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Abstract

This paper presents an adaptive framework for live
video analysis. The activities of surveillance sub-
jects are described using a spatio-temporal vocabulary
learned from recurrent motion patterns. The repetitive
nature of object trajectories are used to build a topo-
graphical map, where nodes are points of interest and
the edges correspond to activities, to describe a scene.
The graph is learned in an unsupervised manner but is
flexible and able to adjust to changes in the environment
or other scene variations.

1 Introduction

Widespread use of cameras has generated huge vol-
umes of data to analyze making it an almost impossible
task to continually monitor these video sources manu-
ally. Methods to recognize certain events and activities
of interest automatically are needed to provide a method
to compress the video data into a more manageable
form. This work develops an unsupervised framework
for automatic activity analysis in surveillance video.

Rather than requiring specific domain knowledge,
we restrict ourselves to surveillance applications where
events of interest are typically evidenced by motion.
Often the observed motion patterns in visual surveil-
lance systems are not completely random but have some
underlying structure which dictates the types of activi-
ties expected in a scene. Instead of manually configur-
ing a system to a specific location, activity models used
for accurate behavior inference can be automatically
built through observation of the underlying motion dis-
tributions. Pioneering work by Johnson and Hogg [4]
described outdoor motions with a flow vector, consist-
ing of position and velocity, and learned paths using
a Neural Network. Owens and Hunter [7] extended
this work using a Self Organizing Feature Map to learn
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Figure 1. Topographical representation of
a scene.

paths and further detect abnormal behavior. Hu et al. [3]
sped up the path learning process by using an entire tra-
jectory as the input feature for the path learning algo-
rithms. They also introduced a method to make predic-
tions based on their path models. Makris and Ellis [5]
developed a method to learn the interesting regions in a
scene as well as build spatial paths in an online fashion
allowing adaption to new unseen trajectories.

This paper extends the above work to provide
an adaptive framework for automatically analyzing a
surveillance scene where activities are updated using an
online refinement scheme as well as a batch update to
introduce new activities into the scene behavior set.

2 Topographical Scene Description

The topographical scene map shown in Fig. 1 pro-
vides the vocabulary to describe object behavior. The
nodes localize spatially points of interest (POI) and
the motion along the graph edges are encoded in ac-
tivity paths (AP). The map can be automatically con-
structed by using measurements obtained during track-
ing F = {f1, . . . , ft, }. where the trajectory F consists
of object dynamics f = [x, y, u, v]T for every time t.
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Figure 2. Lab Omni experiments: (a) Learned POI, enter in green and exit in red. (b) Routes
after merging. (c) Updated zones, notice there are now stop zones (yellow). (d) Set of HMM
activity paths.

3 Points of Interest

There are three types of POI nodes, the entry zones
(objects enter the scene), exit zones (objects leave the
camera view), and stop zones (objects remain idle).
These zones are modeled using a 2D Gaussian mixture
model (GMM), Z ∼

∑W
i=1 wiN(µi,Σi) with W com-

ponents which can be learned using expectation max-
imization (EM). The entry dataset consists of the first
tracking point, the exit set includes only the last track-
ing point, and the stop zone set consists of all tracking
points with velocity below a predefined threshold [5] or
all points that remain in a circle of radius R for more
than τ seconds [1].

The zones are over mixed to completely model all
true zones and noise sources, which are separated with a
density criterion measuring the compactness of a Gaus-
sian distribution [5]. Tight mixtures indicate true zones
while wide mixtures imply tracking noise from bro-
ken tracks which are filtered for improved path learn-
ing later. Example POI are shown in Figs. 2(a) and
2(c) with green corresponding to entry zones, red to
exit zones, yellow to stop zones, and black represent-
ing noise mixtures.

4 Activity Paths

The AP describe the typical motion patterns through
the scene and are specified in a three step procedure. In
the initial learning stage, the spatial configuration of the
graph edges, or routes, are learned. Paths are formed
by augmenting the routes with dynamic information to
describe the spatio-temporal nature of activities. Finally
the AP are temporally maintained by adapting to new
data in an update phase.

4.1 Route Clustering

The routes, corresponding to xy position between
POI, are found by clustering the training set of trajec-

tories. Since tracks are not the same length, due to
differing speeds and amount of time spent in the cam-
era field of view, they are spatially resampled to a fixed
length L. A resampled trajectory is designed to evenly
distribute points along the track length and ensure the
distance between consecutive points is equal. A flow
vector [4] F = [x1, y1, . . . , xL, yL] ignoring velocity
information is constructed from each training trajectory
and represents a point in theR2L route space. The space
is over partitioned into Nc clusters using fuzzy C means
(FCM), to minimize the effect of outliers, which returns
cluster prototypes rk and the membership of each of the
N training trajectories uik to the prototypes.

The FCM route clustering finds prototypes rk, but
because the true number of routes Np is not known a
priori Nc > Np. The true routes are found by merging
similar clusters. Routes are compared using dynamic
time warping (DTW) [8] to optimally align points and
are considered candidates for merging if if all consecu-
tive points are within a small radius or if the total dis-
tance between tracks is small. A cluster correspondence
list is created from these pairwise similarities, forming
similarity groups {Vs}. Each correspondence group is
reduced to a single route

r(Vs) = argmin
z∈Vs

N∑
i=1

|ûik(z)− ũik(z)| (1)

by retaining only the cluster prototype that causes
the maximal change in training membership when re-
moved. The membership ûik(z) represents the re-
normalized membership when prototype z is removed
from the correspondence set and ũik(z) is the recom-
puted FCM membership if route z did not exist. Fig.
2(b) shows the routes learned after merging.

4.2 HMM Path Modeling

The object dynamics needed to characterize activi-
ties are incorporated into the AP by augmenting routes
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Figure 3. Path adapted using the incre-
mental MLLR update (green = original,
magenta = adapted).

and encoding spatio-temporal information with hidden
Markov models (HMMs). The HMM path representa-
tion allows for probabilistic behavior analysis through
Bayesian inferencing with simple training, evaluation,
and adaption techniques.

An HMM is trained for each path by collecting Np

disjoint training sets, D =
⋃Np

k=1 Dk, containing all
trajectories with high membership uik > 0.9. Only
the high membership tracks are used in training set Dk

to improve model precision through removal of out-
liers or ambiguous examples. Using each path training
set Dk, the Np continuous Gaussian emission HMMs
(λk = (A,B, π)) can be efficiently learned using stan-
dard methods such as the Baum-Welch method or EM
[8]. The set of HMM paths, shown in Fig. 2(d), com-
plete the topographical scene representation and de-
scribe how objects move.

4.3 HMM Path Update

Since a surveillance scene is not static, the path pro-
cesses are not guaranteed to be stationary. The AP adapt
to changes using two complimentary methods. The first
refines a matching model in an online fashion with new
trajectories while the second uses a batch update proce-
dure to introduce new activities.

When a new trajectory is generated from a particu-
lar AP, it can be used to update the associated HMM in
an online fashion using maximum likelihood linear re-
gression (MLLR) [2]. MLLR computes a set of affine
transformations that will reduce the mismatch between
the initial model set and new adaption data. The adapted
mean is given by

µ̂ = Wξ, (2)

where W is the d × (d + 1) transformation matrix and
ξ = [1, µ1, . . . , µd]T is the extended Gaussian mean
vector. W is estimated using EM. Each time a new
trajectory is classified into path λk, a transformation is
learned and applied to each of the HMM states for se-
quential update

µt+1 = (1− α)µt + αWtξkj j = 1, . . . , Q (3)

(a) (b)

Figure 4. (a) Simulated intersection. (b) In-
terstate 5 highway.

of the mean with α ∈ [0, 1] a learning rate parameter.
The online regression update is demonstrated in Fig. 3,
where a path is blocked by a table an people are forced
to walk around.

In order to introduce new activities into the AP set,
we adopt the batch update procedure of Hu et al. [3] for
model addition. Trajectories that do not fit any of the
HMMs well are collected into a new training database
and re-clustered (as done above) periodically allowing
assimilation of once atypical motions given enough sup-
port.

5 Studies and Experimental Analysis

The following section presents performance evalu-
ation using the proposed topographical scene descrip-
tion by examining the accuracy of path classification,
prediction, and abnormality detection. Each of these
are evaluated by maximum likelihood estimation of the
HMM models

λ∗ = argmax
k

P (F |λk). (4)

F is chosen appropriately as the full trajectory for clas-
sification or as a small time windowed set of points
for live prediction and abnormality detection. Example
analysis images are shown in Fig. 5. More details of
the evaluation scheme can be found in [6]. The exper-
iments consider a simulated traffic intersection (SIM),
Fig. 4(a), a view of highway traffic on Interstate 5 (I5),
Fig. 4(b), and an indoor laboratory scene from an omni-
directional camera (OMNI), Fig. 2. Table 1 summarizes
the study results.

The intersection had 16 acceptable traffic maneu-
vers which were all accurately discovered with the
cluster-merge procedure. In the I5 experiment we over-
clustered into 25 routes and then merged them into the 8
true lanes with 2 false lanes identified. These false lanes
occurred because camera perspective caused localiza-
tion variance. The lab scene does not have any well de-
fined lanes but paths were mapped between doorways
and desks. There were two separate omni experiments,

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 3, 2009 at 17:14 from IEEE Xplore.  Restrictions apply.



 

 

01  −439.7 
16  −522.2 
15  −696.2 

100.0 %

Past Paths
3rd Match
All Data
Window
Current Point

(a)

 

 

51.0 %

49.0 %

2nd Match
Best Match
All Data
Window
Current Point
Predicted Point

(b) (c)

Figure 5. Example activity analysis. (a) Suspicious event detected as red X. (b) Left turn pre-
diction. (c) Abnormal trajectory detection.

live
Np lane assignment abnormality lane assignment prediction abnormality

SIM 16 327/327 = 100% 5/5 = 100% 3669/3978 = 92.2% 2871/3978 = 72.2% 40/46 = 87.0%
I5 8 879/923 = 95% - 14045/14876 = 94.4% 13859/14876 = 93.2 % -

OMNI1 7 26/26 = 100% 10/14 = 71.4% 1741/3139 = 55.5% 1454/3139 = 46.3% 756/945 = 80.0%
OMNI2 15 12/16 = 75% 15/18 = 83.3% 1457/2693 = 54.1% 1013/2693 = 37.6% -

Table 1. Experimental Results

OMNI1 and OMNI2. The first experiment only con-
tained 7 paths which were all correctly discovered. But
the OMNI2 experiment was more complex, using the
nodes shown in Fig. 1 there were 15 unique paths. Al-
though the path learning system found 15 paths, 2 were
incorrect noise paths. But, the 2 missing paths had little
support in the training set.

Looking at Table 1 we see very high classification
and abnormality detection rates through all the tests.
The live results which use only a portion of the data
(since the full trajectory is not available until the end
of a track) are not as high. There is more confusion
between paths when less data is available. This is es-
pecially apparent for the OMNI tests where there are
multiple overlapping paths making them difficult to dis-
tinguish. It is apparent that the prediction accuracy is
related to how complex the paths are, the straight lanes
of I5 doing the best. Even with the difficulty of incom-
plete data tracking abnormalities are still detected at a
high rate making it useful for live warning signals.

6 Conclusion

This paper presents an adaptive framework for live
video analysis based on trajectory learning. A surveil-
lance scene is described by a topographical scene map
which is learned in unsupervised fashion to indicate in-
teresting image regions and the way objects move be-
tween these places. These descriptors provide the vo-
cabulary to categorize past and present activity, predict
future behavior, and detect abnormalities.
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