label (6) is assigned corresponding to the class

with the highest weight (7).

Wc =
K∑

i=1
xi∈χC

1
‖xi − x‖

(5)

L(x) = argmax
c

Wc (6)

W (x) = max
c

Wc (7)

V. TRACK BASED REFINEMENT OF CLASSIFICATION

After evaluating the performance of the different clas-
sifiers, the LDA-IM classifier was chosen for integration
into tracking software. Using LDA-IM generates a simple
classifier with low computational complexity and that gen-
eralizes well because of scene object independence. The
system level block diagram follows in Fig. 3. Potential
vehicles are detected by the Object Detection module which
used an adaptive background subtraction scheme [9]. Taking
the difference between the current video frame and the
estimated background produces regions of moving objects.
These regions are processed to produce vehicle blob de-
tections. The detections are normalized by a homography
transformation with respect to the freeway ground plane [10].
This transformation of the video makes the lanes of the
freeway parallel and removes perspective distortion in the
scene allowing comparison between vehicles in the closest
lanes to those in the farthest lanes from the camera. Tracking
is accomplished by using a Kalman filter on the center of
mass of the detected object region [11]. The Kalman Filter
module outputs a state vector, [x, v]T , containing the position
and velocity of the region. The Kalman filter is a state
estimation tool that predicts the position of a vehicle in the
next frame. The predicted state is used for data association
by the Track Builder module to connect individual vehicles
in consecutive frames into a track. Each region is also sent to
the Car Type Classifier module to be classified. Each object
at time t is assigned a soft class membership by normalizing
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Fig. 3. Block Diagram for Tracker with Classification

TABLE I

IMAGE AND MEASUREMENT BASED CLASSIFICATION ACCURACY %

Classifier
Type TSV Sedan Semi Total

Image Based Features

PCA 69.45 88.89 100 80.36

LDA 74.91 52.78 25.00 62.19

Measurement Based Features

PCA 74.65 83.02 86.11 79.50

LDA 65.09 85.49 91.67 76.43

the class weights (5),

W t
c =

Wc∑
c Wc

. (8)

This soft classifier deals with the uncertainty of producing
one class label by allowing a test vehicle to be a member of
every vehicle class with the class with largest weight, W t

c ,
being the most likely true class. The Track Builder module
builds vehicle tracks from the Kalman state, assigning each
track a Track ID and a single class label to the track. The
track vehicle label is determined by building a histogram [12]
of class weights for each frame in a track T and selecting
as label the class with the highest membership,

LT = argmax
c

∑
t∈T

W t
c . (9)

By binning class the soft class membership into a track
histogram the Track Builder is able to recover from mis-
classified examples by only assigning a final label as the
most likely class along the entire track. By using an entire
track, as much information as available in the video is being
utilized for classification. The classification is no longer
produced from a single image of a vehicle but a collection
of complementary images.

VI. EXPERIMENTAL STUDY

A. Individual Image Classification

The classification results comparing image based and
measurement based features are presented in Table I. The

results are separated into image based and the measurement
based techniques. All data was compiled from the output of
the background subtraction based tracker. The tracker was
run on a video sequence to obtain 1836 {TSV, Sedan, Semi}
= {825, 974, 37} training examples and 611 {275,324,12}
test examples. The classification accuracy rates are given
for each vehicle class individually and a total for the entire
dataset.

Looking at the image based results we see the best perfor-
mance came using PCA in contrast to the face classification
results from [7]. LDA performed worse than PCA even
though it is designed for discriminability. Though the training
set is well separated, applying the same transformation to the
test set produced little separation. The top LDA basis cars do
not resemble any type of vehicle, hinting at the failure of this
procedure. When doing face classification, face images are
resized to similar size and registered such that facial features
align. This can not be done for vehicles because each class
has a different appearance whereas a face is quite similar
across all people.

Using the measurement features we achieve classification
rates comparable to the image based PCA but with much less
computation time, which is critical for a real time implemen-
tation. Although measurement based PCA performed better
for this three class problem it only showed improvement
in the TSV class. Both Sedan and Semi classes were more
accurately classified using the LDA transformation. LDA is
the preferred method because it will generalize better when
adding new classes. In Figures 2(a) and 2(b) we see that
even when using LDA there is overlap between classes,
particularly between Sedans and TSV. Much of the error can
be attributed to this overlap. Though the classification rate
for IM LDA is 4% less than IB PCA, the increase in speed
justifies its use.

The robustness of LDA IM based classifier was tested
on another video sequence from a different day with 867
{360,483,24} test vehicles. These results from day 2 are
presented in the last line of Table II. The classification
confusion matrix for the two test days is also shown in Table
II. The TSV and Sedan are most often confused because of
their proximity the LDA feature space. This contributes to
the lower classification accuracy of these classes. Accurate
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(a) Vehicle 16: Correctly classified as TSV after short oscillation

312 c2 v50S

(b) Vehicle 312: Tracking error com-
bines bus with other vehicles
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(c) Vehicle 287: Motorcycle classified
as Van
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66 c1 v51

(d) Vehicle 68,69: Track classification quickly recovers after tracking error

Fig. 4. Sample Track Based Classification Results

TABLE II

IMAGE MEASUREMENT DETECTION CLASSIFICATION CONFUSION

MATRIX DAY 1+2

True

Day TSV Sedan Semi Total

1+2

TSV 483 99 2

Sedan 151 708 0

Semi 1 0 34

Total 635 807 36 1478

%Correct 76.06 87.73 94.44 82.88

1 %Correct 65.09 85.49 91.67 76.43

2 %Correct 84.44 89.23 95.8 87.43

classification of vehicles can not be accomplished using
single images as traditionally done. More information is
contained in video that needs to be utilized.

B. Tracking Based Classification

Tracking based classification uses the entire track of
a vehicle for classification rather than just an individual
frame image as shown previously. Each frame generates an
individual example of a vehicle which can be classified more
accurately when all occurrences in a track are combined.
Table III gives the improved classification results obtained
with tracking. Using the tracks we see an improvement of
almost 10% in the Total classification rate. The accuracy

of every type is improved, with significant improvements
for Sedan and TSV. We see much lower confusion between
TSV and Sedan as well as the complete removal of errors
for the Semi type. The soft class membership 8 allows the
Track Builder to absorb mis-classifications by only assigning
a label as the most likely class along the entire track. In Fig.
4(a) object 16, a white Truck, enters into the camera view
from the bottom left. Along the track it is mis-sclassified as
Sedan (c1) going south with an estimated speed of 60 mph
(v60N). The Track Builder is able to recover the correct
label by the end of the track, where it is classfied as
a TSV (c0) going 51 mph (v51S). The classification can
also help improve tracking. In Fig. 4(b) we see a tracking
error where a bus was grouped together with two other
vehicles. The classification results can help track reasoning
after tracking recovery as seen in Fig. 4(d). The breakup of
track 68 into two tracks of differing classes indicates that
there was either occlusion or grouping of vehicles in earlier
frames. Most track based errors arose from TSVs classified
as Sedans. Some examples of misclassifications using track
based classification are shown in Fig. 5. Adding more
classes might be able to better discriminate these missed
examples by better characterizing Trucks and SUVs against
Sedans. The track based classification results are promising
and indicate the value of doing classification over spatio-
temporal detections. Even though the individual detection
classification may have ambiguities, as is the case for Sedan
and TSV (Table II), using tracking greatly improved the
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525 c1 v59S

(a) Vehicle 525: SUV Classified as
Sedan

543 c0 v47N

(b) Vehicle 543: Sedan Classified
as TSV

37  c1 v34S

(c) Vehicle 37: Truck Classified as
Sedan

160 c1 v57N

(d) Vehicle 160: Truck Classified
as Sedan

Fig. 5. Sample Track Based Classification Errors

TABLE III

TRACK CLASSIFICATION CONFUSION MATRIX DAY 1+2

True

Day TSV Sedan Semi Total

1+2

TSV 211 15 0

Sedan 29 321 0

Semi 0 0 7

Total 240 336 7 583

%Correct 85.42 96.43 100 91.94

1 %Correct 89.19 98.09 100 94.51

2 %Correct 82.17 94.97 100 89.68

final classification accuracy by taking advantage of expanded
information contained in video. Tracking will be crucial in
further developing our system to recognize a wider range of
vehicles.

VII. CONCLUDING REMARKS

The widespread deployment of cameras for traffic analysis
has given researchers plenty of data to develop robust tech-
niques for detection and tracking of vehicles. With tracking
well solved, the next advancements will come from high
level event recognition and prediction. One of the key tasks
necessary for higher level analysis is vehicle classification.
A simple classifier was built for speed and generality. The
robustness of this simple classifier was improved almost 10%
by integrating tracking information.
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