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Abstract

In a world that is increasingly reliant on automobiles, efficient management of the
transportation network for increased satisfaction and safety is a key functionality of
intelligent transportation systems (ITS). A wide range of these ITS applications rely
on the extraction of current data as well as historical information in order to perform
appropriately. This paper presents a general framework for integration of infrastructure
and vehicle based sensing. Maps link the coarse but wide area coverage offered by
infrastructure with detailed local measurements made at the vehicle. The integration
of these two sources provides better understanding of all aspects of driving situations. A
motion trajectory learning paradigm is used to extract characteristic driving behaviors
which is used to describe traffic conditions and improve safety. Extensive experimental
studies have proven the potential of the proposed framework.

1 Introduction

The last 100 years has brought great advancements and developments in personal trans-

portation transforming the horse drawn world into one dominated by automobiles. The

emergence of the automobile has opened up the world, providing almost unlimited access

and mobility. In the United States alone, a staggering 240 million vehicles travel over 12

million miles annually on a network consisting of 4 million miles of road whose maintenance



Brendan Morris and Mohan Trivedi
ITS America Student Essay: Integrated Infrastructure and Vehicle

Based Monitoring for Enhanced Efficiency and Safety

costs $40 million [1]. Such a large infrastructure has immediate social, economic, energy,

and environmental impact. Motor vehicle taxes generate $30 billion annually. Americans

use 175 billion gallons of fuel for highway travel releasing a number of emissions into the

air. Between 1995 and 2001 there was 10% increase in average commute time as people

experienced slower speeds and increased delay while stuck in congestion [2]. Perhaps most

alarming were the 2.5 million injury accidents and 41 thousand motor vehicle related fata-

laties in 2008 [3]. These numbers represent just a small portion of worldwide dependence

on automobiles and emerging countries such as India and China will dramatically effect the

future of transportation.

In order to manage such a vast transportation network, it is essential to invest in intelli-

gent transportation systems (ITS) technologies. ITS solutions provide the means to extract

and manage information necessary for continued advancement. Without their use it would

be impossible to continually monitor our roadways, as no human could process such large

amounts of data. The key requirements for successful ITS systems are the ability to extract

and process data in real-time, provide robustness to a wide range of operating conditions, and

technologies that can adapt to changes in the environment which is essential for long term

deployment. The ITS community has the power to improve the quality of modern life by

providing greener transportation solutions, greater satisfaction through smoother commutes,

and ultimately a safer driving experience.

In this paper we present a general framework for the integration of infrastructure and

vehicle sensing for intelligent transportation monitoring and active driver safety, shown in

Fig. 1. The key goal of this scheme is an improved understanding of all aspects of driving

situations. This requires a deep understanding driving behavior. This behavior can be

learned by examining motion trajectories in the surround of driver (vehicle sensing) and

providing observation context through scene knowledge (infrastructure sensing).
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Figure 1: Active safety with trajectory analysis. Local measurements made while driving at
the vehicle level and put into global context by fusion with infrastructure sensors by GPS
registration.

2 Trajectory Analysis

The most critical safety concerns during driving are objects in motion (with relative motion)

which can collide and cause damage. Motion also indicates when a lane change occurs

or if someone is breaking to avoid a collision. The motion encountered while driving is

not random, it has some underlying structure imbued by traffic laws. By leveraging this

structure, driving behavior can be analyzed and studied [4]. The diagram in Fig. 2 shows

a general framework for understanding behavior based on motion. Motion is represented

by trajectories because it compactly encodes behavior and provides a historical summary

both spatially and temporally. The temporal history is essential for understanding behavior

because it is defined not by just current actions but sequences over time. By observing

motion and collecting trajectories over time, a database is formed that contains examples

of typical behaviors. These typical behaviors, while unknown, can be teased out of the

trajectories by clustering. After clustering trajectories, the typical behaviors can be modeled

probabilistically to give a spatio-temporal representation. Finally, in an online (live) analysis
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Figure 2: Trajectory learning framework for behavior analysis. Vehicles are detected and
tracked, motion describes behavior, can be clustered to learn typical behaviors, which are
modeled probabilistically for use in live analysis.

mode new trajectories from observed obstacles can be examined and categorized using the

learned behavior models. The behavior of every detected object can be categorized as typical

or abnormality and finally future behavior can be predicted.

2.1 Learning Typical Patterns

A key observation for trajectory analysis is that typical actions are repetitive while the un-

usual do not occur often therefore with sufficient observation it is possible to learn these

prototypical behaviors. In order to learn typical patterns, a training database of trajectories

is accumulated and condensed into a small set of behaviors through clustering. Unfortu-

nately, the number of typical behaviors is not usually known a priori and must be estimated.

The true number of activities is estimated by first clustering the training trajectories into a

large number of groups. This rough grouping is refined into the tight compact clusters repre-

senting typical behaviors by agglomerative merging. Further details on the cluster procedure

can be found in [4, 5]. In Fig. 3, the typical patterns are shown for a number of different
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(a) (b) (c)

Figure 3: Typical trajectory patterns. (a) Profile view of highway traffic on I5 with the lanes
clearly demarcated. (b) 3/4 view of I5 obtained by adjusting the PTZ camera parameters.
(c) Example of typical intersection patterns corresponding to the acceptable intersection
maneuvers.

(a) (b) (c) (d)

Figure 4: Abnormal tracks not adhering to prototypical paths

transportation scenes with prototype patterns corresponding to the lanes of the highway or

to the allowable maneuvers at an intersection.

2.2 Behavior Analysis

A vocabulary to describe behavior is established by learning the typical scene patterns.

During live video analysis, object activity is matched with an element of this learned set.

The reference behavior set explains what are expected actions and can be used to predict

future events. This type of prediction is more powerful than simple one step prediction

associated with Kalman or particle filters because the prediction looks further into the future

and is conditioned on actual observed behaviors. Fig. 5 shows the evolution of a left turn.

The probability of a behavior is shown in the white box over the associated pattern. Early
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Figure 5: Left turn prediction behaves as expected. As more data points are collected the
prediction better matches the true lane.

into the left turn maneuver it is unclear which lane the vehicle will turn into but as more

information is obtained the estimate improves. This type of analysis is of great importance

for intersection safety [6,7] where the predicted paths are used to assess the probability and

time to collision.

It might be more important to detect not the typical behaviors but the abnormal because

these indicate when the out of ordinary occurs. A driver must be aware of these anomalous

events because it is not possible to predict well what will happen in the future and may lead

to dangerous situations. These abnormalities are detected when none of the reference set

adequately explain the observed motion. A collection of abnormal trajectories are presented

in Fig. 4.

3 Global Context

Global context can be maintained through mapping. Maps provide a way to position oneself

in the larger transportation network with well defined landmarks. A portion of San Diego

is displayed in Fig. 6 with red markers indicating the location of highway inductive loop

sensors. This information is maintained in California through UC Berkeley by PeMS [8]

and is used for live traffic updates and history statewide. By linking external infrastructure

sensors to the map, a user could retrieve pertinent information such as current speed, traffic
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Figure 6: Maps provide context during driving. PeMS maintains historic traffic measure-
ments inductive loop sensors spread all across California.

conditions, and speed, based on location.

Video cameras are an attractive infrastructure sensor because of an active research com-

munity, very high informational content, and widespread deployment. Traffic cameras as well

as read light and speeding cameras have been widely deployed by a number of agencies, such

as local government and news broadcasts, because they provide a quick view of traffic condi-

tions with relative ease and minimal intrusion. These cameras provide valuable video signals

that can be reused for alternative computer vision based analysis such as highway congestion

performance measurements similar to loops [9], detection of stalled vehicles [10, 11], vehicle

classification which is necessary for real-time fleet composition used for highway manage-

ment functions such as estimating emissions or infrastructure load assessment [12], as well

as intersection safety [6, 7].
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Figure 7: (a) Vehicle correctly classified as SUV after initially estimated as VAN and
TRUCK. (b) Classification accuracy is improved by leveraging evidence accumulated by
tracking. (c) Accuracy can be improved by focusing on highly confident examples (those
with large amounts of evidence).

The VECTOR system described in the following section was designed for real-time high-

way traffic management and analysis and generates loop detector type measurements as well

as determines the types of vehicles on the road over time. Accumulated traffic statistics

are used to build a traffic model useful for online traffic flow analysis, such as detection of

speeding vehicles.

3.1 Vehicle Type Classification

The VECTOR system identifies 8 of the most often occurring vehicle classes based on the

2001 National Household Travel Survey conducted by the U.S. Department of Transportation

[2]. Knowledge of vehicle type is essential for a wide range of highway management functions

such as estimating emissions [13] or infrastructure load assessment [14]. This detailed real-

time fleet composition is currently a missing component is most emission studies.

Information redundancy obtained by the number of different visible views of a vehicle

during visual tracking is exploited to improve vehicle type classification. While tracking

a vehicle, a number of measurements are taken to describe its shape and appearance and

provides a unique signature. This signature is refined with each new video frame to over-

8



Brendan Morris and Mohan Trivedi
ITS America Student Essay: Integrated Infrastructure and Vehicle

Based Monitoring for Enhanced Efficiency and Safety

12 13 14 15 16 17 18 19
0

5

10

15

20

25

30

time [24 hour clock]

flo
w

 [v
eh

ic
le

s/
30

 s
ec

]

Friday 10/06/06 − North Flow of Vehicles

 

 

sedan
pickup
suv
semi

(a)

12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

time [24 hour clock]

sp
ee

d 
[m

ph
]

Friday 10/06/06 − North Speed of Vehicles

 

 

sedan
pickup
suv
semi

(b)

Figure 8: Traffic statistics (a) flow and (b) speed separated by vehicle type.

come noisy measurements and matched with a vehicle database for improved results. Fig.

7 demonstrates how the classification is improved in consecutive frames as more data is

accumulated. Full details of the track based classification scheme can be found in [15,16].

3.2 Traffic Flow Analysis

The VECTOR system delivers flow (#vehicles
time

) and density (#vehicles
distance

), similar to loop sensors,

as well as speed (MPH) estimates in 30 second intervals. The speed of each measured for

each and every vehicle, which is difficult to do with loop detectors. These camera based

statistics have a high degree correlation with both the true manually counted flow and

PeMS measurements [9]. Since VECTOR does vehicle type classification, it is possible to

extract more rich traffic measurements. The flow and speed are compiled for each type of

vehicle and show in Fig. 8. These parameters are essential for understanding the differing

effects of commercial or private vehicles on highway control, for the study of environmental

impact from emissions, and for the estimation of infrastructure and road wear and tear. The

efficiency of the highway link is also estimated by analyzing flow and speed characteristics

over time to characterize congestion [17].
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Figure 9: Speed profiling based on daily models {speeding, normal, slow, stopped} = {blue,
green, yellow, red}. (a) Speed characteristics for different days of the week. (b) Normal free
flowing traffic. (c) Commuter congestion causes differing characteristics in either highway
direction. The normal speed at this hour southbound is significantly slower than northbound.

3.3 Speed Compliance

Daily speed variations can be tracked using historical measurements, Fig. 9(a) shows the

speed fluctuations over the course of a week. Notice the significant slowdown during the

Friday evening commute not seen on other days. VECTOR uses these daily speed profiles

to indicate the motion state of vehicle during online tracking by the color a bounding box

{speeding, normal, slow, stopped} = {blue, green, yellow, red}. Sample output frames are

shown in Fig. 9. Rather than relying on posted speed limits, speeding vehicles are recognized

based on the current conditions. When there is congestion dangerous speeds are significantly

lower than the posted limit.

4 Local Measurements

Another key tool for ITS highway monitoring are the vehicles on the road themselves. Every-

day cars travel freely along the country’s road networks providing greater coverage than any

loop or camera sensor could hope to achieve. The situations and interactions encountered

by every driver on a daily basis can be leveraged to provide a more complete view of traffic.
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Figure 10: LISAX instrumented vehicle uses radar and camera systems to obtain surround
trajectories and road localization information.

Auto companies are equipping vehicles with advanced sensors which can provide a wealth

of information about both the current vehicle state as well as local driving conditions. By

utilizing these sophisticated sensing devices, new insights can be gleaned and more effective

control and safety strategies can be implemented.

4.1 LISA testbeds

The laboratory for intelligent and safe automobiles (LISA) provides unique testbeds to study

the local surrounding environment of a vehicle. Three vehicles have been outfitted for syn-

chronous data capture. Each is a mobile computing platform that is able to collect and

analyze, in real-time, measurements from the on-board vehicle sensors via CAN (Fig. 12(a)),

GPS (Fig. 12(b)), and a host of sensors, e.g. video cameras (Fig. 11) and radar, designed

to capture the interior and exterior of the car. LISAX, shown in Fig. 10, is the most recent

testbed based upon a Volkswagen Passat. There are a number of sensors including a camera

system for looking inside at the driver, radar and camera systems to look outside the vehi-

cle, vehicle state sensors sent along the CAN bus, as well as GPS for positioning. The main

goal of this setup is to provide enough sensory input to completely understand the vehicle
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Figure 11: LISAQ collects video from 8 different cameras which capture the interior and
surround of the vehicle.

surround as well as the intentions of the driver. Fig. 11 shows sample video collected from

7 cameras in LISAQ which is based on an Infinity Q45. The video allows monitoring of the

vehicle surround as well as the actions of the driver (head, hands, feet).

4.2 Looking Out

One thing to notice in Fig. 6 is the gap between consecutive sensors. Some locations have

high loop counts while others are much less dense. Because infrastructure sensors provide

such wide coverage, generally of important landmarks, their resolution is coarse. By utilizing

road vehicles as high-tech mobile data capture sources, finer resolution and better coverage of

the roads is possible. In addition, road safety can be greatly improved by increasing vehicle

(and driver) awareness to the surroundings.

Fig. 13 provides a visualization of data collected from LISA. Three cameras provide a view

of the driver, out the front windshield, and a of the rear of the car. To the right a selection
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(a) (b)

Figure 12: (a) Vehicle sensor measurements from CAN. (b) GPS based mapping provides
complete network coverage. Gaps between infrastructure sensors can be filled with vehicle
measurements with finer resolution in traffic speed conditions.

of CAN measurements are displayed which indicate the current state of the vehicle. The two

upper panes show the vehicle surround and denotes other vehicles in color. Each obstacle

is tracked (see the pink trajectory in the surround zoom pane) and the resulting trajectory

is used to assess the driving situation. In this figure, the LISA testbed is being overtaken

from behind. Notice the clear distinction between the trajectories of the lead vehicle in

red and the overtaking vehicle in pink. Similar to the infrastructure mounted cameras, the

trajectories from this moving platform give an indication of behavior. Prototypical driving

behaviors can be learned to explain longitudinal and lateral motion which includes acts

such as acceleration, braking, lane change, and turns. The future behavior of the surround

obstacles as well as the ego-vehicle, since its motion provides another track, can be predicted

with the prototype motion models. This prediction allows assessment of the safety of the

traffic configuration. Further, the criticality of ego-maneuvers can be evaluated and a driver

can be warned when a desired move would result in unsafe outcome.
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Figure 13: There are clear differences between an overtaking car in pink and the lead vehicle
in red. These trajectory differences are used to categorize different driving behaviors.

5 Future Directions

ITS technologies ample opportunities for exciting new research. Continual improvement of

systems to ensure real-time, robust, and adaptive solutions is necessary. This incorporates

more general computer vision issues such as robust tracking through harsh elements, shadows,

and heavy occlusion. Safety can be further improved by defining safety performance measures

to asses the the effectiveness of the driver assistance systems that are now being developed

[18]. Infrastructure based safety systems will need to convey information to road drivers and

in a way that is informative but not distracting necessitating work in communications and
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human factors. But the future of ITS does not rely solely on computer vision. True ITS

systems will require elegant fusion of a wide variety of data sources (integration of VECTOR,

loop sensors, and vehicle based sensors). The future of ITS will be shaped by urban and

highway planners, scientist, and policy makers all working together to improve travel.

6 Concluding Remarks

In this paper we presented a general framework for integrating infrastructure and vehicle

sensing to improve transportation monitoring and driver safety. By analyzing motion, in-

creased awareness and understanding of driving situations is achieved. The behavior of

drivers is studied in a large scale through the use of infrastructure sensors and in the local

setting by using advanced sensor equipped vehicles and are tied together through maps. We

conducted systematic and extensive experimental studies to prove the feasibility an promise

of the proposed framework. The future of ITS depends on the integration of these types of

systems as the front end data collection tools for higher level understanding of transportation

issues.
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