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A u t o m o t i v e  P e r v A s i v e  C o m P u t i n g

on-road Prediction  
of Driver’s intent  
with multimodal 
sensory Cues

W ith more than 33,000 fatali-
ties on US roads each year, 
and almost 50 percent of 
these caused by roadway 
departures, pervasive assis-

tance systems with time- and safety-critical 
capabilities are increasingly important. The 
next generation of advanced driver-assistance 
systems (ADAS) will need to use a holistic 
awareness of the vehicle, its surroundings, and 
the driver to predict and mitigate dangerous or 
uncomfortable circumstances.1

Recent studies have dem-
onstrated predictive systems 
that understand patterns of 
intentional driver behavior in 
particular situations, such as 
changing lanes, turning, and 

braking.1,2 These systems use a wide range of 
vehicle sensors to develop a holistic understand-
ing of the driving situation and machine learning 
algorithms to train classifiers that distinguish be-
tween patterns of events, helping to understand 
what the driver intends to do in the immediate 
future. These predictive systems could provide 
the early notification necessary for an ADAS to 
engage in assistive actions. In risky situations, 
the vehicle could warn the driver of impending 

danger or at critical moments could even take 
control of the vehicle to mitigate damage or com-
pletely avoid a collision. However, such a system 
must have an extremely low false-alarm rate if 
it’s to be effective. A high error rate would annoy 
the driver, who might then disable or disregard 
the offending ADAS.

The implications of a system capable of recog-
nizing and predicting the driver’s intent to change 
lanes are numerous. Drivers only use their blink-
ers half the time before changing lanes,3 but 
blinkers could be engaged automatically. Addi-
tionally, blind-spot warnings could be presented 
only when the driver needs them to avoid distrac-
tion or annoyance (to ease system acceptance). 
An intent-based ADAS could also provide com-
fort and convenience. An attempt to overtake a 
slower vehicle when the automatic cruise control 
(ACC) system is activated is more difficult than 
during natural driving because ACC doesn’t  
allow throttling until after the lane change. An 
accurate ADAS that predicts the driver’s intent 
to change lanes could throttle the engine earlier 
to mitigate the performance gap between ACC-
assisted lane changes and naturalistic driving.

Analysis of intent-detection systems in re-
cent literature has been with limited datasets 
using offline implementations of the systems.  

By predicting a driver’s maneuvers before they occur, a driver-assistance 
system can prepare for or avoid dangerous situations. This article 
describes a real-time, on-road lane-change-intent detector that can 
enhance driver safety.
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These analyses aren’t designed to de-
termine performance in continuous, 
on-road implementations. We’ve devel-
oped and implemented a real-time lane-
change-intent detection system, and we 
propose several analytical methods to 
more realistically characterize perfor-
mance in general, real-world situations. 

Context Capture Framework 
for intelligent vehicles
Figure 1 gives an overview of the lane-
change prediction system output. We’re 
primarily interested in answering 
the following questions in relation to  
intent-prediction systems:

•	How do offline classifier performance 
evaluations translate to real-world, 
real-time, on-road performance,  
especially with respect to the false-
positive rates (FPRs)?

•	What is the performance of various 
sensors and sensor configurations in 
detecting intent? Are more advanced, 
costly sensors necessary to achieve 
better performance?

•	 For a given sensor configuration, when 
is the earliest time prior to the lane 
change that intent can be detected?

The Laboratory for Intelligent and 
Safe Automobiles (LISA) explores 
multidisciplinary approaches to mak-
ing automobiles safer and more intel-
ligent. We take a holistic approach to 
understanding the driving experience 
by analyzing vehicle dynamics, the 
vehicle surroundings, and the driver 
and occupants. Unlike previous LISA 
intelligent vehicle testbeds,1,4 LISA-X 
isn’t a reconfigurable research testbed. 
Instead, it uses production-grade sen-
sors to understand what can be accom-
plished with current technology with 
minimal additional cost.

The LISA-X is a 2008 Volkswagen 
Passat Variant 3.6L, modified to in-
clude several sensors (see Figure 1a):

•	ACC radar,
•	 side warning assist (SWA) radars,
•	 lane-departure warning (LDW) cam-

era, and
•	 head-tracking camera (Head).

LISA-X uses the ACC and SWA radar 
systems to obtain obstacle information. 
The ACC radar uses a narrow beam to 
detect and track vehicles in the front, 
while the SWA radar system tracks  

vehicles in the rear. The LDW camera 
system tracks the lane markings on the 
road to determine lane-level position-
ing. A monocular head camera system 
(not yet on the market) monitors the 
driver’s head position and orientation. 
We tightly integrate these sensor sub-
systems  into the vehicle body to ensure 
minimal distraction during driving.

representing a maneuver
We outfitted LISA-X with sufficient 
computational resources to ensure live 
capture, recording, and processing of 
all the sensory subsystem data, as well 
as other signals delivered along the ve-
hicle’s controller area network (CAN) 
bus. During a typical drive, the system 
captures more than 200 sensory signals 
from each sensor system, synchronized 
and time stamped at 30 Hz, to provide 
a rich description of the complete driv-
ing experience, denoted by the feature 
vector:
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Figure 1. A lane-change prediction system developed by the Laboratory for Intelligent and Safe Automobiles. (a) LISA-X is 
equipped with production-grade sensors to maintain the look and feel of a stock Volkswagen Passat to ensure naturalistic vehicle 
operation by the driver. (b) Real-time intent prediction on LISA-X. The prediction algorithm uses the most indicative sensory 
signals to infer the driver’s intention to change lanes.
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Although each sensor subsystem 
provides a significant number of sig-
nals when sampled every 33 msec, the 
current measurements alone aren’t suf-
ficient for distinguishing between ma-
neuvers. Instead, a small time window 
of the past W = 2 seconds worth of data 
is collected from each sensor to provide 
a temporal contextual descriptor of 
the driving environment (see Figure 2). 
The time-series descriptor incorporates 
temporal patterns in the Nw = W *30  
frames-per-second = 60 historical val-
ues. For example,

 
 
 

ηηj j N

w

w
t

t N t





+ −

= − − 

1

1

( )

( ), , ( ) .Yaw Yaw

The feature vector x(t) is quite large 
because of the Nw historical values for 
each of the 200+ signals. In this raw for-
mat, it would be extremely difficult for 
any pattern recognition algorithm to de-
cipher without prior information about 
what each entry means. The raw sensor 
data coming is, in many cases like this, 
too noisy or sparse. Without enough 
training data for specific situations,  

it becomes necessary to help the sys-
tem by adding “expert” knowledge, 
which includes extra discriminative 
features so classification algorithms 
can distinguish between different  
behaviors—for example, intended lane 
changing versus lane keeping.

The system further processes the 
time-series data to incorporate higher-
level maneuver indicators and human 
driving experience, such as the amount 
of time the driver is glancing to the side,
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where 1[.] is the indicator function. 
These block features provide highly 
discriminative dimensions in the fea-
ture space to jump-start the machine 
learning process without large amounts 
of training data.

subsystem signals and Features
Each sensor type uses different fea-
ture sets to convey information. Once 
these signals are processed into fea-
tures, they’re concatenated into a large 

vector, as Figure 2 illustrates. Each of 
these vectors is used as a training ex-
ample (positive or negative) for the dis-
criminative classifier. In the case of live 
evaluation, we pass these vectors into 
the discriminative classifier to predict 
intent.

Vehicle signals (m). The CAN bus mea-
sures the vehicle’s dynamic state and 
controls. This subsystem supplies sev-
eral time-series features, including the 
steering wheel angle, yaw rate, and 
blinker state signals, as well as indica-
tors of blinker direction and length of 
time it’s active.

ACC signals (`). The ACC system tracks 
vehicles using radar in the front of the 
vehicle. The ACC radar has a narrow 
field of view (FOV) cone such that it can 
reliably track only the vehicle directly 
in front (in the same lane, usually). The 
four ACC features relate to a lead vehicle 
and account for the distance to the ACC 
vehicle, the ACC vehicle’s relative speed, 
the measured time gap with the ACC 
vehicle in seconds, and the difference  

Figure 2. Overview of real-time intent-detection system. The system extracts signals from vehicle sensors and processes them 
into feature vectors, which it then uses for offline training and online classification.
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between the current vehicle speed and 
the desired speed (ACC set speed).

SWA signals (c). The SWA system tracks 
vehicles behind and to the sides using 
a paired radar system and delivers the 
position ( ( ), ( ))s t s tx

i
y
i and relative velocity 

( ( ), ( ))s t s tu
i

v
i of each obstacle i. Unlike the 

ACC radar, the SWA system can track 
many vehicles simultaneously because 
it has a much larger FOV. The large 
rear area is quantized into three smaller 
critical zones corresponding to the 
blind spots in the rear of the vehicle, as  
Figure 3 shows. Each zone is between 
-15 < y < -5 meters behind and is de-
fined by the size of adjacent lanes: Z1 = 
{x | -5 < x < -1.65}}; Z2 = {x | -1.65 < 
x < 1.65}}; and Z3 = {x | 1.65 < x < 5}}.

The SWA blind-spot features indicate 
the occupancy and speed state within a 
critical zone z as
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where i iterates through all tracked ve-
hicles at the current time t. The features 
ςz represent motivating or deterring fac-
tors for a lane change because the pres-
ence of a vehicle in the adjacent lane 
would impede the lane change.

LDW signals (k). The LDW system mea-
sures the vehicle position with respect 
to the road and the road geometry. The 
LDW features correspond to the recent 
time series of vehicle lateral deviation 
(position within the lane), lane curva-
ture, and vehicle yaw angle with respect 
to the lane.

Head signals (g). Unlike the other sen-
sor subsystems, the Head system moni-
tors the driver instead of the driving en-
vironment. A driver’s intentions can be 
better inferred when directly measuring 
driver actions. The Head features are a 
measure of recent driver head motion, 
both head rotation (yaw) and pitch. The 
features include the time series of head 
yaw position, yaw motion (derivative 
of yaw position), a histogram of head 

yaw values, a histogram of yaw motion 
values, a histogram of head pitch posi-
tion, and an indicator signal of signifi-
cant yaw rotation. Because preparatory 
glances are a major indicator of a lane-
change maneuver,3 many features are 
generated for the Head system.

on-road intent-Prediction 
Framework
To train and test the lane-change- 
intent classifier, we collected a new 
sensor-rich database of naturalistic 
driving using the instrumented LISA-X 
vehicle. We collected the data in Palo 
Alto and San Diego in conjunction 
with and under the supervision of the 
VW Electronic Research Laboratory 
(ERL). The 15 (12 male, three female) 
participants were of various nationali-
ties and ranged from 20 to 50 years old, 
with corresponding amounts of driv-
ing experience—from several years to 
decades. Familiarity with ACC func-
tionality ranged from very little to ad-
vanced everyday users. Especially for 

those drivers with limited experience, 
we provided a brief ACC tutorial that 
included sample driving time until they 
became comfortable with operating the 
system.

For each driver, a data collection 
run consisted of two phases designed 
to capture a variety of behaviors. In 
one phase, we told the driver to op-
erate with the ACC function active.  
After a brief tutorial and once the driver 
was comfortable with ACC, we asked 
the driver to safely engage in highway 
driving. We told the driver to stay in 
the slow lane and engage ACC when 
it was safe and comfortable to do so, 
passing other cars when necessary (lane 
changes could occur on either the driver 
or passenger side).

In the second collection phase, in or-
der to obtain completely natural driv-
ing behaviors, we allowed the driver 
to drive normally without the ACC 
function engaged. Drivers (especially 
those not familiar with ACC operation) 
tended to behave differently when the 

Figure 3. Three side warning assist (SWA) regions of interest: driver-side lane in  
pink, center lane (or ego-vehicle lane) in tan, and passenger-side lane in blue. The 
SWA features consist of the average longitudinal speed in each of these regions  
and indicate motivators and deterrents to a lane change.
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ACC was active than in their normal, 
day-to-day driving.

The two phases lasted approximately 
one hour in total, with 30 minutes dedi-
cated to each collection phase, letting us 
capture sufficient data to find patterns 
in various conditions. The complete 
training dataset D contained 24 driv-
ing runs for 14.5 total hours of driving 
data (CAN messages and raw videos).

All the lane changes in a collection 
run were automatically detected using 
the lane-tracking information. We can 
detect lane changes by observing the 
point at which the lateral lane position 
signal switches sign (from the right to 
left side of the lane, or vice versa). The  
automatic-detection scheme worked 
well when lane tracking was reliable, 
but several lane changes had to be man-
ually marked by examining forward-
looking video corresponding to those 
periods of broken lane detection.

The automatic lane-change-detection 
scheme identified almost 500 examples 
(with a 2-second long data window W)  
that could be extracted as training  

segments. To ensure that the training 
data was valid, we used several criteria 
to discard any data in which the sensors 
might have performed poorly:

•	Vehicle: the ego-vehicle must travel  
at highway speeds.

•	ACC: the cruise control must be on 
(but not necessarily active).

•	Head: the visual head tracking must 
be consistent by having limited ab-
normal head movements and the 
driver’s head located within the cen-
ter of the camera FOV. There can’t  
be too many discontinuities in the 
head rotation time series.

•	LDW: the lane tracking should be 
consistent (with high confidence) 
over the data window.

•	 SWA: none.

There were approximately 370 in-
stances of valid naturalistic lane 
changes in the 15 driving hours from 
dataset D. We split the training data 
into two separate subsets for cross-
validation training. The set Dtrain, with 

266 positive examples, was for training 
the classifier, whereas Dtest, with 101 
positive examples, was for assessing the 
performance during training, with ap-
proximately 10 times as many negative 
examples in each case. Figure 4 depicts 
the data split methodology.

Our testing dataset consisted of a 
subset of our members of the initial 
training data and was collected sepa-
rately from the training data. Unlike 
during training, the testing dataset T 
consisted of 7.9 hours of completely un-
controlled driving in 18 separate data 
runs. Drivers were free to use ACC as 
desired and weren’t prompted with any 
directions. Dataset T contained more 
than 400,000 evaluation windows but 
only 229 lane changes. Table 1 sum-
marizes the lane-change prediction 
datasets.

We based our lane-change-intent 
inference algorithm on the Driver In-
tent Inference System (DIIS), by Joel  
McCall and his colleagues.2 There are a 
number of other works in this field.5–9 
Our experience developing discrimina-
tive classifiers for intent prediction has 
shown considerable success, warrant-
ing this investigation into a real-time 
prototype.1,2 

The DIIS is a discriminative classifier 
that distinguishes between lane chang-
ing (either right or left) and lane keep-
ing. Figure 2 shows the general flow of 
the system.

To train the DIIS, we used the dis-
criminative relevance vector machine 
(RVM) classifier, which is based on 
sparse Bayesian learning (SBL), devel-
oped by Michael Tipping10 and imple-
mented by McCall and his colleagues.2 
The algorithm is a Bayesian counter-
part to the popular support vector 
machines (SVM) and is used to train a 
classifier that translates a given feature 
vector into a class membership proba-
bility. RVMs use a parameterized prior 
to prune large feature vectors and facili-
tate a sparse data representation.

The basic form of the RVM clas-
sifier is yδ (t) = ωδ × ϕδ (x(t)), where x 
is the input feature vector, ωδ is the 

Figure 4. Training database split. The training database, which consisted of  
15 subjects, was split into a training and cross-validation test set to train the  
lane-change classifier. We randomly chose 75 percent of the lane changes from  
each subject to use for training. The remaining 25 percent was for independent 
testing. Each positive or negative example corresponds to a small 2-second segment 
of driving data.

75%

Positives Negatives

D train D test

...D : 25%P3– Entire run

P15– Entire run

P2– Entire run
P1– Entire run

TABLE 1 
Lane-change prediction datasets.

Label Dataset Npeople Nruns Hours Description

D
Dtrain
 
Dtest

Long runs for training
Training examples 
 
Test examples

15 24 14.5 782,189 frames
266 positive/2,606  

negative examples
101 positive/879  

negative examples

T Long runs for testing 4 18 7.9 427,497 frames

PC-10-03-Doshi.indd   26 6/24/11   11:03 AM



JULY–SEPTEMBER 2011 PERVASIVE computing 27

learned model weight, and ϕδ is a ker-
nel function. The output y represents 
the probability that x belongs to a par-
ticular class. In this case, we determine 
whether x represents an intended lane 
change at a particular time δ in the 
future.

Several advantages of this method-
ology motivate the use of RVMs over 
other algorithms, such as SVMs and 
hidden Markov models (HMMs). 
The RVM can sift through large fea-
ture sets and obtain a sparse data rep-
resentation, which is especially use-
ful in this application in identifying a 
small set of useful features (those that 
distinctly precede a lane change, as  
Figure 5 demonstrates). Multimodal 
data from various sets of sensors can 
thereby be combined easily, with the 
RVM automatically choosing discrimi-
nating cues from each modality. The re-
sulting sparse representation allows for 
quick computation and classification  

in real time and real-world conditions 
with limited hardware.

The SBL methodology is general 
enough to consider cases, such as in our 
experiment, where there are relatively 
few training examples as compared 
with the number of features. By includ-
ing the windowed time series of cues 
in the final feature vector and applying 
the kernel function, the RVM can also 
determine nonlinear temporal relation-
ships between features, eliminating the 
need for HMMs.

on-road Performance 
Characterization
The performance of pattern-recognition-
based classifiers in laboratories and 
real-world use differ significantly. In 
the laboratory setting, prespecified ex-
amples are fed to the classifier to de-
termine performance; in real-world 
settings, however, the classifier must 
evaluate times-series data as it arrives. 

This continuous operation directly im-
pacts performance because the amount 
of data to be evaluated is much greater, 
consecutive evaluations will perform 
similarly, and decisions must be made 
in real time. Practically, this results in 
much lower FPRs because of the sig-
nificantly larger number of evalua-
tions (although this doesn’t necessarily 
translate to “better” performance) and 
necessitates the development of tech-
niques to perform consistent labeling 
of consecutive samples.

From Laboratory to roads
During the intent classifier training, 
we evaluate performance using a small 
cross-validation test set Dtest. The re-
ceiver operating characteristic (ROC) 
curve generated using this set of labeled 
positive and negative examples (Figure 6a) 
provides the traditional performance 
evaluation in the laboratory setting and 
is similar to those seen in prior work.2

Figure 5. Comparison of driver features. (a) Evolution of head yaw (top) and lateral lane position (bottom) before a lane change 
when lane deviation is maximal. A driver’s head yaw (rotation) when scanning tends to occur between 2.5 and 1.5 seconds 
before a lane change, much later than was previously reported.3 (b) Typical movements during normal, nonlane change events.
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As one of the design requirements, 
we aimed to create an algorithm that 
can predict behaviors across a wide 
population of drivers. This includes 
drivers of different styles, some of 
whom might engage in slightly dif-
ferent behaviors prior to changing 
lanes than others. Given the variety 
of styles, we analyzed the classifier’s 
performance on individual drivers to 
understand whether performance de-
grades between drivers. We compared 
the class membership probabilities 
between the positively and negatively 
labeled data (that is, lane changes ver-
sus lane-keeping situations). Using an 
analysis of variance, treating the sub-
jects as random factors, we found a 
consistent pattern across all drivers of 
separability between classes (F(1, 14) =  
674; p < 0.001). Across the range of 
drivers, the classifier performs consis-
tently, and we expect it to perform just 
as well on a larger population.

We then moved onto dataset T, which 
had fewer drivers but much longer and 
continuous drives, to analyze the on-
road performance of the predictor re-
sponse during continuous operation. 

Figure 6a shows the two ROC curves 
(in blue and green) for detection time 
δ = 2.5 using all the sensor subsystems. 
The ROC from the on-road set T is bet-
ter than for Dtest because of the greater 
rate of negative examples, resulting in 
a low FPR.

Although the traditional ROC curve 
analysis makes the classifier seem quite 
strong, viewing the results on a scale 
that’s more meaningful for real-world 
usage reveals a different story. Figure 6b  
presents the same ROC but using false 
positives per second rather than the 
traditional FPR. Rather than use aca-
demic measures of performance, this 
lets us interpret concrete meaning in 
terms of real units. For example, a clas-
sifier with a 70 percent true-positive  
rate (TPR) and 5 percent FPR might 
seem reasonable in an academic sense, 
but during real on-road operation, it 
might translate to more than one false 
positive every second. Therefore, good 
classifier performance in the labora-
tory doesn’t necessarily translate well 
on-road. To ensure good on-road per-
formance, we must greatly improve the 
classifier FPR.

Lowering Classifier FPr
The intent classifier performance 
analysis using real units (FP/sec) 
shows that false detections are the 
primary source of error. These false 
positives are mainly the result of two 
phenomena. First, on-road evalua-
tion presents data sequentially and 
continually, which results in noninde-
pendent outputs. Second, a classifier 
is designed to detect a lane change δ 
seconds before its occurrence, but the 
classifier isn’t always so precise in its  
prediction.

Time-series dependency and multi-
suppression. In classical pattern- 
classification setups, data is selected  
(either positive or negative examples) 
and fed to a classifier to test its re-
sponse. The implicit assumption is that 
individual examples are independent. 
In the on-road case, we use a sliding 
window of data on the time series of 
feature data, resulting in nonindepen-
dent samples. Two consecutive win-
dows will contain almost identical 
data and therefore will have similar re-
sponses. The plot in Figure 7 shows the 

Figure 6. Plots comparing the d = 2.5 intent receiver operating characteristic (ROC) curves with all sensor subsystems for the 
different test sets. (a) The traditional true-positive rate (TPR) versus false-positive rate (FPR) ROC curve used to assess classifier 
performance with results on T higher because of the many more negative examples in the set. (b) An ROC curve using real  
units shows that the laboratory evaluation doesn’t translate well to the road. Lowering the number of false positives using  
a multisuppression (MS) technique can greatly improve the on-road performance, as shown in red.
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evolution of intent probability of the  
δ = 2.5 classifier in black for several 
seconds before a lane change.

Ideally, a single large value would 
spike at 2.5 seconds prior to the lane 
change, but here there are actually 
two major responses, at 3.5 and 1.25 
seconds prior. As the lane change ap-
proaches, the probability of lane 
change increases and a number of 
time instances are above the detection 
threshold. Each red delta indicates a 
detection, but there is only one lane 
change, which means most red deltas 
are false positives. Assuming that con-
secutive detections arise from the same 
intent, we can extract a single detection 
on the rising edge of the intent signal. 
This multiple detection-suppression 
technique logically handles the time-
series effect but might change the de-
tection time away from δ. After this 
multisuppression, only three detections 
remain in this segment. The detection 
that matches the lane change is the clos-
est to δ, as shown in green, whereas the 
remaining two detections are false  
detections—dramatically fewer than 
the red.

The red line in Figure 6b shows 
the on-road performance after multi-
suppression. The multisuppression 
scheme results in performance gain 
over traditional evaluation but intro-
duces an interesting looping behavior 
in the ROC curve. At low-threshold 
values, many samples are considered 
continuous detections and then sup-
pressed. Therefore, the false-detection 
rate will be low but true detections are 
also low, because the multisuppres-
sion response won’t match the desired 
detection time well. Because this ef-
fect occurs only at low thresholds, 
it is not much of a concern in prac-
tice; the selected detection threshold 
would be high to have high confidence 
in the prediction and to limit false  
positives.

Imprecise prediction timing and match 
windows. Although we trained an in-
tent classifier to infer the lane change 

δ seconds before its occurrence, it’s 
merely attempting to match the current 
data to a pattern seen during training. 
The cues that signify an oncoming lane 
change might not always happen at the 
exact same time, due to the variabil-
ity in human behaviors. Figure 8 plots 
the timing response of an intent clas-
sifier for different detection times. To 
generate these plots, we found all time 
instances where the prediction prob-
ability value was above a low detection 
threshold and determined the time that 
elapsed before the next lane change. 
Although a detector is designed for a 
specific time δ, the detections aren’t lo-
calized and can occur before or after 
this time. Therefore, it isn’t sufficient 
to only consider the sample δ seconds 
before the lane change as a positive 
example, we must also consider that 
examples within a small time window 
around δ are positive.

To determine if the classifier was 
able to correctly infer the lane change 
δ seconds early, we used a small match 
window to soften the δ constraint to 
consider a close detection as a match 
(the green line in Figure 7). The match 
window size is parameterized by two 
values, α and f,

 
 
 
t f

t f

mw

mw

+

−

=

=

δ

α δ

as shown in Figure 9. The match win-
dow is not symmetric to bias matching 
for earlier detection. The early bias is a 
result of multisuppression, which tends 
to mark one detection before the maxi-
mal response. The f term characterizes 
the timing of detection spread, whereas 
α enables earlier detections. We use  
α = 2.0 for all further analysis because 
performance improvements are limited 
for larger values.

Figure 7. Multisuppression. The blue line indicates the time of a lane change, and 
the red lines denote all of the times when the prediction was above the threshold. 
Because only one lane change occurs, a single match, in green, is a true positive. The 
remaining red lines are false positives. We can manage the number of false positives 
by suppressing multiple hits and only counting a single response from each of the 
two groups of red lines (as shown in light gray).
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Figure 10a shows the detection rates 
for intent classifiers with different de-
tection times increasing with larger 
match window sizes. Of course, larger 
windows will more likely collect a high 
response, but the cost is an increased 
number of false positives within the 
window, as Figure 10b shows. The 
FPR dips after initially increasing be-
cause the number of negative examples 
in a window grows faster than the 
number of new false positives. This 
peak gives a good indication of the 

natural window size for a particular 
detection time δ.

selection and Performance 
of Different sensor 
Configurations 
Each sensor that’s added to an auto-
mobile provides both new functional-
ity and a more complete understand-
ing of the driving situation. However, 
these sensors only provide measure-
ments of the physical world, and it 
isn’t immediately clear when they’re 

most useful for lane-change-intent 
recognition.

subsystem timing exploration
It’s important to know at what time pe-
riod before a lane change each of the 
cues from a particular subsystem are 
relevant. We can use this information 
to design a classifier that uses the sen-
sors appropriately.

Figure 11 shows the performance of 
each individual sensor subsystem over 
a range of detection times. The color 
indicates how important a sensor sys-
tem is compared to other sensors using 
the area under the ROC curve (AUC) 
criterion. The LDW lane information 
is most informative between 0 and 
1.5 seconds prior to a lane change, as  
Figure 5 demonstrates. The Head infor-
mation is most relevant between 2 and 
3 seconds, corroborated by the histo-
gram of raw head movements in Figure 5.  
Interestingly, the SWA system doesn’t 
seem to add much information through 
5 seconds, which could indicate that the 
features aren’t informative or that this 
system can’t be used alone. The ACC 
radar apparently is the most informa-
tive sensor at 5 seconds. By training 
intent classifiers that only use measure-
ments from a particular sensor system, 
we can determine its relevant time ho-
rizon without deep analysis or under-
standing of the signals themselves.

sensor Configuration exploration
It’s reasonable to assume that having 
more sensors will provide better in-
formation. Although more data might 
provide a more complete picture of the 
driving situation, it’s also more dif-
ficult to manage and effectively use 
all the information (aka the “curse of 
dimensionality”). In addition, these 
automotive sensors aren’t standard 
equipment on vehicles but are added 
options, which increase the vehicle’s 
cost. Therefore, we want to know the 
relative performance of different sensor 
configurations and whether all the ad-
vanced sensor systems are necessary to 
accurately predict intent.

Figure 8. The distribution of intent detections is fairly wide because consecutive 
intent classifications will result in a succession of positive results. A positive detection 
doesn’t always occur exactly at detection time but can occur sometime before and 
after.
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Figure 9. The match window’s size is controlled by the filter detection time d and the 
two parameters, f and a . Parameter f characterizes detection spread and a enables 
earlier detections.
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We examined several sensor con-
figurations corresponding to different 
equipment options. For lane-change 
detection, we require at least the vehi-
cle information and the LDW lane in-
formation. We evaluated the following 
sensor combinations:

•	VLAHS (vehicle, LDW, ACC, Head, 
SWA),

•	VLAH_ (vehicle, LDW, ACC, Head),
•	VL_HS (vehicle, LDW, Head, SWA),
•	VL_H_ (vehicle, LDW, Head),
•	VLA_S (vehicle, LDW, ACC, SWA),
•	VLA_ _ (vehicle, LDW, ACC), and
•	VL_ _S (vehicle, LDW, SWA).

All previously presented results and dis-
cussion referred to the full sensor com-
bination (VLAHS).

Figure 12 compares the real-unit 
ROC curves for detection times  
δ = 1.0, 1.5, and 2.5 seconds. For the 
δ = 1.5 classifier in Figure 12a, the 
detection rate for all the classifiers 
can reach 95 percent after 200 FP/
hour. The VLA_ _ and VL_ _S per-
form the worst. At this time, the use 
of all the sensors in VLAHS actu-
ally degrades performance slightly.  
Figure 12b shows a clear separation 
between the worst classifier, VL_ _S, 
the non-Head classifiers (VLA_S and 
VLA_ _), and the Head-based classifiers.  
At δ  = 1.5, we can see improvement  

in performance through use of the 
head-viewing camera. Similarly, at  
δ = 2.5 the Head-based predictors 
are the best performing, but this 
time the SWA only (VL_ _S) classi-
fier outperforms ACC-based systems. 
These results are consistent with prior  

research that found direct observation 
of the driver improved lane-change-
intent prediction by detecting prepara-
tory scanning.

As expected, the intent classifica-
tion quality improves the closer the 
detection time is to the lane change.  

Figure 10. Detection rate. (a) The true-positive rate (TPR) increases for different match window sizes. The strong classifiers  
can increase rapidly with small window increase (between 0 and 1 second). (b) The cost of better detection is a larger number  
of false positives within the match window.
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Figure 11. Different sensor subsystems contribute relevant information at different 
times before a lane change. The color indicates how important a sensor system is 
at a given decision time compared to the others using the area under the receiver 
operating characteristic (ROC) curve (AUC).
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Figure 13 shows strong performance 
up to δ = 1.5, and that intent predic-
tion seems to be unreliable beyond  
δ = 3.0 seconds. This indicates that inten-
tion manifests itself in movement only 
in the 3 seconds leading up to the lane  
change.

For δ = 0.0, the ROC curve bends 
toward the top left corner during the 
increasing TPR. This is an artifact of 
the multisuppression algorithm not 
normally present in ROC plots. At high 
thresholds, the multisuppression algo-
rithm can’t conglomerate detections  

because of noisy peaks. Once the 
threshold falls below this noise level, 
more consecutive frames are merged 
through the multisuppression proce-
dure, reducing the number of false 
positives.

Finally, Figure 14 presents a complete 
comparison between all the sensor con-
figurations and detection timings. This 
matrix indicates the detection rate for 
a fixed FPR of 120 FP/hour. Generally 
speaking, the performance for all sensor 
configurations decreases further away 
from the lane change except for VL_ _S 

(local maximum at δ = 2.5). The color 
scale indicates the relative strength of a 
sensor configuration at a given detec-
tion time. The coloring shows that the 
sensor configurations using the Head 
sensor have consistent gains between  
δ = 1.5 and 2.5 seconds, making it an 
attractive advanced sensor.

A utomotive systems operate 
under special safety and 
time-critical constraints, 
where every millisecond 

Figure 12. Real-unit receiver operating characteristic (ROC) curves for competing sensor configurations at different detection 
timings: (a) d  = 1.00, (b) d  = 1.50, and (c) d = 2.50.
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helps to save lives. Intelligent driver-
assistance systems, along with more 
general pervasive computing systems, 
gain precious moments and thus stand 
to benefit greatly from proactively un-
derstanding and predicting human  
behaviors.
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