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Abstract

This paper presents a general framework for live video

analysis. The activities of surveillance subjects are de-

scribed using a spatio-temporal vocabulary learned from

recurrent motion patterns. The repetitive nature of object

trajectories is used to build a topographical scene descrip-

tion where nodes are points of interest (POI) and the edges

correspond to activity paths (AP). The POI are learned

through as a mixture of Gaussians and AP by clustering

trajectories. The paths are probabilistically represented by

hidden Markov models and adapt to temporal variations

using online maximum likelihood regression (MLLR) and

through a periodic batch update. Using the scene graph,

new trajectories can be analyzed in online fashion to cate-

gorize past and present activity, predict future behavior, and

detect abnormalities.

1. Introduction

The dramatic decrease in cost for quality video equip-

ment coupled with the ease of transmitting and storing video

data has led to its widespread use. Cameras are in use all

around, along highways to monitor traffic, for security of

airports and other public places, and even in our homes.

Because of these huge volumes of video data, it is neces-

sary to develop efficient methods for video management. It

becomes almost an impossible task to continually monitor

these video sources manually. Researchers desire automatic

methods to recognize events and activities of interest as they

provide a means to compress the video data into a more

manageable form as well as annotations for retrieval. This

work seeks to relax the constraints on a priori scene infor-

mation to develop a general framework to analyze surveil-

lance video.

Rather than requiring specific domain knowledge when

analyzing video, we restrict ourselves to surveillance ap-

plications where events of interest are typically evidenced

by motion. Often the observed motion patterns in visual

surveillance systems are not completely random but have

some underlying structure. This structure dictates the types

of activities expected in a scene. By observing motion tra-

jectories over time it is possible to build up models that al-

low for accurate inferencing. Pioneering work by Johnson

and Hogg [1] described outdoor motions with a flow vec-

tor f = [x, y, dx, dy] and learned paths using a leaky neu-

ral network. Owens and Hunter [2] extended this work us-

ing a self organizing feature map to detect abnormal behav-

ior. Stuaffer and Grimson [3] learned paths in a hierarchical

fashion by building up a co-occurrence of codebook flows.

Hu et al. [4] sped up the learning process by using an entire

trajectory as input to their batch learning algorithm. They

also introduced a method to make predictions based on their

path models. Makris and Ellis [5] developed a method to

learn the interesting regions in a scene as well as build spa-

tial paths in an online fashion allowing adaption to new un-

seen trajectories. Picarelli and Foresti [6] developed another

online system to decompose subpaths into a tree-like struc-

ture for efficient data sharing and simple prediction. Further

references on trajectory learning and modeling can be found

in the review by Morris and Trivedi [7].

This paper extends the above work to provide a gen-

eral framework for automatically analyzing a surveillance

scene. Low level object tracking is leveraged to learn a de-

scription of the scene. The interesting regions in an image

are learned and recurrent trajectories build up activity paths

between the regions. The learned paths define the spatio-

temporal dynamics of a scene which can be used for de-

tailed scene analysis.
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Figure 1. Topographical representation of a scene. Graph nodes

represent points of interest (POI) and the edges depict typical mo-

tion encoded in an activity path (AP).

2. Topological Scene Description

Rather than manually specifying activities of interest for

a particular scene, which can become prohibitive, a model

can be automatically built through observation of motion.

Object motions map out patterns that are often not random

but drawn from some underlying distribution. This inherent

structure and redundancy can be leveraged to describe the

spatio-temporal characteristics of a scene. Trajectory infor-

mation is extracted by visual tracking of moving objects and

is the primary feature for scene model construction. This

model is represented as a topographical map [5] with nodes

corresponding to points of interest (POI) and the edges cor-

respond to paths (AP) which encode activity. An example

of this map is depicted in Fig. 1.

2.1. Points of Interest

The entry and exit zones are the locations where ob-

jects either enter or exit the camera field of view (FOV)

or where tracking targets appear and disappear. These

zones are modeled as a mixture of Gaussians (MoG), Z ∼
∑W

i=1 wiN(µi,Σi) with W components. A zone is learned

using expectation maximization (EM) [8] using a dataset

formed from the initial position of a trajectory for start

zones and the final position for stop zones. The zones are

over mixed, large W , to cover all true zones and noise

sources, which are separated with a density criterion [5].

Tight mixture components with high density indicate a true

zone while low density mixtures imply tracking noise as

they are not localized. Fig. 2(a) shows the entry/exit zones

learned for an intersection with green denoting entry and

red exit POI. Noise mixtures, drawn in black, exist in Figs.

6(a) and 7(a) depict broken tracks.

The second type of POI comes from scene landmarks

where objects tend to idle or remain stationary for some

time, e.g. queue of vehicles at a toll booth. These stop zones

are locations that can be defined in two different ways. Ei-

ther as any tracking points with speeds less than a prede-

fined threshold [5] or as all the points that remain in a circle

of radius R for more than τ seconds [9]. By defining a ra-

dius and time constant, the second measure ensures objects

actually remain in a particular location wile the first could

allow noisy points from slow moving targets, as would be

the case in a congested scene. The stop-point dataset is

compiled using both these methods and another MoG is

learned for the stop zone as done above. In Fig. 7(a) the

stop zones are shown in yellow. Notice the desk in the up-

per right and smart board in the lower left are correctly dis-

covered but stop zones were also found overlapping with

entry/exit zones because there is very little pixel deviation

far away from the omni camera.

2.2. Route Clustering

The topographical scene map is completed by learning

the edges between POI nodes. The edges depict the accept-

able paths and specify how objects move between nodes.

Each edge encodes a separate activity and can be learned

by unsupervised clustering. The main difficulty is the time-

varying nature of activities which lead to unequal length tra-

jectories.

A activity training database is accumulated by collecting

trajectories over sufficient time. The trajectories are pro-

cessed to learn the POI which are used to filter the database.

Bad trajectories are removed because they do not well rep-

resent the scene AP. Tracks are considered bad if they do not

start and end in an entry and exit respectively. Trajectories

that travel through a stop zone are split into separate tracks

leading into and out of the stop zone. Initially activity dy-

namics are ignored and only the route or spatial location be-

tween POI is learned. Each trajectory FT = {f1, . . . , fT }
of length t is linearly resampled to a fixed length L in order

to be more easily clustered. The new trajectory representa-

tion F̂L = {f̂1, . . . , f̂T } if designed such that

d(f̂i, f̂j) ∼
1

L − 1

T−1
∑

l=1

d(fl, fl+1) (1)

d(fi, fj) =
√

(xi − xj)2 + (yi − yj)2. (2)

This determines the total xy distance traveled and divides

it equally among the L sample points. This prevents re-

gions of higher sample density from contributing bunches

of points in a single area causing bias toward the manner

an activity was performed rather than just the underlying

activity.

A flow vector [1] F = [x1, y1, . . . , xL, yL], representing

a point in the R2L route space, is constructed for each of

the N training trajectories. The training set is partitioned

in Nc clusters using fuzzy C means (FCM) because it has

soft class assignment that minimizes the effects of outliers.

After clustering, the the major scene paths are encoded by
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Figure 2. (a) Entry/Exit interest zones learned by fitting Gaussian mixture model. (b) Routes learned through fuzzy C mean (FCM)

clustering of trajectories. (c) Spatio-temporal path dynamics modeled with hidden Markov models (HMM).

prototypes rk, k = 1, . . . , Nc, and the membership of a

training example i to route k is given by uik.

2.2.1 Route Merging

The number of paths, Np, in an arbitrary scene is not known

a priori and must be estimated. Initially, FCM clusters into

a large number of prototypes, Nc > Nr, and these are then

refined to a smaller number of routes (Nr) by merging sim-

ilar clusters (we will henceforth assume merging is accurate

and Np = Nr). The routes are linearly resampled for evenly

distributed points then compared using dynamic time warp-

ing (DTW) [10] to find the optimal alignment between route

points. Two clusters, rm and rn, are considered similar if

after optimal alignment all consecutive points are within a

small radius,

dt(rm, rn) =
√

(xm
t − xn

t )2 + (ym
t − yn

t )2 < ǫd ∀t,

(3)

or if the total distance between tracks is small enough,

D =

L
∑

t=1

dt < ǫD = Lǫd. (4)

In our experiments component cluster points are considered

close enough for merging when ǫd = 5 pixels. A cluster

correspondence list is created from these pairwise similar-

ities, forming similarity groups Vs. Each correspondence

group is reduced to a single route

r(Vs) = argmin
z∈Vs

N
∑

i=1

|ûik(z) − ũik(z)| (5)

by retaining only the prototype that would cause maximal

change in training membership if removed. The member-

ship ûik(z) represents the normalized membership when

prototype z is removed from the route set and ũik(z) is the

membership after using FCM to cluster with starting mem-

bership ûik(z).

(a) (b)

Figure 3. Online MLLR update allows adjustments on the fly. The

initial path was blocked by a table forcing a re-routing around the

table. (a) Path learned by applying a batch MLLR update. (b) Path

adapted using the incremental MLLR update.

In practice we have found that FCM tends not to over fit

the data but instead find several very similar clusters, mak-

ing this simple merge algorithm effective. Fig. 2(b) shows

the paths learned by the FCM clustering and merge proce-

dure. The initial clustering used Nc = 25 but after merging

only the Nr = 16 true lanes remain.

3. Path Modeling

The FCM procedure locates paths spatially but this is in-

sufficient for behavior analysis. Not only do we need to

know where objects are located by also the manner in which

they travel along a route to completely characterize a behav-

ior. Using HMMs, the spatio-temporal properties of every

path is encoded, differentiating not only location but also

dynamics. The advantage of modeling paths by HMMs is

simplicity of training and evaluation. In addition, an HMM

naturally compares different length tracks through optimal

time normalization. Unlike with FCM clustering, the full

unsampled trajectories containing position and velocity are

used to incorporate dynamics into the activity path.

3.1. HMM Path

The HMM path is a hidden Markov model (HMM) based

on the structure of trajectories. Each HMM is compactly
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Figure 4. Unusual tracking behavior during illegal u-turn. This is viewed as an activity change because the path changes from 1 to 16. (a)

Acceptably traveling north in Path 1. (b) Suspicious event marked with a red x during u-turn (Still in Path 1). (c) Recovered into acceptable

southbound lane, Path 16.

represented as λk = (A,B, π) and is designed to have Q

states. The parameters A and π are manually defined by the

inherent structure of paths.

πi = eαpi (6)

Aij =

{

e−αb(i−j+1), j ≤ i

e−αf (j−i−1), j > i
(7)

The rows of πi and A are normalized to be valid probabili-

ties. The transition rates are chosen such that αf ≪ αb for

strong left-right tendencies. These parameter definitions set

up the model that mimics the natural progression from the

beginning of a path to the end but also allow starts in the

middle of a path (useful for broken tracks and online anal-

ysis). The internal HMM states {qj}
Q
j=1 are assumed to

be Gaussian mixtures with unknown mean and covariance

qj

∑M
m=1 ∼ N(µjm,Σjm) with M specifying the number

of activities in each path (all our experiments use M = 1
because we assume just a single typical behavior for each

path).

3.2. Training Procedure

The HMM states, relating the position and velocity, must

be learned for an AP. Each HMM is automatically trained

by dividing the training set into Np disjoint sets, D =
⋃Np

k=1 Dk, corresponding to each route. The set Dk is con-

structed by collecting all trajectories classified into cluster

rk based on membership

r⋆
i = argmax

k
uik ∀i. (8)

Only those trajectories with ur⋆
i
k > 0.9 are retained when

creating the path training set Dk because they can be con-

fidently placed into route r⋆
i . The Np HMMs (λk =

(A,B, π)) to be learned using standard methods such as the

Baum-Welch method or EM [10]. The set of HMMs learned

for the traffic intersection are shown in Fig. 2(c).

The AP are learned in unsupervised manner because

“good” training trajectories are found through POI filtering

and the membership confidence threshold. Since no manual

intervention is necessary, the topographical map is easily

generated for quick deployment.

3.3. Model Update

The path models learned through the above procedure

accurately depicts the scene at the time of training but in a

surveillance scene there is no guarantee that processes are

stationary. The paths will be dynamic and the model must

track changes. There are two complimentary methods for

updating the path models, the first in online fashion [11]

and the second through periodic batch refresh [4].

When a trajectory is drawn from a particular activity it

can be used to update the HMM with maximum likelihood

linear regression (MLLR) [11] allowing non-stationary pro-

cesses. MLLR computes a set of linear transformations that

will reduce the mismatch between the initial model and the

new adaption data. The adapted state mean is given by

µ̂ = Wξ, (9)

where W is the d × (d + 1) transformation matrix and ξ =
[1, µ1, . . . , µd]

T is the extended mean vector. W = [b A]
produces and affine transformation for each Gaussian HMM

state mixture component with A a d× d transformation and

b a bias term. The transformation matrix W can be found

using EM. Each time a trajectory is classified into path λk, a

transformation is learned and applied to sequentially update

the HMM. The update

µt+1 = (1 − α)µt + αµWtξkj j = 1, . . . , Q (10)

modifies the mean of existing path λk where the αµ ∈ [0, 1]
is a learning rate parameter. The online regression update is

demonstrated in Fig. 3, where a path is blocked by a table

and people are forced to walk around.
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Figure 5. Left turn prediction with probability of best paths displayed.

Trajectories that do not fit any of the activity models

well and are considered anomalous are collected into batch

update database [4]. Once the database has grown large

enough the AP learning procedure can be reapplied to add

new edges in the scene graph. In this way, motions initially

considered atypical could be assimilated into the scene ac-

tivity models if it accumulated enough support.

4. Behavior Analysis

To analyze an object’s behavior, it is necessary to place

it into a corresponding path at all times. When objects do

not fit into a path model well it indicates the detection of an

anomalous event. This is detection is made more difficult

when in an online setting because only a portion of the en-

tire track is seen at a given time, meaning the the behavior

inferencing must be done with incomplete data.

4.1. Trajectory Classification

Each trajectory can be placed into the appropriate path

with probabilistically Bayesian inferencing. Each new tra-

jectory is assigned the label of the path that best explains

it

λ⋆ = argmax
k

P (F |λk) (11)

which can be solved for HMM λk using the forward-

backward procedure [10]. The label of the maximum likeli-

hood HMM determines the activity of each new datum.

4.1.1 Anomalous Trajectories

While every track will be classified into a path λ⋆, the qual-

ity of this assignment will be low for abnormal activities

since outliers are not well modeled. These abnormal tra-

jectories can be recognized as those with low likelihood,

log P (F |λ⋆) less than a threshold LLTp. The decision

threshold is learned during training by comparing the av-

erage likelihood of samples in training set Dk to those out-

side.

LLin =
1

|Dk|

∑

i∈Dk

log P (Fi|λk) (12)

LLout =
1

N − |Dk|

∑

i/∈Dk

log P (Fi|λk) (13)

LLTp = β(LLin − LLout) + LLout. (14)

The sensitivity factor β ∈ [0, 1] controls the abnormality

rate. Larger β values will cause more trajectories to be con-

sidered anomalous by increasing the threshold.

4.2. Online Tracking Analysis

Although it is interesting to analyze complete tracks, it

is often more important to recognize and evaluate behav-

ior as it occurs. With each new frame a track is updated,

a new path estimate can be made and refined as more in-

formation is gathered. Instead of using all the tracking

points accumulated at a time t, only a small window is

retained as old samples may not correlate well with cur-

rent behavior. The windowed track consists of past and

the present measurements as well as k predicted points,

F k
win = {ft−win, . . . , ft−1, ft, f̂t+1, . . . , f̂t+k}. The fu-

ture points f̂t+k can be estimated by applying the tracking

motion model k time steps ahead.

4.2.1 Live Tracking Classification

Using the windowed track (k = 0), the path an object is fol-

lowing at the current time t can be determined by evaluating

(11) with F replaced by its windowed version F k
win,

λ⋆
win = argmax

k
P (Swin|λk) (15)

Over the life of a trajectory S, path estimates are made, en-

coding a complete path history {λ1, . . . , λT }. A number

of consecutive labels indicates a consistent path. Using this

transcription allows recognition of lane changes as points

when the label changes between consistent paths. The track

in Fig. 4 starts in Path 1 and ends in Path 16.
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Figure 6. Interstate 5 (I5) experiments. (a) Learned Entry/Exit zones, enter in green, exit in red, and black indicates noise. (b) Routes after

merging. (c) HMM path models.
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Figure 7. OMNI experiments, (a),(b) reference OMNI1 while (c),(d) show the updated OMNI2. (a) Learned zones. (b) Routes after

merging. (c) Updated zones, notice the stop zones (yellow). (d) Larger set of OMNI2 activity paths.

4.2.2 Tracking Abnormalities

Since only a windowed version of a trajectory is used during

online analysis the the log-likelihood threshold (14) needs

to be adjusted. The new threshold is

LLT t
p = γt [βt(LLin − LLout) + LLout] , (16)

γt =
E[q|win]

Q
. (17)

The abnormality threshold is adjusted with γt, averaging the

log-likelihood into every model state and adjusting for the

expected number of states visited in the observation win-

dow E[q|win]. Here βt ∈ [0, 1] is again chosen to ensure

detection of most suspicious tracking points. We choose the

βt that results in approximately 10% false positive rate on

the training set (this assumes there are no usual events in

the training set). As soon as an object strays from a path

model, an unusual event is triggered allowing for timely de-

tection. Fig. 4 demonstrates tracking abnormality detection

where the red x marks the unusual event since u-turns were

not allowed.

4.2.3 Path Prediction

Besides detecting abnormalities it is possible to predict be-

havior using the HMMs. Estimation can be extended further

in time than standard one step prediction (Kalman predic-

tion) and is governed by acceptable scene activities rather

than a generic motion model. The future path is predicted

by finding the probability of remaining in each of the top

3 best fit paths from (15). This probability is estimated by

evaluating (15) again with k > 0. Fig. 5 shows and exam-

ple of turn prediction. The probability of the correct path

improves as the turn progresses, matching our intuition.

5. Studies and Experimental Analysis

We evaluate the accuracy of classification, prediction,

and abnormality detection in the following section. The

results are compiled from a set of experimental studies of

different scenes; a simulated traffic intersection (SIM), Fig.

2, a highway traffic view of Interstate 5 (I5), Fig. 6, and

an indoor laboratory scene from an omni-directional cam-

era (OMNI), Fig. 7. Trajectories were generated by using

an adaptive background subtraction scheme [12]. Table 1

summarizes the study results and the parameters used in the

experiments are compiled in Table 2.

5.1. Quality of Paths

Before evaluating the performance of the dynamics, the

quality of the learned paths is addressed. The true number

of lanes in the traffic scenes is known and the number of

paths in the lab scene defined based on the training set.
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live

Np lane assignment abnormality lane assignment prediction abnormality

SIM 16 327/327 = 100% 5/5 = 100% 3669/3978 = 92.2% 2871/3978 = 72.2% 40/46 = 87.0%

I5 8 879/923 = 95% - 14045/14876 = 94.4% 13859/14876 = 93.2 % -

OMNI1 7 26/26 = 100% 10/14 = 71.4% 1741/3139 = 55.5% 1454/3139 = 46.3% 756/945 = 80.0%

OMNI2 15 12/16 = 75% 15/18 = 83.3% 1457/2693 = 54.1% 1013/2693 = 37.6% -

Table 1. Experimental Results

L Q win k β βt

SIM 25 15 5 3 0.85 0.95

I5 25 15 5 3 0.8 0.95

OMNI 15 15 30 15 0.9 0.65

Table 2. Experimental Parameters

The traffic scenes were able to effectively find lanes. All

16 of the intersection maneuvers were discovered. In the

I5 experiment, all 8 of the lanes were discovered but there

were also 2 false lanes identified. These extra lanes appear

in the southbound direction closest to the camera where per-

spective distortion causes more variance in localization.

In contrast to the traffic scenes, the omni camera ob-

served lightly constrained motion since there are no phys-

ical lanes but virtual lanes appear, mapped between door-

ways and desks. The first omni experiment (OMNI1) only

contained 7 paths which were all correctly discovered. But

the OMNI2 experiment was more complex, using the nodes

shown in Fig. 1 there were 15 unique paths. Although the

path learning system found 15 paths, 2 were not correct but

unexpected noise paths (too small stop zone) around the ta-

ble at node c. Two of the missing paths had little support in

the training set and could be learned with more data. These

datasets are particularly difficult because there is not very

clear separation between paths as there is significant over-

lap.

5.2. Trajectory Classification and Abnormalities

Using (11) the each sample trajectory is placed into its

most likely path. All 327 of the test trajectories from the in-

tersection were correctly classified. The I5 experiment had

879 of 923 test tracks correctly given lane labels for 95%
accuracy. Not suprisingly, most errors occured in the north-

bound lanes (top of Fig 6) where the lanes are quite close

because of the camera view. The test set for the OMNI1

experiment was collected over a single Saturday withough

participant awareness for natural tracks. The 26 typical tra-

jectories all correctly classified. The OMNI2 test set was

collected by test subjects walking through the lab for 30

minutes. In this set only 12 of the 16 (75%) modeled trajec-

tories were correctly assigned to a path. But, 14/16 were in

the top 2 best matches and 15/16 in the top 3.

Using β = 0.85 all 5 of the anomalous trajectories were

correctly identified for the intersection experiment. In the

first omni experiment, 10/14 abnormal trajectories were de-

tected and 15/18 were discovered in the second experiment.

Fig. 8 gives examples of abnormal trajectories int the lab

omni experiments.

5.3. Tracking Classification

The tracking classification accuracy measures how many

individual tracking points had the same label as the tra-

jectory label. The traffic scenes, with the simpler lanes,

had high tracking classification results. The accuracy was

92.2% for the intersection and 94.4% for the highway. By

contrast, the two omni experiments had accuracy of 55.5%

and 54.1% respectively. They suffered degraded perfor-

mance due to the complexity of the scene such as overlap-

ping paths. When viewing the windowed data, there is little

distinction between going from node a to g or from a to f

because the routes share significant space. This limited the

influence of the velocity in distinguishing activities. Using

more historical track data would improve classification but

add delay.

5.4. Tracking Prediction

The prediction accuracy is measured by the number of

prediction labels that share the same label as the full tra-

jectory. The prediction accuracy for the intersection was

72.2% and was 93.2% for I5. The results for the lab were

significantly lower, at 46.3% for OMNI1 and 37.5% for

OMNI2. Clearly the prediction scheme works quite well

for straight paths but is limited when analyzing more com-

plex routes. The inferred tracking points do not fit the path

as well when it is curved given just the local dynamics. If

there were hairpin turn in a path, at the top of the u-turn, the

assumption is to continue straight ahead rather than double

back. The prediction accuracy for the omni scenes similarly

suffers from path overlap.

5.5. Abnormalities During Tracking

These anomalies indicate deviation from an AP when

it happens and are noted to occur in groups of successive
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(a) (b)

Figure 8. (a) Abnormal trajectory along edge of room discovered

in OMNI1 training set. (b) Abnormal trajectory because of back-

tracking along path with red X’s indicate the beginning of a track-

ing abnormality.

points proportional to the duration of the abnormality. In

the intersection there were 46 anomalous points out of 277

total trajectory points and 40 were correctly detected. While

6 points were missed they were at the beginning of an ab-

normality group and there was always a detection after a

few samples of delay. There were only 3/277 false alarms.

Using βt = 0.65 in the OMNI1 experiment, 756/945

abnormal points are detected. While this seems promising

it comes at a steep price. The accompanying false positive

rate is 49%. Fig. 9 shows the reciever operating characteris-

tic (ROC) curve and dispalys much room for improvement.

The curve may be a little misleading because it only ac-

counts for direct correlation between the detected and true

abnormality points. A better measure of accuracy might be

the detection of any abnormality points within an appropri-

ate delay window. In Fig. 8(b) we show only the first point

in a group of live tracking abnormalities. Though it looks to

be an acceptable path, the person backtracks between node

a and g causing abnormalities before ending at node f .

6. Conclusion

This paper presents a general framework for live video

analysis based on trajectory learning. A surveillance scene

is described by a topographical map which indicates inter-

esting image regions and the way objects move between

these places. These descriptors provide the vocabulary to

analyze spatio-temporal dynamics. This allows for activ-

ity classification, prediction, and abnormality detection in

real-time. The experimental analysis of three varied scenes

demonstrates the generality of the trajectory analysis proce-

dure.
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