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Track Patterns from Live Video
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Abstract—This paper presents two different types of visual
activity analysis modules based on vehicle tracking. The highway
monitoring module accurately classifies vehicles into eight differ-
ent types and collects traffic flow statistics by leveraging track-
ing information. These statistics are continuously accumulated to
maintain daily highway models that are used to categorize traffic
flow in real time. The path modeling block is a more general
analysis tool that learns the normal motions encountered in a scene
in an unsupervised fashion. The spatiotemporal motion charac-
teristics of these motion paths are encoded by a hidden Markov
model. With the path definitions, abnormal trajectories are de-
tected and future intent is predicted. These modules add real-
time situational awareness to highway monitoring for high-level
activity and behavior analysis.

Index Terms—Anomaly detection, comparative flow analysis,
highway efficiency, real-time tracking analysis, trajectory learning
and prediction, vehicle type classification.

I. INTRODUCTION

A KEY GOAL of situational awareness research is to
understand the interactions and behaviors present in a

scene. This scene awareness is particularly important for visual
surveillance systems that must continually monitor a site. Large
amounts of data are generated, making it infeasible for a
human to accurately process. Activity analysis systems can be
employed to filter out relevant data, focusing attention where it
is needed most.

Highway traffic management is an important field requiring
up-to-date data delivered in real time along with historical data
on traffic conditions to design effective control strategies. In
California, inductive loop sensors deliver counts (number of
vehicles to cross a loop) and occupancy (average fraction of
time a vehicle is over a loop) every 30 s from locations all over
the state, providing a large data infrastructure. Unfortunately,
only about 60% of California loop detectors supply usable data,
and they are costly to maintain. Cameras offer an attractive
substitute for loops since they can be unobtrusively deployed on
the side of a highway and can also be used for other monitoring
applications. In addition to providing traffic measurements
equivalent to loop detectors, using video to track vehicles in

Manuscript received June 14, 2007; revised October 16, 2007 and
December 24, 2007. This work was supported in part by the Technical Support
Working Group and in part by the University of California Discovery Grant.
The Associate Editor for this paper was N. Papanikolopoulos.

The authors are with the Computer Vision and Robotics Research Labo-
ratory, University of California, San Diego, La Jolla, CA 92093-0434 USA
(e-mail: b1morris@ucsd.edu; mtrivedi@ucsd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2008.922970

a scene reveals added information that is difficult to obtain
using loop detectors such as origin–destination (OD) maps,
travel time, and vehicle type classification. This added analysis
provides a more complete highway picture than can currently be
provided by loop detectors, allowing the construction of better
traffic control strategies.

In addition to collecting traffic statistics, it would be ad-
vantageous to have a method of automatically extracting the
expected highway behavior. This is particularly important when
setting up a large camera network, where it is prohibitive to
define every behavior, or when using pan–tilt–zoom (PTZ)
cameras, where the view can drastically change, or for mon-
itoring a variety of traffic scenes without tedious supervision.
The underlying structure of roads constrains motion and can be
leveraged to automatically build up behavior models through
careful observation over time. By generating the models from
the data, the learned behaviors better reflect what is actually
occurring in a scene rather than what is expected. Further-
more, the models allow prediction and detection of unusual or
abnormal events. Without a priori knowledge, activity analy-
sis is possible in an arbitrary scene just through tracking of
objects.

This paper present two different traffic situational aware-
ness systems. The first system is the visual VEhicle Classifier
and Traffic flOw analyzeR (VECTOR) [1] module for robust
real-time vehicle classification, traffic statistic accumulation,
and highway modeling for flow analysis. The second activity
analysis module introduced is the path behavior block, which
builds a probabilistic scene motion model in an unsupervised
manner for activity analysis. This process automatically defines
the traffic lanes without manual specification and is used to
detect anomalous trajectories and unusual actions, as well as
generate long-term path prediction. The efficacy of these be-
havior modules are demonstrated through analysis of simulated
and real-world data.

II. RELATED RESEARCH

A. Highway Analysis

Highway analysis requires robust detection of vehicles and
tracking. With these two basic tasks, a number of other cal-
culations can be performed, such as vehicle classification,
extraction of traffic flow parameters, congestion detection, or
a number of other measurements that are useful for traffic
management. A major research effort is to build large-scale
systems that are able to effectively cover miles of road [2]. Key
hurdles associated with this system realization are adaptation
to a wide variety of changing environmental conditions [3],
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construction of multiple nodes with cooperating sensors [4],
fusion of information between sensor nodes to maintain vehicle
identity [5], and development of a database architecture for
storage and intelligent retrieval of large volumes of traffic data
for event analysis [6].
1) Vehicle Classification: Once potential objects have been

identified, each foreground region must be classified into a
specific object type. An early work used a single dispersedness
measure to separate vehicles and humans from other objects
by filling a class histogram while tracking [7]. Vehicles in
a parking lot have been classified into six general types by
linear discriminant analysis (LDA) of blob measurements with
improvements gained from tracking-based confidence [8]. A
multiclass kernel support vector machine was constructed using
vehicle images as input to the nonlinear hierarchical clas-
sifier [9]. The classification work in this paper most closely
resembles the work in [8] but with real-time classification using
a single classifier designed for the entire view.
2) Track Analysis: In addition to locating objects, tracking

can be used for better scene understanding. When using a priori
scene knowledge, one must define events of interest. Vehicle
counts can be accumulated with the placement of virtual loop
detectors in video [10]. Highway congestion warnings have
been issued by classifying object motion based on tracked ve-
locities [11]. Even complex parking lot motion behaviors have
been defined in a hierarchical structure based on acceleration
and velocity tracking profiles [12].
3) Traffic Analysis Systems: There are few systems that

combine tracking, object classification, traffic parameter extrac-
tion, and event detection. Gupte et al. developed a vehicle de-
tection and two-type classification system by robustly tracking
vehicles after camera calibration [13]. The VISTRAM system
[14] classified vehicles into a small set of size-based classes
and generated traffic parameters without explicit tracking, but
the system did not include any type of event recognition.
Kumar et al. [15] developed a parking lot monitoring system
that tracked objects and classified them into six types using a
known Bayesian network. The vehicle behavior at checkposts
was evaluated based on a vocabulary of actions, allowing the
detection of abnormal use such as loitering. A zone of influence
was defined to represent potentially dangerous interactions
between objects. SCOCA [16] is an intersection monitoring
system that tracks and performs 3-D model-based classification
of objects. The speed of each vehicle is recorded along with
its OD information. VECTOR is unique because it has been
operating in real time for over a year, robustly conducting a
number of analyses.

B. Path Learning

The second type of track analysis avoids using any scene
knowledge and builds event models based on accumulated
tracking data. This allows more flexible deployment because
the models are learned from the observed data themselves
and not defined by a user. Pioneering work by Johnson and
Hogg [17] described outdoor motions with a flow vector f =
[x, y, dx, dy] and learned paths using a neural network (NN).
Owens and Hunter [18] extended this work using a self-

organizing feature map to learn paths and further detect abnor-
mal behavior after training in a surveillance mode. Stauffer and
Grimson [19] learned paths in a hierarchical fashion by building
up a co-occurrence of codebook flows. Hu et al. [20] sped up the
path learning process with a batch NN and presented a method
to predict behavior. This work was statistically extended by
hierarchically clustering trajectories, first using spatial infor-
mation and then using temporal information. The paths were
modeled by a chain of Gaussian distributions for Bayesian
inferencing of anomalies and behavior prediction [21]. Makris
and Ellis [22] introduced an online learning method that was
able to build paths as new tracks were accumulated rather
than learned from a training set. Their scene model defined a
Bayesian belief network, where paths were defined not only
between the beginning and end of a track but also between
places where objects tended to stop. All these path learning
techniques leverage ordered and repetitive structure observed
in video monitoring.

III. HIGHWAY ACTIVITY ANALYSIS FRAMEWORK

The general situational analysis system considered is de-
signed to be quite simple and modular. Section IV describes the
front-end system consisting of object detection and tracking.
Moving objects are detected and tracked, providing the only
input data necessary for activity analysis. The two different
activity analysis modules are task specific and designed for
behaviors of interest.

The VECTOR module described in Section V uses object
measurements obtained during tracking to classify the vehicle
type, and highway usage statistics are accumulated to build
historical models, allowing real-time analysis of traffic flow and
speed profiling.

The path behavior block presented in Section VI uses ac-
cumulated tracking data to automatically discover and map
out the major motion paths in a scene that indicate normal
activity patterns. This helps mark in which lane a vehicle is
traveling and can signal an alert when a vehicle produces an
unusual trajectory; this is also used for real-time indications of
anomalous actions and for longer term intent prediction.

IV. FRONT-END PROCESSING

A. Object Detection

Foreground pixels belonging to moving objects are quickly
determined by using an adaptive background subtraction
scheme. Each background pixel is modeled as a single Gaussian
process with mean µ (time-averaged intensity) and σ (standard
deviation of intensity). The Gaussian parameters adapted are

µt = (1 − α)µt−1 + αIt (1)

σ2
t = (1 − β)σ2

t−1 + β(It − µt)2 (2)

where α, β ∈ [0, 1] control how quickly the parameters are
updated as each new video frame is received. The foreground is
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found by thresholding the background difference image based
on past pixel deviations, i.e.,

Iforeground = (It − µt) > B(σt + σ0). (3)

Here, σ0 is a small constant to suppress noise associated with
low-variance scenes typically encountered during low-light and
shadowed situations, and B is the deviation threshold. The
threshold is defined for each pixel by its neighborhood N
intensity, i.e.,

Bij = min
{(

Bmax − Bmin

Im + Iσ

)
IN + Bmin, Bmax

}
. (4)

Equation (4) sets up a threshold that adapts to the local lighting
intensity IN by a comparison with the mean image intensity Im

and the standard deviation Iσ . The values of Bmax and Bmin

indicate the maximal and minimal deviations that are necessary
for detection.

The foreground is further processed to fill in any holes
using morphological operations. Each blob is then labeled by
connected component analysis, and simple morphological mea-
surements are taken, i.e., mt = {area, breadth, compactness,
elongation, perimeter, convex hull perimeter, bounding box,
best fit ellipse parameters, roughness, centroid,M10,M01,
M20,M02}, as a compact representation of an object’s appear-
ance that is suitable for classification.

B. Tracking

Tracking associates every detected vehicle to an existing
track through nearest global matching. To match and update a
track, a detection must fit a dynamics model and an appearance
constraint.
1) Kalman Filter: Vehicle dynamics are modeled by apply-

ing a Kalman filter to an object’s centroid c. The tracking state
update equation is given by

st+1 = Ast + wt =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1







cx

cy

vx

vy


 + wt (5)

for velocity v and time between frames ∆t. The tracking
state measurement is estimated by a detection’s centroid ĉ
and velocity v̂t = [ĉt

x − ct−1
x , ĉt

y − ct−1
y ]T . When a detected

object is matched to a track, the measurement yt = [ĉ, v̂]T is
used to update the Kalman filter. New tracks are initialized
by instantiating a Kalman filter with a velocity obtained by
a nearest-neighbor match, i.e., v̂1 = [ĉ1

x − ĉ0
x, ĉ1

y − ĉ0
y]T . The

Kalman filter state prediction is used to match with detections
in the next frame.
2) Track Appearance: In addition to the dynamic model,

a track has an associated appearance model. This appearance
model is used to resolve matching ambiguities [23]. These
ambiguities mainly arise because of high object density or
occlusion. This model guarantees, by enforcing consistency be-
tween frames, that the appearance of a vehicle along a trajectory

does not drastically change. The similarity of a detected vehicle
md and a track mT is given by

Smeas = [(mT − md)T Σ−1(mT − md)]−1 > TS (6)

where Σ is a diagonal matrix with entries equal to the measure-
ment variance learned during training, and TS is a threshold. In
a crowded scene, the best match is that which is most similar
to the track. This constraint implicitly manages occlusion when
objects either merge or split by instantiating a new track. Others
have explicitly dealt with occlusion by applying heuristic rules
[24] or using spatiotemporal cues [11] to repair occluded tracks.
A track can then be updated when there is a consistently
matched detection, i.e.,

mt
T =




η0
...

η15


 = (1 − γ)mt

d + γmt−1
T (7)

given the track and detection measurements at the current
time t. Similar to above, γ ∈ [0, 1] controls how quickly the
object’s appearance may change during tracking.

V. VECTOR

The VECTOR module was designed for highway traffic
analysis. In addition to loop detector measurements, VECTOR
determines the types of vehicles on the road. Accumulated
traffic statistics are used to build a traffic model that is useful
for online traffic flow analysis, such as detection of dangerous
behavior.

A. Classification

VECTOR classifies vehicles into eight different types,
namely, Sedan, Pickup, SUV, Van, Merged, Bike, Truck, and
Semi, as shown in Fig. 1. These vehicles were selected because
they were the most often occurring vehicle types from the 2001
National Household Travel Survey conducted by the U.S. De-
partment of Transportation [25]. Although there is no explicit
occlusion reasoning during tracking, a merged vehicle class was
included to detect occlusions. The block diagram depicting the
VECTOR classification scheme is shown in Fig. 2. After object
detection, the extracted blob features (7) are LDA transformed
and given a vehicle type label wc using a weighted k-nearest
neighbor (wkNN) classifier. The frame labels are compiled and
incorporated into an improved vehicle track label LT .

1) Training Database Construction: The nearest-neighbor
training set is populated by hand-labeled examples from each
of the eight vehicle types C. Each training vehicle is trans-
formed using Fisher’s LDA [26] for better separation, i.e.,
xi = WLDAmi, and placed into its corresponding class set Dc.
The complete training set D =

⋃C
c=1 Dc is then clustered using

fuzzy C-means (FCM) [27]. The clustering procedure normal-
izes the number of training examples in Dc for each class,
limiting memory requirements and the number of neighbor
comparisons [23].



428 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2008

Fig. 1. Sample images from each vehicle class. (a) Sedan. (b) Pickup. (c) SUV. (d) Van. (e) Merged. (f) Bike. (g) Truck. (h) Semi.

Fig. 2. Block diagram for the tracking-refinement-based wkNN classification
scheme.

2) Frame Classification: During live tracking, each poten-
tial vehicle md is given a soft class membership wc for every
frame by wkNN comparison [28], i.e.,

wc =
K∑

i=1
mi∈Dc

1
‖mi − md‖

. (8)

This measures the strength of match between a detection and
all of the vehicle classes. Match strength is the sum of the
similarity (inverse distance) between the k best matches from
each class. While any particular class may have a few closely
matching training examples, it is unlikely that there will be
a large number of close matches unless it is the true class
label. The advantage of the wkNN classification scheme is
a soft assignment to every class, for robustness to noise and
outliers, rather than the binary indicator usually obtained with
NN classifiers.
3) Tracking Refinement: Through tracking, an appearance

record of a vehicle is accumulated, giving T object examples
over the life of a track. Given these T samples, a track label is
generated by maximum-likelihood estimation. Thus

LT = arg max
c

T∑
t=1

ln p(mt|c)

= arg max
c

T∑
t=1

ln
wt

c∑
c wt

c

. (9)

The likelihood p(xt|c) of class c is approximated by normal-
izing the per-frame class weight (8) for each sample t in a

track. The track class LT is refined with each frame, as the
track is updated and more information is compiled. The track
label estimation leverages the added evidence gathered through
tracking to make a decision, rather than just a single-frame
measurement that could potentially be corrupted by noise.
4) Confidence: The confidence in classification label LT

can be measured by the sidelobe ratio

Csl =
p1 − p2

p1
(10)

where p1 and p2 correspond to the probabilities of the first
and second best matching vehicle types. The sidelobe ratio
gives a measure of how much stronger the class LT is than
the closest competing class. Highly confident tracks can be
used to reinforce the training database, whereas low-confidence
samples are rejected.

B. Traffic Statistic Modeling

Using the system front end, data are collected, and a high-
way model indicating normal traffic patterns is constructed.
The highway model is a time series of fundamental highway
usage parameters that are analogous to those obtained from
conventional loop detectors. This system delivers flow (number
of vehicles/time), density (number of vehicles/distance), and
speed (in miles per hour) estimates in 30-s intervals, aver-
aged over a 5-min window. The flow statistic is generated by
counting the number of passing vehicles in the 30-s update
interval. Density is the average number of vehicles in the
camera view normalized by the roadway length. Speed is the
average velocity estimate of vehicles. The density and speed
calculations are obtained through manual roadway calibration.
The lanes were marked and their length measured by tracking a
vehicle of known dimension. Fig. 3 shows the southbound lane
statistics for U.S. Interstate 5 (I5).

In addition to reproducing loop detector data, video provides
a means to extract richer contextual information. Traffic param-
eters are compiled for each type of vehicle based on the
vehicle classifier. Fig. 4(a) plots the flow and Fig. 4(b) speed
of different vehicle types on a weekday. These data are useful
to understand the different effects of commercial or private
vehicles on highway control and to study the environmental
impact of emissions. In Fig. 4(a), there are clearly many more
sedans on the road than any other class of vehicles, but during
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Fig. 3. Individual lane density, flow, and speed for the southbound direction of I5. (a) Lane density. (b) Lane flow. (c) Lane speed.

Fig. 4. Traffic statistics separated by vehicle type indicating (a) flow and (b) speed. Semi trucks are rare and travel at noticeable lower speeds. (c) Highway speed
profile comparing weekend and weekdays.

the evening commute, the number of pickups and SUVs on the
road appear to switch; during the day, there are more pickups,
and during rush hour, there are more SUVs. In Fig. 4(b), it
is noted that most of the vehicles travel at approximately the
same speed (the speed of traffic), but the larger Semi trucks
tend to travel slower than passenger vehicles, matching our
intuition.

The large amounts of data collected by this system allow
usage analysis, not only over the course of a single day but for
many days. To build a useful highway model, it is important to
incorporate the differences in traffic behavior as a function of
time. Fig. 4(c) demonstrates the differences in the speed profile
for work and nonwork days. The Friday congestion slowdown
between 16:00 and 19:00 is significantly greater than the other
weekdays. While the Monday and Tuesday commute is notice-
able, it is a more subtle speed disturbance. This demonstrates
the need to individually model each day. Seven models are
generated by averaging across each specific day.

C. Flow Analysis

By collecting traffic measurements, models for the expected
highway behavior are generated. These models adapt to chang-
ing conditions over time and allow for online highway analysis,

such as link efficiency and characterization of the driver’s
speed.
1) Highway Efficiency: Chen et al. [29] used flow and speed

to show that congestion is not caused by demand exceeding
capacity but of inefficient operation of highways during periods
of peak demand. Using the accumulated usage statistics, the
highway efficiency, at a given time t, can be estimated by taking
into account the changes in flow, i.e.,

η̂(t) =
flow(t) × speed(t)

flowmax × speedmax

. (11)

Fig. 5 shows the lane efficiency of the north- and southbound
directions of the highway. Congestion is evident during the
evening commute, as shown by the significant drop in efficiency
in Fig. 5(a). It is interesting to note that while the efficiency
of the southbound direction drops because of congestion, the
northbound highway does not suffer from congestion. The
reduced efficiency in the fast lane is actually due to underuti-
lization because the northbound flow is much lower than its
average.
2) Speed Profile: By using a database of historical speed

measurements, a model of daily highway speed patterns can
be constructed to incorporate the traffic speed fluctuations
over the course of a week [Fig. 4(c)]. The VECTOR system
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Fig. 5. Highway lane efficiency. (a) South: Low efficiency during evening commute because of congestion. (b) North: Efficiency drop in the fast lane because
low flow caused underutilization.

Fig. 6. User-defined speed profiling. (a) Car slowing (yellow box) before stopping on the shoulder. (b) Car coming to rest (red box) on the shoulder of the
highway. (c) Friday evening high volume traffic showing merging of vehicles. The north- and southbound directions have different speed profiles because of
southbound congestion.

indicates the motion state of each vehicle by the color of
its bounding box: {speeding, normal, slow, stopped} = {blue,
green, yellow, red}. In Fig. 6(a), a sedan is shown slowing down
on the shoulder of the highway before coming to a complete
stop in Fig. 6(b). The motion state is defined as

SV (v) =




Stopped, 0 ≤ v < 0.15V t
avg

Slow, 0.15V t
avg ≤ v < 0.6V t

avg

Normal, 0.6V t
avg ≤ v < 1.1V t

avg

Speeding, 1.1V t
avg ≤ v

(12)

where V t
avg is the average speed at time t, and v is the es-

timated vehicle speed. The speed model currently considers
normal speed as the daily average. Fig. 6(c) demonstrates
the speed profile during a Friday evening commute. Notice
that the northbound direction only contains freely moving
vehicles, whereas there are slowly moving vehicles (red and
yellow bounding boxes) in the southbound lanes. Congestion
causes Vavg(South) ≈ 25 mi/h, whereas the northbound di-
rection retains a faster flow, i.e., Vavg(North) ≈ 70 mi/h. The
speed state can be used as an indicator of dangerous situa-
tions because it locates abnormal patterns based on histori-
cal data.

VI. PATH BEHAVIOR ANALYSIS

The path behavior (PB) block is a more general surveil-
lance tool than VECTOR. It might be a priori unknown what
is expected when monitoring a new scene with an arbitrary
camera configuration, but the PB system can learn to look for
what is important. This module learns normal motion patterns
corresponding to lanes in the road by observing and collecting
tracking data, which allows for the detection of anomalous
actions and long-term path intent prediction.

A training set of trajectories is acquired by collecting track-
ing data for a period of time. The set is then clustered to
find the major scene spatial routes, which are probabilistically
modeled by hidden Markov models (HMMs) and used for
activity analysis.

A. Automatic Path Discovery

By running the tracking software and collecting the trajec-
tories, the system can automatically learn the motion config-
uration of a location. Object motions map out spatial patterns
that are often not random but are drawn from some underlying
distribution. The inherent structure and redundancy that are
prevalent in a scene can be leveraged to extract typical motion
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Fig. 7. California I5 automatic path modeling. (a) Entry/exit (green/red) zones with tracking noise (black). (b) Tracking data clustered into routes by FCM and
merged into lanes. (c) HMM lane models: Ellipses display just the position portion of the HMM states to two standard covariance deviations.

paths. The paths encode the intent of objects and can be used for
better (earlier) behavior prediction than the traditional one-step
variety.

The spatial paths are learned by creating a database D =
{Tk} of trajectories Tk = {st}T

t=1 with st = [xt, yt, vt
x, vt

y]T.
The database is preprocessed to remove incomplete tracks and
normalized by resampling before clustering into routes using
FCM. Using this approach, the most relevant motions in a
video scene can be characterized without a priori knowledge
or supervision.
1) Entry/Exit Zones: Before learning the paths, the tracks

are filtered to remove tracking noise. The tracking noise is
generated by incorrect tracking due to occlusion; tracks are
formed or completed when objects overlap. These irregularities
manifest as false start or stop positions distributed throughout
the scene. The image entry/exit zones correspond to the true
locations where object tracking either begins or ends. Each zone
is separately modeled as a mixture of Gaussians and learned
using expectation–maximization (EM) for Gaussian mixture
models [30]. The zone is overmixed such that the tight com-
ponents represent the true zone and the wide components rep-
resent the tracking noise [22]. Only tracks that begin in an entry
zone and end in an exit zone are retained for further processing.
All the other filtered tracks are considered tracking failures and
are removed from the training set to prevent corruption during
path clustering. Fig. 7(a) shows the entry/exit zones learned
using 806 training tracks. The black ellipses correspond to
the wide noise mixture components. After filtering the training
database, 678 tracks remained in the training set.
2) Track Resampling and Clustering: After filtering the

tracking noise from the training database, the major scene
routes can be automatically learned by clustering. Unfortu-
nately, standard clustering algorithms cannot be directly applied
to the trajectory data because they are of unequal length. The
trajectory length is dependent on the amount of time spent
in the camera field of view, which varies from vehicle to
vehicle. A trajectory vector suitable for clustering is obtained
by linearly resampling each trajectory to a fixed length L, i.e.,
Tk = {st}L

t=1. A flow vector [17] f = [x1, y1, . . . , xL, yL]T is
constructed by ignoring velocity measures for each track (the
dynamics will be handled later). The training set of flow vectors
is used as input for FCM clustering into Nc prototype routes
{r1, . . . , rNc

}, where each route prototype ri only corresponds
to the xy location in space.

3) Path Merging: The true number of paths Np in an ar-
bitrary scene is not a priori known and must be estimated.
Initially, we cluster with FCM using a large number of paths,
i.e., Nc > Np, and then refine the cluster number to the true
lane number by merging similar paths. Paths are considered
similar if all consecutive points are within a small radius, i.e.,

dt =
√(

rt
i − rt

j

)T (
rt
i − rt

j

)
< εd ∀t (13)

or if the total distance between tracks is small enough, i.e.,

D =
L∑

t=1

dt < εD = Lεd. (14)

The threshold should be chosen small enough to ensure that
adjacent lanes are not merged, which is related to perspec-
tive projection foreshortening. Component cluster points are
considered close enough for merging in the I5 scene when
εd = 5 pixels because the northbound lanes are quite close.
In practice, FCM tends not to overfit the data but instead
finds several very similar clusters, making this simple merge
algorithm effective. After initial FCM clustering, the lower
southbound lanes have a number of overlapping paths. Fig. 7(b)
shows the lanes after cluster merging.

B. Probabilistic Path Modeling

The FCM procedure spatially locates paths, but this is insuf-
ficient for behavior analysis. We need to know not only where
objects are located but also the manner in which they travel
along a given path. These dynamics are needed to completely
characterize a behavior. Using HMMs, the spatiotemporal prop-
erties of every path is encoded, differentiating not only the
location but also the dynamics.

The advantage of modeling paths by HMMs is the simplicity
of training and evaluation. HMMs define a natural procedure to
compare different length tracks, as will generally occur, through
optimal time normalization. Unlike the FCM clustering, the full
unsampled state trajectories containing position and velocity
are used to incorporate dynamics.
1) HMMs: Each path is compactly represented as λi =

(A,B, π) and is designed to have Q states. The parameters A
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Fig. 8. Unusual tracking behavior during an illegal U-turn. (a) Acceptably (green X) traveling north in Path 1. (b) Suspicious event marked with a red X during
the U-turn (still in Path 1). (c) Recovered into acceptable southbound lane (Path 16).

and π can be manually defined by the inherent structure of paths

πi = eαpi (15)

Aij =
{

e−αb(I−j+1), j ≤ i
e−αf (j−I−1), j > i.

(16)

The rows of πi and A are normalized to be valid probabilities.
The transition rates are chosen such that αf � αb for strong
left–right tendencies. The only unknown is the observation
distribution B, which is dependent on the model states {qj}Q

j=1.
The states are assumed to be Gaussian with unknown mean
and covariance, i.e., qj ∼ N(µj ,Σj). Each HMM is completely
specified after learning the states. The observations used to train
the HMM path models incorporate the position and velocity
O = [x, y, vx, vy]T .

An HMM is trained for each route by dividing the training
set into Np disjoint sets, i.e., D =

⋃Np

i=1 Di. The set Di is
constructed by collecting all trajectories classified into route ri.
Only those tracks that fit route ri well are retained for training
(those with high membership). The Q states from each of the
Np HMMs can be efficiently learned using standard methods
such as the Baum–Welch method or EM [31]. The set of HMMs
learned for a real highway scene is shown in Fig. 7(c).

C. Behavior Analysis

To analyze the object’s behavior, it is necessary to place it
into a corresponding path at all times. When objects do not fit
into a path model well, it indicates an anomalous event that
should be detected. This detection is made more difficult in
an online setting because only a portion of the entire track
is seen at a given time. Behavior inferencing must be done
with incomplete data and must still detect all truly unusual
occurrences.
1) Anomalous Trajectories: Each trajectory can be placed

into a path by a comparison with the set of all HMMs. The path
that best explains the test trajectory Tn (highest likelihood) is
the assigned path

λ� = arg max
i

P (Tn|λi). (17)

While every track will be classified into a path λ�, the quality
of this assignment may be low for abnormal trajectories. These

abnormal trajectories can be recognized as those with a likeli-
hood less than a threshold, i.e.,

LLTp = β(LLin − LLout) + LLout. (18)

The decision threshold is learned during training by comparing
the average likelihood of samples in the training set Di to all
those outside (Tk ∈ Dj , where j �= i), i.e.,

LLin =
1

|Di|
∑
k∈Di

log P (Tk|λi) (19)

LLout =
1

NT − |Di|
∑
k/∈Di

log P (Tk|λi). (20)

The threshold LLTp is linearly related to the log likelihoods,
where the sensitivity factor β ∈ [0, 1] controls the abnormality
rate. Larger β values will cause more trajectories to be consid-
ered anomalous by increasing the threshold.
2) Online Trajectory Analysis: Although it is interesting to

analyze complete tracks, it is often more important to recognize
and evaluate behavior as it occurs. A new path estimate can
be made each time a track is updated and as more information
is gathered, the path estimate can be refined, as is done with
vehicle classification. Instead of using all the tracking data
accumulated up to time t, only a small window of points is
retained. The windowed track consists of past and present mea-
surements, i.e., Twin = {st−win, . . . , st−1, st}. The trajectory
is windowed to only consider the recent history as very old
samples may not correlate well with the current behavior.

Using the windowed track, the path an object is following at
the current time t can be determined by evaluating (17), with
Tn replaced by its windowed version Twin. Over the life of a
trajectory, path estimates are made, encoding a complete path
history {λ�

1, . . . , λ
�
T }. A number of consecutive labels indicate

a consistent path. Using this transcription allows recognition
of lane changes as points when the label changes between
consistent paths. The track in Fig. 8 starts in Path 1 and goes
through a lane change while making a U-turn before it ends in
Path 16.
3) Unusual Actions: Similar to abnormal trajectories, un-

usual events can be detected during tracking. Since only a
windowed version of a track is used during tracking, the
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Fig. 9. Left-turn prediction behaves as expected. As more data points are collected, the prediction better matches the true lane.

Fig. 10. Classification accuracy using different numbers of classes. The
six-class test combines SUV + Van and Semi + Truck. Only vehicles with
Csl > CT are considered when determining the classification accuracy.

log-likelihood threshold (18) needs to be adjusted. The new
threshold is

LLTt
p = γt [βt(LLin − LLout) + LLout] (21)

γt =
win + 1

Q
. (22)

The abnormality threshold is adjusted with γt, averaging the log
likelihood into every model state and adjusting for the number
of points in Twin. Here, βt ∈ [0, 1] is chosen such that βt > β
to immediately ensure detection of most suspicious points
during tracking. As soon as an object strays from a path model,
an unusual event is triggered, allowing for timely detection.
Fig. 8 demonstrates tracking abnormality detection for a U-turn
maneuver. Initially, the vehicle is traveling in Lane 1; as the
U-turn begins, the red X marks an unusual action. After
completing the maneuver, the vehicle realigns itself into an
acceptable lane.
4) Path Prediction: In addition to detecting abnormalities, it

is possible to predict behavior using the HMMs. With path mod-
els, estimation can be further extended in time than the standard

one-step prediction (Kalman prediction). Accurate path predic-
tion is essential for intersection safety evaluation. A dangerous
maneuver can be better assessed by knowing the intent of a
driver. Given the top 3 best fitting paths, which are found by
evaluating P (Twin|λi), prediction is accomplished by deter-
mining the probability of remaining in each path. These proba-
bilities are estimated by evaluating P (Tt+1|λi), where Tt+1 =
{st, ŝt+1} consists of the current and predicted future states.
Fig. 9 shows an example of turn prediction. The probability of
the correct path improves as the turn progresses, matching our
intuition.

VII. EXPERIMENTAL RESULTS

The following experiments test the accuracy of the
VECTOR and path behavior activity analysis modules.
VECTOR classification is tested over the course of a single
day, and flow analysis is compared to hand-counted flow and
with inductive loop detector data from Berkeley’s Freeway
Performance Measurement Project (PeMS) [32]. The PB auto-
matic path discovery scheme is evaluated on different scenes to
characterize the performance of path classification, abnormality
detection, and unusual event detection.

A. Confidence Weighted Vehicle Classification

The wkNN database used for classification was constructed
from 10 min of hand-labeled training video. Sixty percent of the
detected vehicles in the training video were used to populate the
training database. To test the VECTOR classifier, a 5-min clip
was saved every hour over a 24-h period, and each vehicle was
hand labeled into one of the eight vehicle types. The classifica-
tion results presented only consist of clips during the daylight
hours between 06:00 and 20:00 because object detection failed
during low-light conditions. Only the vehicles with confidence
greater than the threshold, i.e., Csl > CT , are considered when
determining the classification accuracy presented in Fig. 10.
The classification improves from 77.5% to 94% while using
6500 to 1336 tracks to compute the accuracy as the confidence
threshold increases from 0% and 99.99%. In addition to the
full eight-class problem, a smaller six-class merged problem,
where often confused vehicle types are grouped (SUV + Van
and Semi + Truck), was evaluated. At low confidence, there
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Fig. 11. True lane flows, 5-min average truth, and flow analysis module flow comparison. (a) Lane 1. (b) Lane 4.

Fig. 12. Comparison between the PeMS data and the flow analysis module shows strong agreement. (a) Flow. (b) Speed.

Fig. 13. Camera and PeMS loop detector sensor configuration on opposite
sides of the Genesee Ave. ramp.

is a large 4% difference between the curves, but at higher
confidence, the gap decreases. This demonstrates the tradeoff
between classification accuracy, number of vehicle types, and
confidence.

In addition to the sidelobe confidence measure, the con-
fidence was also measured using a normalized probability
estimate, i.e.,

Cprob =
1
Z

max
c

T∏
t=1

p(xt|c), Z =
8∑

c=1

T∏
t=1

p(xt|c). (23)

Fig. 10 shows that the classifier performance is better using
sidelobe confidence over class probability. This experiment
shows that the VECTOR classification system provides good
performance over the wide range of conditions encountered
in a day.

B. Traffic Flow Comparison

The accuracy of the flow analysis module was tested by com-
paring the estimated flow with manual hand counts. The true
30-s vehicle counts are averaged in a 5-min sliding window for
a direct comparison with the flow analysis output. Fig. 11 plots
the 5-min hand count average as a black line, the VECTOR
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Fig. 14. Occlusion causes initialization of new trajectories. When the occlusion is of short duration, the tracking module is able to recover the correct trajectory
labels.

Fig. 15. (a) Path modeling results for a simulated intersection with all routes perfectly located. (b)(c) Path learning on I5 with 3/4 view with many noisy
trajectories because of perspective based occlusion. (b) False zones located alone the road because of high occlusion rate. (c) Route clusters match lanes well even
with large amounts of noise.

output as a green line, and the error as a red line. The ground-
truth flow error is usually less than two vehicles in every 30-s
window, demonstrating the accuracy of the estimate.

The extracted traffic parameters were also evaluated over
a longer time period by a comparison with the loop detector
measurements available from the PeMS website. The PeMS
data accumulate flow and average speed in 5-min windows
rather than the 30-s intervals used by the flow analysis module.
Fig. 12 plots the southbound PeMS data along with the 5-min
corrected flow analysis module estimates. There is generally
good consistency with PeMS, but there are noticeable differ-
ences in speed, as shown in Fig. 12(b). There is an early
morning drop in PeMS speed, and conversely, there is a sig-
nificant evening slowing of traffic in the VECTOR plot. The
discrepancy in speed measurements comes from the different
sensor configurations. The PeMS detectors and camera setup
are on opposite sides of the busy Genesee Ave. ramp, as shown
in Fig. 13, causing the speed disagreement.
1) Occlusion Difficulties: Fig. 12 gives the total link flow,

rather than per lane, because of the occlusion difficulties en-
countered over the course of a day. The true flow data were
obtained when traffic density was low and, hence, fewer oc-
clusions to corrupt lane assignment. We incorporate additional
counts for merged vehicles. This unfairly overestimates the
flow for the lane assigned to the merged detection and misses
counts for the other shared lanes, making a PeMS lane-by-lane
comparison unfeasible. When the traffic is free flowing, there
are very few merged tracks (i.e., 10.7%). However, this merg-
ing significantly increases when there is high-density traffic.
Examples of occlusions are visible in Fig. 6(c). When there is
congestion, 25% of all trajectories arise from merged vehicles,
and 20% of those come from merging three or more vehicles.
Each merged track was counted as 2.2 vehicles during traffic
parameter collection.

Occlusion degrades the accuracy of the VECTOR flow es-
timate because merged vehicles must be statistically counted.
The accuracy will be improved by explicitly handling occlu-

sion. Currently, occlusions cause new tracks to be initialized. If
the occlusion is of short duration, the tracking recovers the cor-
rect trajectories by keeping trajectories active and updating the
tracking state with its Kalman prediction, as shown in Fig. 14.
When detections either merge or split, the true trajectories can
be recovered through track-based reasoning [24], [33], where
temporal characteristics are exploited.

While track-based occlusion recovery is possible in most
situations, it will prove difficult when there is congestion. Con-
gestion will cause a high rate of occlusion and potentially many
occlusion pairs for each vehicle. The temporal constraints need
to be augmented by appearance modeling [34]. By improving
object detection with a mean-shift color clustering algorithm
[35], shadow removal [36], and inclusion of temporal occlusion
modeling, many of the merged vehicles may be resolved into
their constituent parts that are suitable for lane-level analysis.

C. Path Validity

Paths were automatically generated using the FCM proce-
dure for three different scenes: a synthetic intersection and two
real scenes. Figs. 8 and 15(c) depict two different I5 views
obtained by changing the PTZ camera configuration, from side
view to 3/4 view, whereas Fig. 15(a) shows the simulated traffic
intersection. The lanes were all correctly discovered in the
simulated intersection, as well as in the real highway scenes.
Unfortunately, the merge procedure did not perform as well
in the real scenes because of larger path variation. Comparing
the zones in Figs. 8(a) and 15(a), we can see that there was
significantly more tracking noise in the 3/4 view than the side
view. The side-view training data were collected in the middle
of the day when traffic is low and occlusions are rare. This
ensured a large number of complete trajectories, as well as
reasonable entry/exit zone discovery. In contrast, the 3/4-view
data were taken over the morning commute hours and inher-
ently has more occlusions. During times of high traffic and
occlusion, the trajectories will often be broken, making it
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TABLE I
I5 LANE CLASSIFICATION RATE (IN PERCENT)

difficult to learn the lanes. Only about 20% of the collected
trajectories were complete. Yet, even with large amounts of
noise, the FCM clustering procedure was able to find most of
the lanes [Fig. 15(b)]. Notice that the northbound slow lane next
to the off-ramp was not actually discovered. This is because it
had little support after entry/exit zone filtering excluded some
from the clustering step.

The FCM clustering results are quite promising. Collecting
tracking data (something we want to do anyway) long enough
to ensure a sufficient number of trajectories from each real
lane is adequate for path learning. The difficulty associated
with cluster merging may need to be addressed by better
camera calibration for better separation of lanes; definition
of new similarity metrics that incorporate cluster proximity
and membership; adding more tracking features in addition to
just the centroid, such as bounding box coordinates; or some
combination of all three as robust path discovery is essential
for automatic traffic analysis.

D. Lane Assignment

The quality of the learned HMMs were evaluated by
their ability to assign lanes to 923 hand-labeled tracks from
I5 video (this test set only included correctly tracked vehicles).
Eight hundred seventy nine were correctly labeled for 95%
accuracy. Table I shows the accuracy for each individual lane.
Not surprisingly, most errors occur in the northbound lanes,
which suffer from perspective distortion, causing the lanes to
appear very close in the image plane. In these lanes, the centroid
was not always stable and could float into higher lanes.

Using 13 trajectories from the simulated intersection, the
detection of abnormal tracks was verified. Each of the 13 test
trajectories was classified into a lane, and the log likelihoods
were compared with the abnormality threshold (18). Using
β = 0.9, all five of the anomalies were correctly identified, and
lanes were correctly assigned to the remaining eight tracks.

E. Online Analysis

Using the same 13 intersection tracks with known abnormal-
ities, the performance of the online unusual event detector was
evaluated. In total, there were 277 tracking points, 46 of which
were considered abnormal by manual evaluation. The system
was able to correctly locate 40/46=87% of the points while
missing only 6/46=13%, using (21) with a temporal window
of size 5. Fig. 8 shows an example of an unusual event denoted
by a red X. Although six points were completely missed, the
abnormality was always detected after a few samples of delay.
There were 3/277=1.1% false alarms caused by a vehicle stop-
ping at the intersection because this was not in the training set.

Path prediction cannot be readily evaluated because it is
impossible to determine a true path probability. Yet, the PB pre-
diction results (Fig. 9) seemed to produce legitimate estimates.

VIII. CONCLUSION

A visual activity analysis scheme based on tracking was de-
veloped for live highway monitoring and activity analysis. The
proposed system observes scene motion to build high-level be-
havior models. The VECTOR system accurately classifies vehi-
cles, builds a highway model by collecting traffic flow statistics,
and categorizes live traffic flow in real time. In contrast to the
highway specific VECTOR system, the presented path behavior
block is a general tool to extract behaviors in an arbitrary scene.
The normal scene motions are automatically learned to build
probabilistic models that encode the spatiotemporal nature of
activities present in the tracking data. Statistical inferencing
based on these models allows for the detection of abnormal
trajectories, as well as online analysis, path intent prediction,
and usual activity detection. Both of these systems add real-
time situational awareness to visual surveillance systems by
leveraging motion tracking for enhanced activity and behavioral
analysis.
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